EP0414685A1 - Circular waveguide connection between a transformer and metal-cased, high-voltage switchgear with compressed gas insulation. - Google Patents

Circular waveguide connection between a transformer and metal-cased, high-voltage switchgear with compressed gas insulation.

Info

Publication number
EP0414685A1
EP0414685A1 EP88909975A EP88909975A EP0414685A1 EP 0414685 A1 EP0414685 A1 EP 0414685A1 EP 88909975 A EP88909975 A EP 88909975A EP 88909975 A EP88909975 A EP 88909975A EP 0414685 A1 EP0414685 A1 EP 0414685A1
Authority
EP
European Patent Office
Prior art keywords
transformer
gas
connection
pipe
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88909975A
Other languages
German (de)
French (fr)
Other versions
EP0414685B1 (en
Inventor
Juergen Haarhuis
Dieter Lorenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88909975T priority Critical patent/ATE87408T1/en
Publication of EP0414685A1 publication Critical patent/EP0414685A1/en
Application granted granted Critical
Publication of EP0414685B1 publication Critical patent/EP0414685B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/063Totally-enclosed installations, e.g. in metal casings filled with oil or gas

Definitions

  • the invention relates to a pipeline connection between a metal-encapsulated, pressure-gas-insulated high-voltage switchgear and a transformer, which in particular contains a compensator and in which the pipe-conductor is connected on one side to a connection of the metal-encapsulated, gas-insulated high-voltage switchgear and on the other side to a transformer outlet.
  • Such pipe connections are common and z. B. from E-Bl-0 055 094 known.
  • the compensator in the pipeline connection allows a certain tolerance range for the fastening of the pipeline to the adjacent connection piece. This possible tolerance range depends on the permissible movements given by the dimension of the compensator in the direction of its longitudinal axis ⁇ L and the permissible angular movements ⁇ . The tolerance range that can be determined by the angular movements is also dependent on the distance L between the compensator and the flange connection piece used for connection.
  • the possible tolerance compensation is primarily dependent on the dimensioning of the compensator, which is a complex component and which tends to be able to buckle easily in the event of large axially permissible movements because of the large number of fold turns required, so that only the permissible axial deflection of the compensator can be used for tolerance compensation.
  • the invention is therefore based on the object of a pipe connection with or without a compensator between one
  • the distance between the flange connector of the transformer outlet and the pipe connector provided with a lateral flange connection can be rotated in the axial direction, i.e. in the direction of the longitudinal axis of the pipe the center axis of the second rotary flange are balanced.
  • the middle part of the encapsulated Z-shaped or U-shaped pipe connector part is then inclined accordingly.
  • the possible compensatable tolerance range is not limited by the permissible movement of the compensator in the axial direction, but rather the possible tolerance range is given by the distance between the center points of the two rotary flanges and by the permissible angular deflection of the compensator and has an ellipsoidal shape.
  • the permissible axial movement of the compensator can therefore be neglected.
  • a corresponding compensatable ellipsoidal tolerance range is obtained when the second rotary flange is connected to the end surface of the pipe. This tolerance range lies in a plane running parallel to the end face of the pipe.
  • Another level of the compensable tolerance range which is at right angles to this, is obtained when connecting a Z- or U-shaped encapsulated pipe connector part via the first rotary flange on the end face of the transformer outlet, if the end face of the transformer outlet is below the pipe connector and the pipe conductor has a lateral flange connection.
  • the compensator is expediently arranged in this pipeline connection adjacent to the connection of the metal-encapsulated, compressed gas-insulated high-voltage switchgear so that the permissible angular deflection can be exploited to the greatest possible compensatable tolerance range.
  • the transformer outlet and the pipeline are each connected via a rotary flange to one end of a Z-shaped, encapsulated tubular connector part and the other two ends of the Z-shaped tubular connector parts are connected to one another by a further rotary flange.
  • the compensatable tolerance range is increased to a circular ring area and the effort given by a compensator is eliminated.
  • the compensable tolerance ranges are also in three planes at right angles to each other.
  • FIGS. 1 and 6 show the basic structure of a pipeline connection designed according to the invention between a metal-encapsulated, compressed gas-insulated high-voltage switchgear and a transformer.
  • Figures 2, 3 and 7 each show a view A of the transformer with connected pipe connection in modified embodiments.
  • Figures 4, 5 and 8, 9 schematically show the possible compensable tolerance ranges of an arrangement according to Figure 1 or 6 depending on the dimensions of the pipe connections.
  • Figure 1 shows a metal-encapsulated, compressed gas-insulated high-voltage switchgear 1 consisting of a pressure vessel 2 with a circuit breaker and a double busbar system 3. This is connected to the transformer 5 via a pipe connection 4.
  • the pipe connection 4 contains a compensator 6, which is arranged adjacent to the connection 7 of the metal-encapsulated, compressed gas-insulated high-voltage switchgear 1 and is fastened to it.
  • the pipeline 8 of the pipeline connection 4 extends between the compensator 6 and the transformer outlet 9 and ends in a flange stub 10 oriented at right angles to its longitudinal axis, the connection surface 11 of which lies in a plane running parallel to the plane of the longitudinal axis of the pipeline 8.
  • the transformer outlet 9 has a lateral flange connection 12, which extends at right angles to its longitudinal axis, the connection surface 13 of which is also in a
  • R there is a height difference R between the central axes of the flange connections 10 on the pipeline 8 and 12 at the transformer outlet 9, which is indicated in FIGS. 2 and 3 by arrows.
  • a U-shaped, encapsulated pipe connector 14 (FIG. 3) or a Z-shaped encapsulated pipe connector 15 (FIG. 2) is used
  • Distance R between the center axes of the flange connector 10 on the pipe 8 and the flange connector 12 on the transformer outlet 9 is bridged.
  • These Z- (15) or U- (14) -shaped, encapsulated pipe connector parts are connected at one end to the flange connector 12 of the transformer outlet 9 via a first rotary flange 16.
  • the other end of the encapsulated pipe connector part 14, 15 is each connected to the flange stub 10 of the pipe 8 via a second rotary flange 17.
  • the distance between the central axes of the two rotary flanges 16, 17 thus corresponds to R.
  • These rotary flanges 16, 17 are common components in pressurized gas-insulated, metal-enclosed high-voltage switchgear and allow the parts connected via them to be rotated relative to one another.
  • H the longitudinal axis of the pipe 8 above the foundation 18, which is indicated in FIG. 1 by arrows
  • the Z- or U-shaped encapsulated pipe connection part 14, 15 can be rotated around the flange connection 10, so that the flange connection 12 of the transformer outlet 9 could lie on the circle with the radius R, which thus represents an essential determining variable for the compensatable tolerance field T 1 or T 2 (see FIGS. 4 and 5).
  • the compensatable tolerance field T 1 or T 2 is not only dependent on the radius R, but also on the possible one
  • Angular movement ⁇ of the compensator 6 limited.
  • This compensator 6 allows an allowable angle determined by its dimensions (represented by arrows in FIG. 1), around which the compensator 6 can perform angular movements above or below the longitudinal axis of the pipe 8.
  • H L tan
  • the partial area F h is not part of the compensable
  • connection surface 13 on the flange 12 of the transformer outlet 9 is not within the
  • Area F h may be.
  • FIGS. 6 and 7 show a further modified embodiment of the invention. The same reference numerals are retained for the same parts.
  • the pipeline connection 4 between the metal-encapsulated, compressed gas-insulated high-voltage switchgear 1 and the transformer 5 has no compensator, so that the pipeline 8 is connected directly to the connection 7 of the metal-encapsulated, pressurized gas-insulated high-voltage switchgear.
  • For the connection between the pipe 8 and the transformer outlet 9 serve two Z-shaped, encapsulated pipe connector parts 19, 20, which with the flange 12 of the transformer outlet or with the flange 10 of the pipe 8 each via a rotary flange 16, 17 and with each other over the other Rotary flange 21 are connected.
  • the leg length R of the Z-shaped, encapsulated pipe connector part 19 corresponds to the distance between the central axes of the rotary flanges 17 and 21 and the leg length S of the Z-shaped tube conductor connects part 20 corresponding to the distance between the center lines of the rotary flanges 16 and 21.
  • the distances R and S are indicated in FIG. 6 by arrows.
  • the permissible compensatable tolerance field T 3 , T 4 is therefore solely dependent on the sizes R and S.
  • the compensatable tolerance field T 4 shown in FIG. 8 results in the form of a circular ring.
  • the outer radius R a of this tolerance field T 4 has the size R + S.
  • the inner radius R i corresponds to the absolute value of the difference between the values of the two radii R and S.
  • the rotary flange 16 at the transformer outlet 9 may only lie within the circular area of the tolerance field T 5 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Installation Of Bus-Bars (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Transformer Cooling (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Waveguides (AREA)

