EP0413739B1 - Accelerator - Google Patents

Accelerator Download PDF

Info

Publication number
EP0413739B1
EP0413739B1 EP89905663A EP89905663A EP0413739B1 EP 0413739 B1 EP0413739 B1 EP 0413739B1 EP 89905663 A EP89905663 A EP 89905663A EP 89905663 A EP89905663 A EP 89905663A EP 0413739 B1 EP0413739 B1 EP 0413739B1
Authority
EP
European Patent Office
Prior art keywords
accelerator
combustion chamber
barrel
accordance
projectile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89905663A
Other languages
German (de)
French (fr)
Other versions
EP0413739A1 (en
Inventor
Eduard Igenbergs
Martin Rott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Igenwert GmbH
Original Assignee
Igenwert GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883838386 external-priority patent/DE3838386A1/en
Application filed by Igenwert GmbH filed Critical Igenwert GmbH
Publication of EP0413739A1 publication Critical patent/EP0413739A1/en
Application granted granted Critical
Publication of EP0413739B1 publication Critical patent/EP0413739B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B6/00Electromagnetic launchers ; Plasma-actuated launchers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Definitions

  • the invention relates to an electrothermal accelerator according to the preamble of patent claim 1 and patent claim 8.
  • FIG. 1 A simple electrothermal accelerator belonging to the prior art is shown by way of example in FIG. 1.
  • reference number 1 denotes a first electrode
  • reference number 2 denotes a second electrode integrally formed with a barrel
  • reference number 3 denotes a combustion chamber
  • reference number 4 denotes a projectile
  • reference number 5 denotes an insulator 5 surrounding combustion chamber 3
  • reference number 6 denotes a further insulator
  • the reference numeral 7 an axial bracket.
  • the direction of acceleration of the projectile 4 is in the direction of the arrow.
  • FIG. 1 shows a circuit with a switch and a capacitor bank 10 which is connected to the electrodes 1, 2.
  • the discharge of the capacitor bank 10 is conducted to the electrode 1 via the switch 9, which is preferably an ignition switch.
  • a metal wire or a metal foil is introduced between this electrode 1 and the electrode 2.
  • the switch 9 is closed, this wire or film is heated, evaporated and ionized by the flowing electrical current.
  • a high pressure gas with high pressure is generated Temperature, also known as high pressure plasma.
  • a material is preferably used as the metal wire or metal foil which, like aluminum or lithium, has a low specific weight, because then as little energy as possible has to be used to accelerate the gas formed therefrom. This high-pressure plasma then expands into barrel 2 beginning at electrode 2 and accelerates projectile 4 therein.
  • Such an electrothermal accelerator is also described in US-A-3,148,587.
  • the accelerator shown in FIG. 1 of US Pat. No. 3,148,587 has at the rear end of the combustion chamber an electrode arrangement oriented perpendicular to the direction of acceleration, which produces a light floor running perpendicular to the direction of movement of the projectile. Immediately behind the discharge path runs parallel to this a current supply feeding the electrode arrangement.
  • the present invention aims to achieve an increase in the acceleration effect of the plasma in an electrothermal accelerator of the type mentioned in the introduction.
  • FIGS. 2A and 2B show a first embodiment of an electromagnetically amplified accelerator designed according to the invention.
  • This electrothermal accelerator has a combustion chamber 13 which is surrounded by a plastic insulator 16. If closed conductor rings 17 are placed in this plastic insulator 16 as shown in FIGS. 2A and 2B, the flow of the azimuthal flow surrounding the electric current flowing from electrode 11 to electrode 12 changes with the frequency of the discharge of the capacitor bank Magnetic field in these conductor rings 17 a current.
  • This ring current generates an additional, prolonged compression of the high-pressure plasma between the electrodes 11 and 12 via a time-varying electromagnetic field, this is called theta pinch, and the efficiency of the accelerator is improved by the inductive amplification.
  • the reference numeral 15 shown in FIG. 2A denotes an HD insulator surrounding the combustion chamber 13.
  • the second stage of the electrothermal light gas accelerator consists of a light gas accelerator, the barrel of the electrothermal accelerator being designed as a pump tube 22.
  • the accelerated piston 27 moves into the pump tube 22, which is filled with high-pressure gas 28 of low specific weight. Hydrogen or helium is preferably used here.
  • the piston 27 compresses this high pressure gas 28 until the membrane 20 attached to the end of the pump tube bursts. This high-pressure gas 28 then enters the barrel of the accelerator and accelerates the projectile 24 introduced there.
  • the advantage of this arrangement is that only a gas of low specific weight, namely that of hydrogen or helium, has to be accelerated to accelerate the projectile. As a result, less energy is used to accelerate the gas and more energy is left to accelerate the projectile 24.
