EP0414699A1 - Measuring device for determining an angle of rotation - Google Patents

Measuring device for determining an angle of rotation

Info

Publication number
EP0414699A1
EP0414699A1 EP19890904011 EP89904011A EP0414699A1 EP 0414699 A1 EP0414699 A1 EP 0414699A1 EP 19890904011 EP19890904011 EP 19890904011 EP 89904011 A EP89904011 A EP 89904011A EP 0414699 A1 EP0414699 A1 EP 0414699A1
Authority
EP
European Patent Office
Prior art keywords
coils
measuring device
carrier
measuring
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19890904011
Other languages
German (de)
French (fr)
Inventor
Peter Zieher
Claus Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0414699A1 publication Critical patent/EP0414699A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable non-ferromagnetic conductive element

Definitions

  • the invention relates to a measuring device for determining the angle of rotation according to the preamble of the main claim.
  • the rotation of a shaft is determined with the aid of two disks which are movable relative to one another.
  • the disks have slots that form the electrically non-conductive area.
  • a coil through which a high-frequency alternating current flows is arranged at least on the end face of a disk in the region of the slots.
  • the relative displacement of the disks relative to one another means that the electrically non-conductive surface of the disks, i.e. changes the opening area of the slots, thereby varying the damping of the coil.
  • the measuring device has the disadvantage that the axes of the disks have to be centered exactly with respect to one another, so that any axial play can have an effect as a measurement error.
  • the measuring device with the characterizing features of claim 1 has the advantage that the device is relatively small. Both the radial play and the axial play of the measuring device are largely compensated for.
  • the resolution of the measurement signal is very large and its linearity within the relatively large measurable angular range is very good.
  • the coils can be prefabricated using etching technology or thick-film technology and glued to the inner wall of a sleeve. As a result, the distance between the coils and the current conducting piece can be minimized and the measuring sensitivity can thus be improved. With a particularly small design, relatively large angular ranges can be measured.
  • the Strom ⁇ Leit published is moved perpendicular to the measuring coil axis, resulting in a particularly good measurement effect.
  • FIG. 1 shows a sleeve with coils applied and FIG. 2 shows a current conducting piece.
  • a sleeve-shaped support, indicated by 10, made of electrically non-conductive material is indicated, on the inner wall of which four coils 11, 12, 13, 14 are arranged. Two coils 11, 13 and 12, 14 are arranged diametrically opposite one another.
  • the measuring angle of the measuring device is determined by the size of the coils 11 to 14.
  • the coils 11 to 14 can be arranged in a meandering shape or in the form of a rectangle. They are preferably designed as flat coils and glued in the form of foils to the inner wall of the carrier 10.
  • the coils 11 to 14 can be applied in known etching technology or in thick-film technology to a suitably designed flexible film. But it is also possible that To arrange the carrier film on the outer wall of the carrier.
  • the coils can also be wound with wire.
  • FIG. 2 shows a current-conducting piece 20 which is of mirror-image design and has two regions 21, 22 made of electrically conductive material, which face the coils and are aligned with the radius of the carrier 10. Electrically non-conductive regions 23, 24 are located between the regions 21, 22. This can be achieved by means of a recess and the air gap which results from this, or by a surface made of electrically non-conductive material.
  • the angular range of the areas 21, 22 is greater than the angular range of the coils 11 to 14, so that the areas 21, 22 each always at least partially cover two coils.
  • the current conducting piece 20 can consist entirely of electrically conductive material, or a layer of electrically conductive material on the surface of the regions 21, 22 facing the coils is sufficient.
  • the current conducting piece 20 is connected to a component, not shown here, whose rotational movement is to be detected.
  • the measuring device works on the inductive or eddy current measuring principle.
  • a high-frequency alternating current flows through the coils.
  • the current guide piece 20 is rotated in the carrier 10 for the measurement.
  • a magnetic alternating field is created on the coils, which causes 20 eddy currents on the installation surface of the current conducting piece.
  • the size of the eddy currents generated depends on the material used for the current conducting piece, in particular its surface, and on the distance of the coils from the surfaces of the current conducting piece.
  • the eddy currents generated reduce the coil AC resistance, which causes a reduction in the voltages applied to the coils.
  • the respective one becomes Coils associated size of the surface of the areas 21, 22 of the current guide 20 changed.
  • the surface of the current conducting piece assigned to the coils is increased by the same amount as it is reduced in the other coil. Since the current conducting piece is mirror-inverted, the change in the eddy current resistance is also effected, as described above, between the opposing coils 12, 14.
  • the diametrically opposite coils are connected in such a way that their field directions are rectified, ie that both field directions point away from or point to the sensor axis, but the coils which follow one another on the carrier 10 are wound in such a way that their field directions are opposed.
  • the voltages of the opposite coils are added and then the sums are rectified and subtracted from each other. Traps z. If, for example, the axes of the carrier 10 and the current conducting piece 20 are not exactly together during assembly, the measuring device has a certain radial play. As a result of the axially symmetrical arrangement of both the current conducting piece 20 and the coils, the increase in voltage caused on one side is compensated for by the corresponding decrease in voltage on the other side. In addition, if the width of the coils is larger or smaller than the width of the current conducting piece, an axial play caused by the installation can also be compensated for. In this case, too, the diametrically opposed measuring errors compensate each other.