Abstract

A compressed gas-insulated bus between a metal-enclosed, compressed gas-insulated high-voltage switching installation and a transformer. The compressed gas-insulated bus, with or without a compensator, serves to connect a transformer to a metal-enclosed, compressed gas-insulated high-voltage switching installation. Since the transformer must sometimes be replaced, the gas-insulated bus should provide an as large as possible, compensable tolerance zone for the position of the transformer connection. For this purpose, the transformer connection to the gas-insulated bus with a compensator is connected by means of a first rotary flange to one end of a Z- or U-shaped enclosed compressed gas-insulated bus connection member, the other end of the connection member being connected to the gas-insulated bus proper by means of a second rotary flange. The compensable tolerance zone is determined by twisting this gas-insulated bus connection member and by the allowable angular movement of the compensator, whereby the allowable axial movement of the compensator can be disregarded. In a gas-insulated bus without a compensator, the transformer connection and the gas-insulated bus are each connected via respective rotary flanges to respective Z-shaped gas-insulated bus connection members with each connection member being connected to the other via further rotary flanges. Such a gas-insulated bus is disposed between a transformer and a compressed gas-insulated high-voltage switching installation of an electric supply plant.

Description

Rohrleiterverbindung zwischen einer metallgekapselten, druckgasisolierten Hochspannungsschaltanlage und einem Transformator Pipe connection between a metal-encapsulated, compressed gas-insulated high-voltage switchgear and a transformer
Die Erfindung bezieht sich auf eine Rohrleiterverbindung zwischen einer metallgekapselten, druckgasiolierten Hochspannungsschaltanlage und einem Transformator, die insbesondere einen Kompensator enthält und bei welcher der Rohrleiter auf der einen Seite mit einem Anschluss der metallgekapselten, druckgasisolierten Hochspannungsschaltanlage und auf der anderen Seite mit einem Transformatorabgang verbunden ist.The invention relates to a pipeline connection between a metal-encapsulated, pressure-gas-insulated high-voltage switchgear and a transformer, which in particular contains a compensator and in which the pipe-conductor is connected on one side to a connection of the metal-encapsulated, gas-insulated high-voltage switchgear and on the other side to a transformer outlet.
Derartige Rohrleiterverbindungen sind üblich und z. B. aus der E-Bl-0 055 094 bekannt. Der in der Rohrleiterverbindung vorhandene Kompensator läßt einen gewissen Toleranzbereich für die Befestigung des Rohrleiters an den angrenzenden Anschlußstutzen zu. Dieser mögliche Toleranzbereich hängt von den durch die Abmessung des Kompensators vorgegebenen zulässigen Bewegungen in Richtung seiner Längsachse ± L und den zulässigen Winkelbewegungen ± ab. Dabei ist der durch die Winkelbewegungen erfaßbare Toleranzbereich außerdem noch abhängig von dem Abstand L zwischen dem Kompensator und dem zum Anschluß dienenden Flanschstutzen. Somit ist der mögliche Toleranzausgleich in erster Linie von der Dimensionierung des Kompensators abhängig, der ein aufwändiges Bauteil ist und der die Tendenz aufweist, bei großen axial zulässigen Bewegungen wegen der dann erforderlichen großen Anzahl von Faltenwindungen leicht ausknicken zu können, so daß nur die zulässige Axialauslenkung des Kompensators für den Toleranzausgleich ausgenutzt werden kann.Such pipe connections are common and z. B. from E-Bl-0 055 094 known. The compensator in the pipeline connection allows a certain tolerance range for the fastening of the pipeline to the adjacent connection piece. This possible tolerance range depends on the permissible movements given by the dimension of the compensator in the direction of its longitudinal axis ± L and the permissible angular movements ±. The tolerance range that can be determined by the angular movements is also dependent on the distance L between the compensator and the flange connection piece used for connection. Thus, the possible tolerance compensation is primarily dependent on the dimensioning of the compensator, which is a complex component and which tends to be able to buckle easily in the event of large axially permissible movements because of the large number of fold turns required, so that only the permissible axial deflection of the compensator can be used for tolerance compensation.
Aber auch bei Rohrleiterverbindungen ohne Kompensator ergibt sich manchmal die Notwendigkeit, einen ausgleichbaren Toleranzbereich für den Anschlußflansch des Transformatorabgangs zu schaffen.But even with pipeline connections without a compensator, there is sometimes a need to create a compensable tolerance range for the connection flange of the transformer outlet.
Gerade bei den in Elektrizit ätsversorgungsanlagen vorhandenen Transformatoren, die an metallgekapselte, druckgasisolierte Hochspannungsschaltanlagen angeschlossen sind, besteht aber in Schadenfällen die Forderung, zwecks Erhöhung der betriebstechnischen Verfügbarkeit, einen Transformator möglichst schnell auszuwechseln, weshalb der mit der Rohrleiterverbindung (mit oder ohne Kompensator) abzudeckende Toleranzbereich sehr groß werden kann, weil die Abmessungen der Anschlußstellen der Transformatorabgänge unterschiedlich sein können.Especially in the case of transformers in electricity supply systems that are connected to metal-encapsulated, pressurized gas-insulated High-voltage switchgear are connected, but in the event of damage there is a requirement to replace a transformer as quickly as possible in order to increase operational availability, which is why the tolerance range to be covered with the pipe connection (with or without a compensator) can become very large because the dimensions of the connection points of the transformer outlets differ can.