  • this electrothermal accelerator is electromagnetically amplified and this electromagnetic amplification is supplied from the same energy and is operated with the same energy source as the electrothermal accelerator as such. This eliminates the need for an additional energy source to be used with a switch and coupling electronics.
  • the forms of electromagnetic amplification presented here are also designed so that no switches are required.
  • FIGS. 4A and 4B show a second advantageous embodiment in which the inductively coupled amplification shown in FIGS. 2A, 2B is designed such that each individual turn 37 which is used for the inductive amplification is designed as an RLC circuit.
  • the electromagnetic amplification can be adjusted by changing the phase, amplitude and frequency of these RLC circuits. This leads to an optimal arrangement of the overall device, both in one-stage and two-stage versions.
  • reference symbol 38 denotes a capacitor of the RLC circuit, reference symbol 31 a first electrode, reference symbol 32 a second electrode formed with the barrel, reference symbol 35 an HD insulator, reference symbol 36 an insulator and the reference symbol 33 the combustion chamber.
  • FIGS. 5A and 5B show a further advantageous embodiment of the invention, in which the inductor coupling coil 47 consists of several turns.
  • the electromagnetic amplification can be carried out by a single coil 47 with a plurality of turns, which is arranged in a toroidal shape around the discharge space of the electrothermal accelerator.
  • first electrode 41 a first electrode 41, a second electrode 42 formed in the barrel, an HD insulator 45 and an insulator 46 can be seen in FIG. 5A.
  • FIGS. 6A and 6B show an advantageous embodiment of the invention, in which the coil 57 is in turn formed as part of an RLC circuit.
  • the RLC circuit comprises a capacitor 58 and FIG. 6A also shows a first electrode 51, a second electrode 52 formed in the barrel, a combustion chamber 53 and an HD insulator 55 and an insulator 56.
  • FIGS. 7A and 7B show a further advantageous embodiment of the invention, in which the current is conducted to the rear electrode 61 of this electrothermal accelerator in such a way that it passes through a coil 67 with at least one turn, which surrounds the combustion chamber 63 of the electrothermal accelerator.
  • the time-varying electromagnetic field generated by this coil 67 brings about a magnetogas dynamic compression of the plasma (theta pinch) generated in the combustion chamber 63 and thus an electromagnetic amplification of the accelerator.
  • FIG. 7A also shows a second electrode 62 integrated in the barrel, an HD insulator 65 and an insulator 66.
  • the electrothermal light gas accelerator consists in each case of an electrothermal first stage, which consists of a simple electrothermal accelerator, but preferably an electromagnetically amplified electrothermal accelerator, as has been explained above on the basis of the various design variants, and an light gas accelerator as the second stage.
  • an electrothermal first stage which consists of a simple electrothermal accelerator, but preferably an electromagnetically amplified electrothermal accelerator, as has been explained above on the basis of the various design variants, and an light gas accelerator as the second stage.
  • the arrangement is the same as that shown in FIG. 3 for the simple electrothermal accelerator, the respectively used embodiment of the electromagnetic amplification as shown in FIGS. 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B and 7A, 7B is to be added.
  • FIGS. 8A to 8F show an embodiment of the accelerator in which the electric current, which is induced by the magnetic field, which generates the arc running in the combustion chamber 73, and is conducted through a conductor loop 77 with a capacitor 78, which leads to the combustion chamber 73 surrounds in a ring.
  • FIGS. 8A to 8F show a first electrode 71, a second electrode 72 integral with the barrel, and an HD insulator 75 and a plastic insulator 76.
  • the time-varying current in this conductor loop 77 generates an oppositely directed current in the arc plasma in the combustion chamber 73.
  • the interaction of the current in the ring-shaped conductor loop 77 with the induced ring current in the arc plasma brings about an axial acceleration of the arc plasma and thus an additional acceleration of the projectile and a better efficiency of the accelerator.
  • the effect of the current induced in the secondary coil must either take place from this secondary coil or from a current loop fed by this secondary coil.
  • This current loop is arranged at a suitable point around the combustion chamber.
  • the time-varying current flowing through this conductor loop generates a predominantly axial magnetic field at the location of the primary arc in the combustion chamber, and its change over time leads to a ring current that flows in the same plane as the current in the conductor loop, but is directed in the opposite direction.
  • Both current loops repel each other and there is an axial force acting on the arc plasma, which additionally accelerates the plasma and thus increases the projectile acceleration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)