Abstract

Dans un dispositif de mesure servant à déterminer un angle de rotation, il est prévu, sur la paroi interne d'un support (10) en un matériau électriquement non conducteur, quatre bobines (11 à 14) qui coopèrent avec une pièce conductrice (20) présentant des zones (21, 22) en un matériau électriquement conducteur. La pièce conductrice (20) est réalisée de manière à former une image inversée et présente deux zones (21, 22) qui sont plus grandes que l'une des bobines (11 à 14). Lorsque la zone de recouvrement entre la zone (21, 22) et l'une des bobines (11 à 14) est réduite, elle augmente de la même valeur dans la bobine suivante. Du fait du câblage et de la disposition mutuelle des bobines, des erreurs peuvent être éliminées par compensation du jeu radial.In a measuring device for determining an angle of rotation, there are provided, on the internal wall of a support (10) made of an electrically non-conductive material, four coils (11 to 14) which cooperate with a conductive part (20 ) having zones (21, 22) of an electrically conductive material. The conductive part (20) is produced so as to form an inverted image and has two zones (21, 22) which are larger than one of the coils (11 to 14). When the overlap area between the area (21, 22) and one of the coils (11 to 14) is reduced, it increases by the same value in the next coil. Due to the wiring and the mutual arrangement of the coils, errors can be eliminated by compensating for the radial clearance.