Der Erfindung liegt somit die Aufgabe zugrunde, eine Rohrleiterverbindung mit oder ohne Kompensator zwischen einemThe invention is therefore based on the object of a pipe connection with or without a compensator between one
Transformator und einer metallgekapselten, druckgasisolierten Hαchspannungsschaltanlage so zu gestalten, daß mit möglichst geringem Aufwand ein großes ausgleichbares Toleranzfeld für die Befestigung an dem Flanschstutzen des Transformatorabgangs geschaffen wird.To design a transformer and a metal-encapsulated, pressure-gas-insulated high-voltage switchgear so that a large, compensatable tolerance field for fastening to the flange connection of the transformer outlet is created with as little effort as possible.
Zur Lösung dieser Aufgabe ist bei einer Rohrleiterverbindung der eingangs beschriebenen Art mit Kompensator gemäß der Erfindung der Flanschstutzen des Transformatorabgangs über einen ersten Drehflansch mit einem Ende eines Z- oderTo solve this problem is in a pipe connection of the type described above with a compensator according to the invention, the flange of the transformer outlet via a first rotary flange with one end of a Z or
U-förmigen gekapselten Rohrleiteranschlußteiles verbunden, dessen anderes Ende über einen zweiten Drehflansch an dem Rohrleiter angeschlossen ist.U-shaped encapsulated pipe connector part connected, the other end of which is connected to the pipe conductor via a second rotary flange.
Durch den über zwei Drehflansche zwischen die Rohrleiterverbindung und dem Transformatorabgang geschalteten Z- oder U-förmigen Rohrleiteranschlußteil kann der Abstand zwischen dem Flanschstutzen des Transformatorabgangs und dem mit einem seitlichen Flanschstutzen versehenen Rohrleiter in Axialrichtung, d. h. in Richtung der Längsachse des Rohrleiters, durch ein Verdrehen um die Mittelachse des zweiten Drehflansches ausgeglichen werden. Der Mittelteil des gekapselten Z-oder U-förmigen Rohrleiteranschlußteils stellt sich dann entsprechend schräg. Dadurch ist der mögliche ausgleichbare Toleranzbereich nicht mehd αurch die zulässige Bewegung des Kompensators in axialer Richtung begrenzt, sondern der mögliche Toleranzbereich ist durch den Abstand zwischen den Mittelpunkten der beiden Drehflansche und durch die zulässige Winkelauslenkung des Kompensators gegeben und hat eine ellipsoidale Form. Mithin kann die zulässige Axialbewegung des Kompensators vernachlässigt werden.Due to the Z-shaped or U-shaped pipe connection part connected via two rotary flanges between the pipe connection and the transformer outlet, the distance between the flange connector of the transformer outlet and the pipe connector provided with a lateral flange connection can be rotated in the axial direction, i.e. in the direction of the longitudinal axis of the pipe the center axis of the second rotary flange are balanced. The middle part of the encapsulated Z-shaped or U-shaped pipe connector part is then inclined accordingly. As a result, the possible compensatable tolerance range is not limited by the permissible movement of the compensator in the axial direction, but rather the possible tolerance range is given by the distance between the center points of the two rotary flanges and by the permissible angular deflection of the compensator and has an ellipsoidal shape. The permissible axial movement of the compensator can therefore be neglected.
Dadurch kann trotz eines möglichst groß gewünschten Toleranzbereiches für die Befestigung am Anschlußstutzen des Transformatorabgangs der Kompensator klein gehalten werden, was den Aufwand für die Rohrleiterverbindung verringert, trotzdem aber den Austausch von Transformatoren mit unterschiedlich liegenden Anschlußstutzen erlaubt.This allows the compensator to be kept small, despite the largest possible tolerance range for attachment to the connecting piece of the transformer outlet, which reduces the effort for the pipeline connection, but nevertheless allows the exchange of transformers with different connecting pieces.
Weist der Transformator eine Anschlußfläche seines FlanschStutzens auf, die parallel zur Stirnfläche des Rohrleiters verläuft, so erhält man einen entsprechenden ausgleichbaren ellipsoidalen Toleranzbereich bei Anschluß des zweiten Drehflansches an die Stirnfläche des Rohrleiters. Dieser Toleranzbereich liegt in einer parallel zur Stirnfläche des Rohrleiters verlaufenden Ebene.If the transformer has a connection surface of its flange socket that runs parallel to the end surface of the pipe, a corresponding compensatable ellipsoidal tolerance range is obtained when the second rotary flange is connected to the end surface of the pipe. This tolerance range lies in a plane running parallel to the end face of the pipe.
Eine weitere, dazu rechtwinklig stehende Ebene des ausgleichbaren Toleranzbereichs ergibt sich bei Anschluß eines Z- oder U-förmig gekapselten Rohrleiteranschlußteils über den ersten Drehflansch an der Stirnfläche des Transformatorabgangs, wenn die Stirnfläche des Transformatorabgangs unterhalb des Rohrleiters liegt und der Rohrleiter einen seitlichen Flanschstutzen aufweist.Another level of the compensable tolerance range, which is at right angles to this, is obtained when connecting a Z- or U-shaped encapsulated pipe connector part via the first rotary flange on the end face of the transformer outlet, if the end face of the transformer outlet is below the pipe connector and the pipe conductor has a lateral flange connection.