Abstract

Electrothermal accelerator, preferably two-stage. The first stage is an electrothermal accelerator, in particular an electrothermal accelerator with electromagnetic amplification, and the second stage is a light-gas accelerator.

Description

Die Erfindung betrifft einen elektrothermalen Beschleuniger nach dem Oberbegriff des Patentanspruches 1 sowie des Patentanspruchs 8.The invention relates to an electrothermal accelerator according to the preamble of patent claim 1 and patent claim 8.

Ein einfacher, dem Stand der Technik angehörender elektrothermaler Beschleuniger ist beispielhaft in Figur 1 dargestellt.A simple electrothermal accelerator belonging to the prior art is shown by way of example in FIG. 1.

In dieser Figur bezeichnet das Bezugszeichen 1 eine erste Elektrode, das Bezugszeichen 2 eine integral mit einem Lauf ausgebildete zweite Elektrode, das Bezugszeichen 3 einen Brennraum, das Bezugszeichen 4 ein Projektil, das Bezugszeichen 5 einen den Brennraum 3 umgebenden Isolator 5, das Bezugszeichen 6 einen weiteren Isolator und das Bezugszeichen 7 eine axiale Halterung. Die Beschleunigungsrichtung des Projektils 4 ist in Pfeilrichtung.In this figure, reference number 1 denotes a first electrode, reference number 2 denotes a second electrode integrally formed with a barrel, reference number 3 denotes a combustion chamber, reference number 4 denotes a projectile, reference number 5 denotes an insulator 5 surrounding combustion chamber 3, reference number 6 denotes a further insulator and the reference numeral 7 an axial bracket. The direction of acceleration of the projectile 4 is in the direction of the arrow.

Ferner ist der Figur 1 ein mit den Elektroden 1, 2 in Verbindung stehender Stromkreis mit einem Schalter und einer Kondensatorbank 10 zu entnehmen. Die Entladung der Kondensatorbank 10 wird über den Schalter 9, der vorzugsweise ein Ignitionsschalter ist, zur Elektrode 1 geleitet. Zwischen dieser Elektrode 1 und der Elektrode 2 wird ein Metalldraht oder eine Metallfolie eingebracht. Beim Schließen des Schalters 9 wird dieser Draht bzw. diese Folie durch den fließenden elektrischen Strom aufgeheizt, verdampft und ionisiert. Es entsteht ein unter hohem Druck stehendes Gas mit hoher Temperatur, das auch als Hochdruckplasma bezeichnet wird. Vorzgusweise wird als Metalldraht bzw. Metallfolie ein Material verwendet, das - wie Aluminium oder Lithium - ein geringes spezifisches Gewicht hat, weil dann für die Beschleunigung des sich daraus bildenden Gases möglichst wenig Energie aufgewendet werden muß. Dieses Hochdruckplasma expandiert dann in den an der Elektrode 2 beginnenden Lauf 2 und beschleunigt darin das Projektil 4.Furthermore, FIG. 1 shows a circuit with a switch and a capacitor bank 10 which is connected to the electrodes 1, 2. The discharge of the capacitor bank 10 is conducted to the electrode 1 via the switch 9, which is preferably an ignition switch. A metal wire or a metal foil is introduced between this electrode 1 and the electrode 2. When the switch 9 is closed, this wire or film is heated, evaporated and ionized by the flowing electrical current. A high pressure gas with high pressure is generated Temperature, also known as high pressure plasma. A material is preferably used as the metal wire or metal foil which, like aluminum or lithium, has a low specific weight, because then as little energy as possible has to be used to accelerate the gas formed therefrom. This high-pressure plasma then expands into barrel 2 beginning at electrode 2 and accelerates projectile 4 therein.