Description

Meßeinrichtung zur Bestimmung des DrehwinkelsMeasuring device for determining the angle of rotation
Stand der TechnikState of the art
Die Erfindung geht aus von einer Meßeinrichtung zur Bestimmung des Drehwinkels nach der Gattung des Hauptanspruchs. Bei einer bekannten Meßeinrichtung wird die Verdrehung einer Welle mit Hilfe zweier re¬ lativ zueinander beweglicher Scheiben bestimmt. Die Scheiben weisen Schlitze auf, die den elektrisch nicht leitenden Bereich bilden. Ferner ist mindestens an der Stirnseite einer Scheibe im Bereich der Schlitze eine von einem hochfreguenten Wechselstrom durchflossene Spule angeordnet. Durch die relative Verschiebung der Scheiben zu¬ einander wird die elektrisch nicht leitende Fläche der Scheiben, d.h. die Öffnungsfläche der Schlitze verändert, wodurch die Dämpfung der Spule variiert wird. Die Meßeinrichtung hat aber den Nachteil, daß die Achsen der Scheiben genau zueinander zentriert werden müs¬ sen, so daß sich eventuelles Axialspiel als Meßfehler auswirken kann.The invention relates to a measuring device for determining the angle of rotation according to the preamble of the main claim. In a known measuring device, the rotation of a shaft is determined with the aid of two disks which are movable relative to one another. The disks have slots that form the electrically non-conductive area. Furthermore, a coil through which a high-frequency alternating current flows is arranged at least on the end face of a disk in the region of the slots. The relative displacement of the disks relative to one another means that the electrically non-conductive surface of the disks, i.e. changes the opening area of the slots, thereby varying the damping of the coil. However, the measuring device has the disadvantage that the axes of the disks have to be centered exactly with respect to one another, so that any axial play can have an effect as a measurement error.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Meßeinrichtung mit den kennzeichnenden Merk¬ malen des Anspruchs 1 hat demgegenüber den Vorteil, daß die Einrich¬ tung relativ klein baut. Sowohl das Radialspiel als auch das Axial¬ spiel der Meßeinrichtung wird weitgehend kompensiert. Die Auflösung des Meßsignals ist sehr groß und dessen Linearität innerhalb des relativ großen meßbaren Winkelbereichs ist sehr gut. Die Spulen kön¬ nen in Ätztechnik oder in Dickschichttechnik vorgefertigt werden und auf die Innenwand einer Hülse geklebt werden. Dadurch kann der Ab¬ stand zwischen den Spulen und dem Stromleitstück minimiert werden und somit die Meßempfindlichkeit verbessert werden. Bei besonders kleiner Bauform sind relativ große Winkelbereiche meßbar. Das Strom¬ leitstück wird senkrecht zur Meßspulenachse bewegt, wodurch sich ein besonders guter Meßeffekt ergibt.The measuring device according to the invention with the characterizing features of claim 1 has the advantage that the device is relatively small. Both the radial play and the axial play of the measuring device are largely compensated for. The resolution of the measurement signal is very large and its linearity within the relatively large measurable angular range is very good. The coils can be prefabricated using etching technology or thick-film technology and glued to the inner wall of a sleeve. As a result, the distance between the coils and the current conducting piece can be minimized and the measuring sensitivity can thus be improved. With a particularly small design, relatively large angular ranges can be measured. The Strom¬ Leitstück is moved perpendicular to the measuring coil axis, resulting in a particularly good measurement effect.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vor¬ teilhafte Weiterbildungen der im Anspruch 1 angegebenen Meßeinrich¬ tung möglich.The measures listed in the subclaims allow advantageous developments of the measuring device specified in claim 1.
Zeichnungdrawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung darge¬ stellt und in der nachfolgenden. Beschreibung näher beschrieben. Es zeigen, je in perspektivischer Darstellung Figur 1 eine Hülse mit aufgebrachten Spulen und Figur 2 ein Stromleitstück.An embodiment of the invention is shown in the drawing and in the following. Description described in more detail. 1 shows a sleeve with coils applied and FIG. 2 shows a current conducting piece.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In Figur 1 ist ein mit 10 bezeichneter, hülsenförmiger, aus elek¬ trisch nicht leitendem Material hergestellter Träger angedeutet, auf dessen Innenwand vier Spulen 11, 12, 13, 14 angeordnet sind. Je zwei Spulen 11, 13 bzw. 12, 14 sind diametral gegenüberliegend angeord¬ net. Durch die Größe der Spulen 11 bis 14 wird der Meßwinkel der Meßeinrichtung bestimmt. Die Spulen 11 bis 14 können mäanderförmig oder in Form eines Rechtecks angeordnet sein. Bevorzugt sind sie als Flachspulen ausgebildet und in Form von Folien auf die Innenwand des Trägers 10 aufgeklebt. Die Spulen 11 bis 14 können in bekannter Ätz¬ technik oder in Dickschichttechnik auf eine entsprechend ausgebilde¬ te flexible Folie aufgebracht werden. Es ist aber auch möglich, die Trägerfolie auf der Außenwand des Trägers anzuordnen. Ferner können die Spulen auch mit Draht gewickelt werden.In FIG. 1, a sleeve-shaped support, indicated by 10, made of electrically non-conductive material is indicated, on the inner wall of which four coils 11, 12, 13, 14 are arranged. Two coils 11, 13 and 12, 14 are arranged diametrically opposite one another. The measuring angle of the measuring device is determined by the size of the coils 11 to 14. The coils 11 to 14 can be arranged in a meandering shape or in the form of a rectangle. They are preferably designed as flat coils and glued in the form of foils to the inner wall of the carrier 10. The coils 11 to 14 can be applied in known etching technology or in thick-film technology to a suitably designed flexible film. But it is also possible that To arrange the carrier film on the outer wall of the carrier. The coils can also be wound with wire.
In Figur 2 ist ein Stromleitstück 20 dargestellt, das spiegelbild¬ lich ausgebildet ist und zwei, den Spulen zugewandte, dem Radius des Trägers 10 angeglichene Bereiche 21, 22 aus elektrisch leitendem Ma¬ terial aufweist. Zwischen den Bereichen 21, 22 befinden sich elek¬ trisch nicht leitende Bereiche 23, 24. Dies kann durch eine Ausspa¬ rung und dem dadurch entstehenden Luftspalt erreicht werden oder durch eine Oberfläche aus elektrisch nicht leitendem Material. Der Winkelbereich der Bereiche 21, 22 ist größer als der Winkelbereich der Spulen 11 bis 14, so daß die Bereiche 21, 22 jeweils immer zwei Spulen wenigstens teilweise überdecken. Das Stromleitstück 20 kann ganz aus elektrisch leitendem Material bestehen oder es genügt auch eine Schicht aus elektrisch leitendem Material auf der den Spulen zugewandten Oberfläche der Bereiche 21, 22. Das Stromleitstück 20 ist mit einem hier nicht dargestellten Bauteil verbunden, dessen Drehbewegung erfaßt werden soll.FIG. 2 shows a current-conducting piece 20 which is of mirror-image design and has two regions 21, 22 made of electrically conductive material, which face the coils and are aligned with the radius of the carrier 10. Electrically non-conductive regions 23, 24 are located between the regions 21, 22. This can be achieved by means of a recess and the air gap which results from this, or by a surface made of electrically non-conductive material. The angular range of the areas 21, 22 is greater than the angular range of the coils 11 to 14, so that the areas 21, 22 each always at least partially cover two coils. The current conducting piece 20 can consist entirely of electrically conductive material, or a layer of electrically conductive material on the surface of the regions 21, 22 facing the coils is sufficient. The current conducting piece 20 is connected to a component, not shown here, whose rotational movement is to be detected.
Die Meßeinrichtung arbeitet nach dem induktiven oder nach dem Wir¬ belstrommeßprinzip. Beim Wirbelstrommeßprinzip werden die Spulen von einem hochfrequenten Wechselstrom durchflössen. Zur Messung wird das Stromleitstück 20 im Träger 10 gedreht. An den Spulen entsteht ein magnetisches Wechselfeld, das auf der mstallischen Oberfläche des Stromleitstücks 20 Wirbelströme bewirkt. Je größer dabei die vom Ma¬ gnetfeld durchsetzte Fläche des Stromleitstücks 20 ist, desto mehr Wirbelströme werden erzeugt. Ferner ist die Größe der erzeugten Wir¬ belströme abhängig vom verwendeten Material des Stromleitstücks, insbesondere dessen Oberfläche, sowie vom Abstand der Spulen zu den Oberflächen des Stromleitstücks. Durch die erzeugten Wirbelströme wird der Spulen-Wechselstromwiderstand verringert, was eine Verklei¬ nerung der an den Spulen anliegenden Spannungen bewirkt. Bei der Drehbewegung des Stromleitstücks 20 wird jeweils die den jeweiligen Spulen zugeordnete Größe der Oberfläche der Bereiche 21, 22 des Stromleitstücks 20 verändert. Bei jeweils zwei nacheinanderfolgenden Spulen wird die den Spulen zugeordnete Oberfläche des Stromleit¬ stücks je um denselben Betrag