In zweckmäßiger Weise wird der Kompensator in dieser Rohrleiterverbindung benachbart zum Anschluß der metallgekapselten, druckgasisolierten Hochspannungsschaltanlage angeordnet, damit die zulässige Winkelauslenkung zu einem möglichst großen ausgleichbaren Toleranzbereich ausgenutzt werden kann.The compensator is expediently arranged in this pipeline connection adjacent to the connection of the metal-encapsulated, compressed gas-insulated high-voltage switchgear so that the permissible angular deflection can be exploited to the greatest possible compensatable tolerance range.
Gemäß der weiteren Erfindung sind zur Lösung der Aufgabenstel lung bei einer Rohrleiterverbindung der eingangs beschriebenen Art ohne Kompensator der Transformatorabgang und der Rohrleiter jeweils über einen Drehflansch mit einem Ende eines Z-förmigen, gekapselten Rohrleiteranschlußteils verbunden und die beiden anderen Enden der Z-förmigen Rohrleiteranschlußteile sind untereinander durch einen weiteren Drehflansch verbunden.According to the further invention are to solve the task development in a pipeline connection of the type described above without compensator, the transformer outlet and the pipeline are each connected via a rotary flange to one end of a Z-shaped, encapsulated tubular connector part and the other two ends of the Z-shaped tubular connector parts are connected to one another by a further rotary flange.
Dadurch wird der ausgleichbare Toleranzbereich zu einer Kreisringfläche vergrößert und der durch einen Kompensator gegebene Aufwand entfällt. Entsprechend der Lage der jeweiligen Anschlußfläche des Transformatorabgangs - seitlich, stirnseitig oder unterhalb des Rohrleiters - liegen die ausgleichbaren Toleranzbereiche ebenfalls in drei rechtwinklig zueinander stehenden Ebenen.As a result, the compensatable tolerance range is increased to a circular ring area and the effort given by a compensator is eliminated. Depending on the position of the respective connection surface of the transformer outlet - on the side, on the front or below the pipe - the compensable tolerance ranges are also in three planes at right angles to each other.
Es empfiehlt sich, die beiden Z-förmigen gekapselten Rohrleiteranschlußteile untereinander gleich zu wählen. Dadurch ergibt sich als ausgleichbarer Toleranzbereich eine geschlossene Kreisfläche.It is advisable to choose the two Z-shaped encapsulated pipe connector parts from each other in the same way. This results in a closed circular area as a compensable tolerance range.
Im folgenoen sei die Erfindung noch anhand der in den Figuren 1 bis 9 schematisch dargestellten Ausführungsbeispiele näher erläutert.In the following, the invention will be explained in more detail with reference to the exemplary embodiments shown schematically in FIGS. 1 to 9.
Die Figuren 1 und 6 zeigen den prinzipiellen Aufbau einer gemäß der Erfindung ausgebildeten Rohrleiterverbindung zwischen einer metallgekapselten, druckgasisolierten Hochspannungsschaltanlage und einem Transformator. Die Figuren 2, 3 und 7 zeigen jeweils eine Ansicht A auf den Transformator mit angeschlossener Rohrleiterverbindung in abgewandelten Ausführungsformen. Die Figuren 4, 5 und 8, 9 zeigen schematisch die möglichen ausgleichbaren Toleranzbereiche einer Anordnung nach Figur 1 oder 6 in Abhängigkeit von den Abmessungen der Rohrleiterverbindungen.FIGS. 1 and 6 show the basic structure of a pipeline connection designed according to the invention between a metal-encapsulated, compressed gas-insulated high-voltage switchgear and a transformer. Figures 2, 3 and 7 each show a view A of the transformer with connected pipe connection in modified embodiments. Figures 4, 5 and 8, 9 schematically show the possible compensable tolerance ranges of an arrangement according to Figure 1 or 6 depending on the dimensions of the pipe connections.
Figur 1 zeigt eine metallgekapselte, druckgasisolierte Hochspannungsschaltanlage 1 bestehend aus einem Druckbehälter 2 mit einem Leistungsschalter und einem Doppelsammelschienensystem 3. Diese ist über eine Rohrleiterverbindung 4 an dem Transformator 5 angeschlossen. Die Rohrleiterverbindung 4 enthält einen Kompensator 6, der benachbart zum Anschluß 7 der metallgekapselten, druckgasisolierten Hochspannungsschaltanlage 1 angeordnet und an diesem befestigt ist.Figure 1 shows a metal-encapsulated, compressed gas-insulated high-voltage switchgear 1 consisting of a pressure vessel 2 with a circuit breaker and a double busbar system 3. This is connected to the transformer 5 via a pipe connection 4. The pipe connection 4 contains a compensator 6, which is arranged adjacent to the connection 7 of the metal-encapsulated, compressed gas-insulated high-voltage switchgear 1 and is fastened to it.
Der Rohrleiter 8 der Rohrleiterverbindung 4 erstreckt sich zwischen dem Kompensator 6 und dem Transformatorabgang 9 und endet in einem rechtwinklig zu seiner Längsachse ausgerichteten Flanschstutzen 10, dessen Anschlußfläche 11 in einer parallel zur Ebene der Längsachse des Rohrleiters 8 verlaufenden Ebene liegt. Desgleichen weist der Transformatorabgang 9 einen seitlichen, rechtwinklig zu seiner Längsachse verlaufenden Flanschstutzen 12 auf, dessen Anschlußfläche 13 ebenfalls in einerThe pipeline 8 of the pipeline connection 4 extends between the compensator 6 and the transformer outlet 9 and ends in a flange stub 10 oriented at right angles to its longitudinal axis, the connection surface 11 of which lies in a plane running parallel to the plane of the longitudinal axis of the pipeline 8. Likewise, the transformer outlet 9 has a lateral flange connection 12, which extends at right angles to its longitudinal axis, the connection surface 13 of which is also in a
Ebene liegt, die parallel zur Ebene der Längsachse des Transformatorabgangs 9 verläuft. Zwischen den Mittelachsen der Flanschstutzen 10 am Rohrleiter 8 und 12 am Transformatorabgang 9 besteht ein Höh enunterschied R, der in den Figuren 2 und 3 durch Pfeile angedeutet ist.Is level that runs parallel to the plane of the longitudinal axis of the transformer outlet 9. There is a height difference R between the central axes of the flange connections 10 on the pipeline 8 and 12 at the transformer outlet 9, which is indicated in FIGS. 2 and 3 by arrows.
Zur Verbindung zwischen dem Rohrleiter 8 und dem Transformatorabgang 9 dient, je nach Lage des Transformators 5 gegenüber dem Rohrleiter 8, ein U-förmiges, gekapseltes Rohrleiteranschlußteil 14 (Figur 3) oder ein Z-förmiges gekapseltes Rohrleiteranschlußteil 15 (Figur 2), das den Abstand R zwischen den Mittelachsen des Flanschstutzens 10 am Rohrleiter 8 und des Flanschstutzens 12 am Transformatorabgang 9 überbrückt. Diese Z- (15) bzw. U- (14) förmigen, gekapselten Rohrleiteranschlußteile sind an einem Ende mit dem Flanschstutzen 12 des Tranformatorabgangs 9 über einen ersten Drehflansch 16 verbunden. Das andere Ende des gekapselten Rohrleiteranschlußteils 14, 15 ist jeweils über einen zweiten Drehflansch 17 an dem Flanschstutzen 10 des Rohrleiters 8 angeschlossen. Der Abstand der Mittelachsen beider Drehflansche 16, 17 entspricht also R. Diese Drehflansche 16, 17 sind übliche Bauteile bei druckgasisolierten, metallgekapselten Hochspannungsschaltanlagen und ermöglichen ein Verdrehen der über sie verbundenen Teile gegeneinander. Dies bedeutet, daß bei einer festgegebenen Höhe H der Längsachse des Rohrleiters 8 über dem Fundament 18, die in Figur 1 durch Pfeile angedeutet ist, das Z- oder U-förmige gekapselte Rohrleiteranschlußteil 14, 15 um den Flanschstutzen 10 gedreht werden kann, so daß der Flanschstutzen 12 des Transformatorabgangs 9 auf dem Kreis mit dem Radius R liegen könnte, der somit eine wesentliche Bestimmungsgröße für das ausgleichbare Toleranzfeld T1 bzw. T2 (siehe Figuren 4 und 5) darstellt.For the connection between the pipe 8 and the transformer outlet 9, depending on the position of the transformer 5 relative to the pipe 8, a U-shaped, encapsulated pipe connector 14 (FIG. 3) or a Z-shaped encapsulated pipe connector 15 (FIG. 2) is used Distance R between the center axes of the flange connector 10 on the pipe 8 and the flange connector 12 on the transformer outlet 9 is bridged. These Z- (15) or U- (14) -shaped, encapsulated pipe connector parts are connected at one end to the flange connector 12 of the transformer outlet 9 via a first rotary flange 16. The other end of the encapsulated pipe connector part 14, 15 is each connected to the flange stub 10 of the pipe 8 via a second rotary flange 17. The distance between the central axes of the two rotary flanges 16, 17 thus corresponds to R. These rotary flanges 16, 17 are common components in pressurized gas-insulated, metal-enclosed high-voltage switchgear and allow the parts connected via them to be rotated relative to one another. This means that at a specified height H of the longitudinal axis of the pipe 8 above the foundation 18, which is indicated in FIG. 1 by arrows, the Z- or U-shaped encapsulated pipe connection part 14, 15 can be rotated around the flange connection 10, so that the flange connection 12 of the transformer outlet 9 could lie on the circle with the radius R, which thus represents an essential determining variable for the compensatable tolerance field T 1 or T 2 (see FIGS. 4 and 5).
Das ausgleichbare Toleranzfeld T1 bzw. T2 ist aber nicht nur von dem Radius R abhängig, sondern auch durch die möglicheThe compensatable tolerance field T 1 or T 2 is not only dependent on the radius R, but also on the possible one
Winkelbewegung ± des Kompensators 6 begrenzt. Dieser Kompensator 6 läßt einen von seinen Abmessungen bestimmten zulässigen Winkel (durch Pfeile in Figur 1 dargestellt) zu, um den der Kompensator 6 winklige Bewegungen oberhalb bzw. unterhalb der Längsachse des Rohrleiters 8 ausüben kann. Dies bedeutet, daß bei einer Länge L der Rohrleiterverbindung 4, gegeben durch den Kompensator 6 und den Rohrleiter 8, infolge des zulässigen Winkels zum Ausschwenken des Kompensators 6 die Längsachse des Flanschstutzens 10 des Rohrleiters 8 eine Vertikalbewegung nach oben oder nach unten durchführen kann, die maximal den Betrag + H bzw. - H aufweisen darf (siehe Figur 1). Dabei ist H = L tanAngular movement ± of the compensator 6 limited. This compensator 6 allows an allowable angle determined by its dimensions (represented by arrows in FIG. 1), around which the compensator 6 can perform angular movements above or below the longitudinal axis of the pipe 8. This means that with a length L of the pipe connection 4, given by the compensator 6 and the pipe 8, due to the permissible angle for pivoting the compensator 6, the longitudinal axis of the flange connector 10 of the pipe 8 can perform a vertical movement up or down, which may have a maximum of + H or - H (see Figure 1). H = L tan
Aus dieser Abhängigkeit des zulässigen ausgleichbaren Toleranzfeldes T1, T2 von den Größen L, H, R und dem Winkel ergibt sich bei einem zulässigen Winkel von = 5° und einem Höhenunterschied R H = L tan , d. h. der kleiner oder gleich der zulässigen Höhenabweichung H ist, ein zulässiges ausgleichbares Toleranzfeld T 1 = (2 K 2 R) + R2, das in Figur 4 dargestellt ist. Dieses Toleranzfeld T1 ist also abhängig von den Größen 2 H und von dem Radius R und ist völlig in sich geschlossen, so daß alle innerhalb dieses Toleranzfeldes T1 liegende Punkte, die der Lage des Flanschstutzens 12 am Transformatorabgang 9 entsprechen würden, von der Rohrleiterverbindung 4 erfaßt werden könnten.From this dependency of the permissible compensatable tolerance field T 1 , T 2 on the quantities L, H, R and the angle, at a permissible angle of = 5 ° and a height difference RH = L tan, ie less than or equal to the permissible height deviation H is a permissible compensatable tolerance field T 1 = (2 K 2 R) + R 2 , which is shown in Figure 4. This tolerance field is T 1 depending on the sizes 2 H and the radius R and is completely self-contained, so that all points lying within this tolerance field T 1 , which would correspond to the position of the flange connector 12 on the transformer outlet 9, could be detected by the pipeline connection 4.