erhöht, wie er in der anderen Spule verringert wird. Da das Stromleitstück spiegelbildlich ausgebildet ist, wird die Änderung des Wirbelstromwiderstandes auch, wie oben beschrieben, zwischen den gegenüberliegenden Spulen 12, 14 bewirkt. Die diametral gegenüberliegenden Spulen sind dabei so verschaltet, daß ihre Feldrichtungen gleichgerichtet sind, d.h. daß beide Feld¬ richtungen von der Sensorachse wegzeigen bzw. auf sie zeigen, wobei aber die auf dem Träger 10 nacheinanderfolgenden Spulen so gewickelt sind, daß ihre Feldrichtungen entgegengerichtet sind. Zur Fehlereli- minierung werden, die Spannungen der jeweils gegenüberliegenden Spu¬ len addiert und anschließend die Summen gleichgerichtet und vonein¬ ander subtrahiert. Fallen z. B. bei der Montage die Achsen des Trä¬ gers 10 und des Stromleitstücks 20 nicht exakt zusammen, so weist die Meßeinrichtung ein gewisses Radialspiel auf. Durch die achssym¬ metrische Anordnung sowohl des Stromleitstücks 20 als auch der Spu¬ len, wird die auf einer Seite bewirkte Erhöhung der Spannung durch die entsprechende Erniedrigung der Spannung auf der anderen Seite kompensiert. Ist ferner die Breite der Spulen größer oder auch klei¬ ner als die Breite des Stromleitstücks, so kann auch ein durch den Einbau bewirktes Axialspiel kompensiert werden. Auch in diesem Fall kompensieren sich die diametral gegenüber entstehenden Meßfehler.The measuring device works on the inductive or eddy current measuring principle. With the eddy current measuring principle, a high-frequency alternating current flows through the coils. The current guide piece 20 is rotated in the carrier 10 for the measurement. A magnetic alternating field is created on the coils, which causes 20 eddy currents on the installation surface of the current conducting piece. The larger the area of the current conducting piece 20 penetrated by the magnetic field, the more eddy currents are generated. Furthermore, the size of the eddy currents generated depends on the material used for the current conducting piece, in particular its surface, and on the distance of the coils from the surfaces of the current conducting piece. The eddy currents generated reduce the coil AC resistance, which causes a reduction in the voltages applied to the coils. When the current guide piece 20 rotates, the respective one becomes Coils associated size of the surface of the areas 21, 22 of the current guide 20 changed. In the case of two successive coils, the surface of the current conducting piece assigned to the coils is increased by the same amount as it is reduced in the other coil. Since the current conducting piece is mirror-inverted, the change in the eddy current resistance is also effected, as described above, between the opposing coils 12, 14. The diametrically opposite coils are connected in such a way that their field directions are rectified, ie that both field directions point away from or point to the sensor axis, but the coils which follow one another on the carrier 10 are wound in such a way that their field directions are opposed. To eliminate errors, the voltages of the opposite coils are added and then the sums are rectified and subtracted from each other. Traps z. If, for example, the axes of the carrier 10 and the current conducting piece 20 are not exactly together during assembly, the measuring device has a certain radial play. As a result of the axially symmetrical arrangement of both the current conducting piece 20 and the coils, the increase in voltage caused on one side is compensated for by the corresponding decrease in voltage on the other side. In addition, if the width of the coils is larger or smaller than the width of the current conducting piece, an axial play caused by the installation can also be compensated for. In this case, too, the diametrically opposed measuring errors compensate each other.
Selbstverständlich, ist es auch möglich, statt vier Spulen eine grö¬ ßere Anzahl von Spulen zu verwenden, wodurch kleine Meßwinkel be¬ stimmt werden können. Das Stromleitstück kann eine Drehbewegung um 360 Grad ausführen. Der eigentliche Meßbereich ist aber auf die Län¬ ge der Spulen begrenzt und wiederholt sich abhängig von der Anzahl der Spulen immer wieder. Of course, it is also possible to use a larger number of coils instead of four coils, as a result of which small measuring angles can be determined. The current conducting piece can rotate through 360 degrees. However, the actual measuring range is limited to the length of the coils and repeats itself again and again depending on the number of coils.