Abweichend sind die Verhältnisse, wenn der Radius R H = L tan ist. In diesem Fall ergibt sich bei einem zulässigen Winkel = 5° ein Toleranzfeld T2, das in Figur 5 dargestellt ist. Dieses Toleranzfeld T2 ist gleich T2 = (2 H 2 R) + R2 - Fh.The conditions are different if the radius RH = L tan. In this case, with a permissible angle = 5 °, a tolerance field T 2 results, which is shown in FIG. 5. This tolerance field T 2 is equal to T 2 = (2 H 2 R) + R 2 - F h .
Die Teilfläche Fh ist nicht Bestandteil des ausgleichbarenThe partial area F h is not part of the compensable
Toleranzfeldes T2, so daß die Anschlußfläche 13 am Flanschstutzen 12 des Transformatorabgangs 9 nicht innerhalb derTolerance field T 2 , so that the connection surface 13 on the flange 12 of the transformer outlet 9 is not within the
Fläche Fh liegen darf.Area F h may be.
In den Figuren 6 und 7 ist eine weitere abgewandelte Ausführungsform der Erfindung dargestellt. Für gleiche Teile werden die gleichen Bezugszeichen beibehalten.FIGS. 6 and 7 show a further modified embodiment of the invention. The same reference numerals are retained for the same parts.
Die Rohrleiterverbindung 4 zwischen der metallgekapselten, druckgasisolierten Hochspannungsschaitanlage 1 und dem Transformator 5 weist keinen Kompensator auf, so daß der Rohrleiter 8 unmittelbar an dem Anschluß 7 der metallgekapselten, druckgasisolierten Hochspannungsschaltanlage angeschlossen ist. Zur Verbindung zwischen dem Rohrleiter 8 und dem Transformatorabgang 9 dienen zwei Z-förmige, gekapselte Rohrleiteranschlußteile 19, 20, die mit dem Flanschstutzen 12 des Transformatorabgangs bzw. mit dem Flanschstutzen 10 des Rohrleiters 8 jeweils über einen Drehflansch 16, 17 und untereinander über den weiteren Drehflansch 21 verbunden sind. Die Schenkellänge R des Z-förmigen, gekapselten Rohrleiteranschlußteils 19 entspricht dem Abstand zwischen den Mittelachsen der Drehflansche 17 und 21 und die Schenkellänge S des Z-förmigen R ohrle iter anschlußt eils 20 ent spr icht de m Abstand zw i schen αen Mittellinien der Drehflansche 16 und 21. Die Abstände R bzw. S sind in der Figur 6 durch Pfeile angedeutet. Durch Verdrehen der Drehflansche 16, 17, 21 gegeneinander erhält man eine Schrägstellung der beiden Z-förmigen, gekapselten Rohrleiteranschlußteile 19, 10 zueinander, so daß der Anschlußstutzen 12 des Transformatorabgangs 9 innerhalb eines Kreises mit dem Radius R + S liegen könnte. Dieses vergrößerte ausgleichbare Toleranzfeld T3 bzw. T4 (siehe Figuren 8 und 9) ergibt sich aus der Tatsache, daß sich die Mittelachse des Drehflansches 21 ebenfalls verlagern kann.The pipeline connection 4 between the metal-encapsulated, compressed gas-insulated high-voltage switchgear 1 and the transformer 5 has no compensator, so that the pipeline 8 is connected directly to the connection 7 of the metal-encapsulated, pressurized gas-insulated high-voltage switchgear. For the connection between the pipe 8 and the transformer outlet 9 serve two Z-shaped, encapsulated pipe connector parts 19, 20, which with the flange 12 of the transformer outlet or with the flange 10 of the pipe 8 each via a rotary flange 16, 17 and with each other over the other Rotary flange 21 are connected. The leg length R of the Z-shaped, encapsulated pipe connector part 19 corresponds to the distance between the central axes of the rotary flanges 17 and 21 and the leg length S of the Z-shaped tube conductor connects part 20 corresponding to the distance between the center lines of the rotary flanges 16 and 21. The distances R and S are indicated in FIG. 6 by arrows. By rotating the rotary flanges 16, 17, 21 against each other, you get an inclined position of the two Z-shaped, encapsulated pipe connector parts 19, 10 to each other, so that the connecting piece 12 of the transformer outlet 9 could lie within a circle with the radius R + S. This increased compensatable tolerance field T 3 or T 4 (see FIGS. 8 and 9) results from the fact that the central axis of the rotary flange 21 can also shift.
Das zulässige ausgleichbare Toleranzfeld T3, T4 ist somit allein von den Größen R und S abhängig. Für den Fall, daß R = S ist, ergibt sich das in Figur 8 dargestellte Toleranzfeld T3, das eine geschlossene Kreisfläche mit dem Radius R + S = 2 R = 2 S bildet.The permissible compensatable tolerance field T 3 , T 4 is therefore solely dependent on the sizes R and S. In the event that R = S, the tolerance field T 3 shown in FIG. 8 results, which forms a closed circular area with the radius R + S = 2 R = 2 S.
Für den Fall, daß R und S unterschiedliche Werte aufweisen (R S, R S), ergibt sich das in Figur 8 dargestellte ausgleichbare Toleranzfeld T4 mit in Form eines Kreisringes. Der äußere Radius Ra dieses Toleranzfeldes T4 weist die Größe R + S auf. Der innere Radius Ri entspricht dem Absolutbetrag der Differenz der Werte beider Radien R und S. In diesem Fall darf der Drehflansch 16 am Transformatorabgang 9 nur innerhalb der Kreisringfläche des Toleranzfeldes T5 liegen.In the event that R and S have different values (RS, RS), the compensatable tolerance field T 4 shown in FIG. 8 results in the form of a circular ring. The outer radius R a of this tolerance field T 4 has the size R + S. The inner radius R i corresponds to the absolute value of the difference between the values of the two radii R and S. In this case, the rotary flange 16 at the transformer outlet 9 may only lie within the circular area of the tolerance field T 5 .
4 Patentansprüche 9 Figuren 4 claims 9 figures

Claims

Patentansprüche Claims
1. Rohrleiterverbindung (4) zwischen einer metallgekapselten, druckgasisolierten Hochspannungsschaltanlage (1) und einem1. Pipe connection (4) between a metal-encapsulated, compressed gas-insulated high-voltage switchgear (1) and one
Transformator (5), die einen Kompensator (6) enthält und bei welcher der Rohrleiter (8) auf der einen Seite mit einem Anschluss (7) der metallgekapselten, druckgasisolierten Hochspannungsschaltanlage (1) und auf der anderen Seite mit einem Transformatorabgang (9) verbunden ist, d a d u r c h g e k e n n z e i c h n e t , daß der Transformatorabgang (9) über einen ersten Drehflansch (16) mit einem Ende eines Z- oder U-förmigen gekapselten Rohrleiteranschlußteils (14, 15) verbunden ist, dessen anderes Ende über einen zweiten Drehflansch (17) an dem Rohrleiter (8) angeschlossen ist.Transformer (5), which contains a compensator (6) and in which the pipe (8) is connected on one side to a connection (7) of the metal-encapsulated, gas-insulated high-voltage switchgear (1) and on the other side to a transformer outlet (9) , characterized in that the transformer outlet (9) is connected via a first rotary flange (16) to one end of a Z-shaped or U-shaped encapsulated pipe connector part (14, 15), the other end of which is connected to the pipe via a second rotary flange (17) (8) is connected.
2. Rohrleiterverbindung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der im Rohrleiter (8) liegende Kompensator (6) benachbart zum Anschluß (7) der metallgekapselten, druckgasisolierten Hochspannungsschaltanlage (1) angeordnet ist.2. Pipe connection according to claim 1, so that the compensator (6) lying in the pipe (8) is arranged adjacent to the connection (7) of the metal-encapsulated, pressure-gas-insulated high-voltage switchgear (1).
3. Rohrleiterverbindung (4) zwischen einer metallgekapselten, druckgasisolierten Hochspannungsschaltanlage (1) und einem Transformator (5), bei welcher der Rohrleiter (8) auf der einen Seite mit einen Anschluss (7) der metallgekapselten, druckgasisolierten Hochspannungsschaltanlage (1) und auf der anderen Seite mit einem Tansformatorabgang (9) verbunden ist, d a d u r c h g e k e n n z e i c h n e t , daß der Transformatorabgang (9) und der Rohrleiter (8) jeweils über einen Drehflansch (16, 17) mit einem Ende eines Z-förmigen, gekapselten Rohrleiteranschlußteils (19, 20) verbunden sind und daß die beiden anderen Enden der Z-förmigen Rohrleiteranschlußteile (19, 20) untereinander durch einen weiteren Drehflansch (21) verbunden sind. 3. Pipe connection (4) between a metal-encapsulated, gas-insulated high-voltage switchgear (1) and a transformer (5), in which the pipe (8) on one side with a connection (7) of the metal-encapsulated, gas-insulated high-voltage switchgear (1) and on the is connected on the other side to a transformer outlet (9), characterized in that the transformer outlet (9) and the pipe (8) are each connected via one rotary flange (16, 17) to one end of a Z-shaped, encapsulated pipe connection part (19, 20) are and that the other two ends of the Z-shaped pipe connector parts (19, 20) are interconnected by a further rotary flange (21).
4. Rohrleiterverbindung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß die beiden Z-förmigen, gekapselten Rohrleiteranschlußteile (19, 20) untereinander gleich sind. 4. Pipe connection according to claim 3, so that the two Z-shaped, encapsulated pipe connection parts (19, 20) are identical to one another.
EP88909975A 1988-05-17 1988-10-13 Circular waveguide connection between a transformer and metal-cased, high-voltage switchgear with compressed gas insulation Expired - Lifetime EP0414685B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88909975T ATE87408T1 (en) 1988-05-17 1988-10-13 TUBE CONNECTION BETWEEN A METAL ENCLOSED, COMPRESSED GAS INSULATED HIGH VOLTAGE SWITCHGEAR AND A TRANSFORMER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3817217A DE3817217A1 (en) 1988-05-17 1988-05-17 PIPE CONNECTOR BETWEEN A METAL-ENCLOSED, PRESSURE-GAS-INSULATED HIGH-VOLTAGE SWITCHGEAR AND A TRANSFORMER
DE3817217 1988-05-17