Claims

Ansprüche Expectations
1. Meßeinrichtung zur berührungsfreien Bestimmung eines Drehwinkels mit Hilfe von auf einem Träger (10) aus elektrisch nicht leitendem Material aufgebrachten Sensorspulen (11 bis 14), deren Dämpfung durch die relative Veränderung der Größe der den Spulen (11 bis 14) zugeordneten Bereiche (21, 22) aus elektrisch leitendem Material ei¬ nes Stromleitstücks (20) variiert wird, dadurch gekennzeichnet, daß die Spulen (11 bis 14) auf einem hohlzylinderförmigen Träger (10) aufgebracht sind und daß das Stromleitstück (20) im Träger (10) an¬ geordnet ist und relativ zu ihm bewegt wird.1. Measuring device for the contactless determination of an angle of rotation with the aid of sensor coils (11 to 14) applied to a carrier (10) made of electrically non-conductive material, the damping of which by the relative change in the size of the areas (21 to 14) assigned to the coils (11 to 14) , 22) made of electrically conductive material ei¬ Nes Stromleitstücks (20), characterized in that the coils (11 to 14) are applied to a hollow cylindrical carrier (10) and that the Stromleitstück (20) in the carrier (10) ¬ is ordered and moved relative to it.
2. Meßeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zwei diametral gegenüberliegende Spulen (11 bis 14) am Körper (10) ange¬ ordnet sind.2. Measuring device according to claim 1, characterized in that two diametrically opposite coils (11 to 14) on the body (10) are arranged.
3. Meßeinrichtung nach Anspruch 1 und/oder 2, dadurch gekennzeich¬ net, daß auf dem Körper (10) vier Spulen (11 bis 14) angeordnet sind, daß die jeweils gegenüberliegenden Spulen (11, 14) in ihrer Feldrichtung gleichgerichtet sind, daß die in Drehrichtung nachein¬ ander folgenden Spulen in den Feldrichtungen entgegengerichtet sind, so daß bei Bewegung des Stromleitstücks (20) die einen Spulen je¬ weils zuerst stark und die anderen schwach bedämpft werden. 3. Measuring device according to claim 1 and / or 2, characterized gekennzeich¬ net that on the body (10) four coils (11 to 14) are arranged that the opposite coils (11, 14) are rectified in their field direction that the coils following one after the other in the direction of rotation are opposed in the field directions, so that when the current conducting piece (20) moves, the one coil is first strongly damped and the other weakly damped.
4. Meßeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, daß das Stromleitstück (20) gegenüberliegende, gebogene, der Krümmung des Körpers (10) entsprechende Bereiche (21, 22) aus elektrisch leitendem Material aufweist und daß das Stromleitstück (20) zwischen diesen Bereichen (21, 22) Bereiche (23, 24) mit ge¬ ringer elektrischer Leitfähigkeit hat.4. Measuring device according to one of claims 1 to 3, characterized gekenn¬ characterized in that the current guide (20) opposite, curved, the curvature of the body (10) corresponding areas (21, 22) made of electrically conductive material and that the current guide ( 20) between these areas (21, 22) has areas (23, 24) with low electrical conductivity.
5. Meßeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß die Meßspannung der Spulen (11 bis 14) gleichgerichtet werden und die Meßspannung nacheinanderfolgender Spulen voneinander subtrahiert werden.5. Measuring device according to one of claims 1 to 4, characterized gekenn¬ characterized in that the measuring voltage of the coils (11 to 14) are rectified and the measuring voltage of successive coils are subtracted from each other.
6. Meßeinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet, daß die Spulen (11 bis 14) auf einer Trägerfolie aufge¬ bracht sind, die auf der Innenseite oder auf der Außenseite des Körpers (10) angeordnet ist.6. Measuring device according to one of claims 1 to 5, characterized gekenn¬ characterized in that the coils (11 to 14) are mounted on a carrier film which is arranged on the inside or on the outside of the body (10).
7. Meßeinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Spulen (11 bis 14) auf der Trägerfolie in Ätztechnik hergestellt sind.7. Measuring device according to claim 6, characterized in that the coils (11 to 14) on the carrier film are made in etching technology.
8. Meßeinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Meßspulen (11 bis 14) auf der Trägerfolie in Dickschichttechnik her¬ gestellt sind. 8. Measuring device according to claim 6, characterized in that the measuring coils (11 to 14) are made on the carrier film in thick-film technology.
EP19890904011 1988-05-04 1989-04-14 Measuring device for determining an angle of rotation Withdrawn EP0414699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3815074A DE3815074A1 (en) 1988-05-04 1988-05-04 MEASURING DEVICE FOR DETERMINING THE TURNING ANGLE
DE3815074 1988-05-04

Publications (1)

Publication Number Publication Date
EP0414699A1 true EP0414699A1 (en) 1991-03-06

Family

ID=6353539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890904011 Withdrawn EP0414699A1 (en) 1988-05-04 1989-04-14 Measuring device for determining an angle of rotation

Country Status (6)

Country Link
EP (1) EP0414699A1 (en)
JP (1) JPH03504158A (en)
KR (1) KR900700848A (en)
DE (1) DE3815074A1 (en)
ES (1) ES2014077A6 (en)
WO (1) WO1989011077A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211614C2 (en) * 1992-04-07 1994-04-21 Bosch Gmbh Robert Measuring device for determining an angle of rotation
DE4406417A1 (en) * 1994-02-28 1995-09-07 Bosch Gmbh Robert Inductive appts. for measurement of travel or angular movement
DE29514026U1 (en) * 1995-09-01 1995-11-02 Sew Eurodrive Gmbh & Co Device for detecting the speed and / or direction of rotation of motors, in particular asynchronous motors
JP2002090177A (en) * 2000-09-14 2002-03-27 Tokyo Cosmos Electric Co Ltd Displacement detection device without contact-making
DE102007011952B4 (en) * 2007-03-09 2019-09-26 Werner Turck Gmbh & Co. Kg Motion measuring device, in particular rotary encoder
DE102013213663A1 (en) * 2013-07-12 2015-01-15 Zf Friedrichshafen Ag trailer hitch
DE102014224426A1 (en) * 2014-11-28 2016-06-02 Zf Friedrichshafen Ag trailer hitch