Publications (2)

Publication Number Publication Date
EP0414685A1 true EP0414685A1 (en) 1991-03-06
EP0414685B1 EP0414685B1 (en) 1993-03-24

Family

ID=6354777

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88909975A Expired - Lifetime EP0414685B1 (en) 1988-05-17 1988-10-13 Circular waveguide connection between a transformer and metal-cased, high-voltage switchgear with compressed gas insulation

Country Status (8)

Country Link
US (1) US4935840A (en)
EP (1) EP0414685B1 (en)
JP (1) JPH03504191A (en)
AT (1) ATE87408T1 (en)
CA (1) CA1318947C (en)
DE (2) DE3817217A1 (en)
NO (1) NO904971L (en)
WO (1) WO1989011746A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1879000A (en) * 1930-05-15 1932-09-27 Condit Electrical Mfg Corp Metal clad switch gear and inclosed conductor system therefor
NL6711574A (en) * 1967-08-23 1969-02-25
US4072999A (en) * 1976-07-16 1978-02-07 Volman Mikhail Yakovlevich Outdoor high-voltage switchgear assembly
JPS57106311A (en) * 1980-12-18 1982-07-02 Tokyo Shibaura Electric Co Gas insulated substation facility
SE442469B (en) * 1981-11-05 1985-12-23 Asea Ab Gas-insulated electrical apparatus
DE3217186A1 (en) * 1982-05-04 1983-11-10 Siemens AG, 1000 Berlin und 8000 München PRESSURE GAS INSULATED HIGH VOLTAGE SWITCHGEAR WITH PARTICULARLY SINGLE PHASE METAL ENCLOSURE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8911746A1 *

Also Published As

Publication number Publication date
WO1989011746A1 (en) 1989-11-30
DE3817217A1 (en) 1989-11-23
NO904971D0 (en) 1990-11-16
DE3879715D1 (en) 1993-04-29
CA1318947C (en) 1993-06-08
EP0414685B1 (en) 1993-03-24
US4935840A (en) 1990-06-19
ATE87408T1 (en) 1993-04-15
JPH03504191A (en) 1991-09-12
NO904971L (en) 1990-11-16

Similar Documents

Publication Publication Date Title
DE19716024B4 (en) Metal-enclosed gas-insulated switchgear
EP2812621B1 (en) Electrical switching system
EP0093687B1 (en) High-voltage gas-insulated switchgear, in particular with a single phase metal casing
DE3546011A1 (en) Gas-insulated electrical device
DE19641090A1 (en) Jointed angle element with two couplers for system of bus=bars e.g. for lighting in industry, offices and homes
EP0445110B1 (en) High-voltage installation with metal casing and compressed gas insulation
DE3834813A1 (en) FILTER / WATER SEPARATOR
DE19605979C2 (en) Current-carrying connecting element for pipes in a gas-insulated switchgear
EP0414685B1 (en) Circular waveguide connection between a transformer and metal-cased, high-voltage switchgear with compressed gas insulation
DE3318344A1 (en) High-voltage installation
EP0436578B1 (en) Container for a gas-insulated medium-tension switch
DE19637049A1 (en) Outdoor bushings for a cubicle container
WO1990006009A1 (en) High-voltage installation with metal casing and compressed gas insulation
DE2847376C2 (en) Single or multi-pole disconnector arrangement for encapsulated switchgear
AT406720B (en) COUPLING UNIT TO LEAD OUT AT LEAST ONE FOCUS ON A CABLE
AT223692B (en) Transformer, in particular measuring transducer, with two windings that can be connected in parallel or in series
DE698231C (en) especially corner box for busbars
DE1750285C (en) Tubular coupling part for gas-tight connection of two tubular encapsulation sections for compressed gas-insulated switchgear
DE112018008191T5 (en) Busbar connecting device, switchgear and method for connecting a busbar connecting device
DE9309932U1 (en) Rotary flap for installation in pipes
DE1538068C (en) Current transformer with optional connection possibility of its connection bolts with an adjacent voltage transformer
DE29515465U1 (en) Steam distributor
DE29816915U1 (en) Gas-insulated switchgear with several switch panels connected to each other via an encapsulation housing
DE8816906U1 (en) Metal-encapsulated, pressure-gas-insulated high-voltage system
DE8802760U1 (en) Angle piece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920406

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 87408

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3879715

Country of ref document: DE

Date of ref document: 19930429

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931018

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931031

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931216

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940118

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941013

Ref country code: AT

Effective date: 19941013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

EAL Se: european patent in force in sweden

Ref document number: 88909975.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941013

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 88909975.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051013