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE372858B (en) * 1971-12-31 1975-01-13 Asea Ab
US4384252A (en) * 1979-05-11 1983-05-17 The Bendix Corporation Cup shaped magnetic pickoff for use with a variable reluctance motion sensing system
DE2951148C2 (en) * 1979-12-19 1984-04-19 Robert Bosch Gmbh, 7000 Stuttgart Measuring device for an angle of rotation and / or a torque
DE3307105A1 (en) * 1982-03-17 1983-09-22 Robert Bosch Gmbh, 7000 Stuttgart Measuring device for an angle of rotation and/or a torque
DE3218508C2 (en) * 1982-05-17 1986-12-18 Oskar Ing.(grad.) 7073 Lorch Mohilo Frequency-fed measuring coil arrangement for an inductive rotation angle sensor
DE3582783D1 (en) * 1984-11-20 1991-06-13 S G Kk DEVICE FOR DETECTING THE ROTATION.
DE3511490A1 (en) * 1985-03-29 1986-10-09 Robert Bosch Gmbh, 7000 Stuttgart Measuring device for rotational angles and/or torques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8911077A1 *

Also Published As

Publication number Publication date
KR900700848A (en) 1990-08-17
JPH03504158A (en) 1991-09-12
DE3815074C2 (en) 1990-11-29
WO1989011077A1 (en) 1989-11-16
DE3815074A1 (en) 1989-11-16
ES2014077A6 (en) 1990-06-16

Similar Documents

Publication Publication Date Title
EP0334854B1 (en) Measurement system for rotation angle and/or rotation speed
EP0130940B1 (en) Inductive sensor device and measuring device for using the same
EP3390970B1 (en) Linear mouvement sensor
DE19806529C2 (en) Off-angle sensor
DE102017219901B3 (en) Micromechanical z-inertial sensor
DE10139154B4 (en) Angular position sensor
DE3740800C2 (en)
DE4122478A1 (en) MEASURING DEVICE FOR DETERMINING A TURNING ANGLE
EP0493385A1 (en) High-resolution coder.
DE4001544A1 (en) MEASURING DEVICE FOR DETERMINING A TURNING ANGLE
EP0414699A1 (en) Measuring device for determining an angle of rotation
DE102018213249A1 (en) Sensor system for determining at least one rotational property of a rotating element
EP0428536B1 (en) A measuring device for the contactless determination of a change in travel and/or angle
EP0425529B1 (en) A measuring device for determining an angle of rotation
DE4018187A1 (en) INDUCTIVE ANGLE SENSOR FOR DETECTING THE ROTATION OF A SHAFT
DE4211616A1 (en) Contactless inductive or eddy current rotation angle measurement appts. for IC engine throttle flap positioner - forms interfitting projection and recess on shaft coupler and plastic sleeve with clearance.
DE4211614C2 (en) Measuring device for determining an angle of rotation
DE19525292C2 (en) Device for detecting the angle of rotation, the speed and / or the direction of rotation of a rotary drive
DE3824533C2 (en)
DE4114574A1 (en) ANGLE DETECTOR FOR CONTACT-FREE DETERMINATION OF THE ROTATION OF A SHAFT
DE2937248A1 (en) Angle measurement device capacitive transducer - has dielectric discs carrying circle sector electrode layers rotating w.r.t. each other
WO1999030111A1 (en) Metering device for contactless determination of a rotation
DE19902258A1 (en) Proximity switch with magnetic field sensitive sensor has alternately arranged magnetic pole zones on side of permanent magnet arrangement facing magnetic field sensitive sensor
DE102021205132A1 (en) SENSOR ELEMENT FOR STORING ROTATION OR POSITION INFORMATION AND STORAGE SYSTEM WITH ONE SENSOR ELEMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910726

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19911206