Ein derartiger elektrothermaler Beschleuniger ist auch in der US-A-3,148,587 beschrieben. Dabei weist der in Figur 1 der US-A-3,148,587 dargestellte Beschleuniger am hinteren Ende der Brennkammer eine senkrecht zur Beschleunigungsrichtung orientierte Elektrodenanordnung auf, die einen senkrecht zur Bewegungsrichtung des Projektils verlaufenden Lichtboden erzeugt. Unmittelbar hinter der Entladungsstrecke verläuft parallel zu dieser eine die Elektrodenanordnung speisende Stromzuführung.Such an electrothermal accelerator is also described in US-A-3,148,587. The accelerator shown in FIG. 1 of US Pat. No. 3,148,587 has at the rear end of the combustion chamber an electrode arrangement oriented perpendicular to the direction of acceleration, which produces a light floor running perpendicular to the direction of movement of the projectile. Immediately behind the discharge path runs parallel to this a current supply feeding the electrode arrangement.

Tritt in der Entladungsstrecke ein Lichtbogen auf, so wird dieser durch das Magnetfeld, das sich um die hinter ihm verlaufende Stromzuführung ausbildet, in Beschleunigungsrichtung deformiert. Dies bewirkt eine Verstärkung der das Projektil beschleunigenden Gasentladung.If an arc occurs in the discharge path, it is deformed in the direction of acceleration by the magnetic field that is formed around the current supply that runs behind it. This increases the gas discharge accelerating the projectile.

Die vorliegende Erfindung strebt an, bei einem elektrothermalen Beschleuniger der eingangs genannten Art eine Erhöhung der Beschleunigungswirkung des Plasmas zu erzielen.The present invention aims to achieve an increase in the acceleration effect of the plasma in an electrothermal accelerator of the type mentioned in the introduction.

Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale der Ansprüche 1 und 8.This object is achieved by the characterizing features of claims 1 and 8.

Die Figuren 2A und 2B zeigen eine erste Ausführungsform eines erfindungsgemäß ausgebildeten, elektromagnetisch verstärkten Beschleunigers. Dieser elektrothermale Beschleuniger weist einen Brennraum 13 auf, der von einem Kunststoffisolator 16 umgeben ist. Bringt man in diesen Kunststoffisolator 16 geschlossene Leiterringe 17 so an, wie es in den Figuren 2A und 2B gezeigt ist, dann erzeugt der mit der Frequenz der Entladung der Kondensatorbank zeitlich verändertliche Fluß des den von der Elektrode 11 zur Elektrode 12 fließenden elektrischen Strom umgebenden azimutalen Magnetfelds in diesen Leiterringen 17 einen Strom. Dieser Ringstrom erzeugt über ein zeitlich veränderliches elektromagnetisches Feld eine zusätzliche verlängerte Kompression des Hochdruckplasmas zwischen den Elektroden 11 und 12, diese wird als Theta-Pinch bezeichnet und der Wirkungsgrad des Beschleunigers wird durch die induktive Verstärkung verbessert. Dabei bezeichnet das in Figur 2A dargestellte Bezugszeichen 15 einen die Brennkammer 13 umgebenden HD-Isolator.FIGS. 2A and 2B show a first embodiment of an electromagnetically amplified accelerator designed according to the invention. This electrothermal accelerator has a combustion chamber 13 which is surrounded by a plastic insulator 16. If closed conductor rings 17 are placed in this plastic insulator 16 as shown in FIGS. 2A and 2B, the flow of the azimuthal flow surrounding the electric current flowing from electrode 11 to electrode 12 changes with the frequency of the discharge of the capacitor bank Magnetic field in these conductor rings 17 a current. This ring current generates an additional, prolonged compression of the high-pressure plasma between the electrodes 11 and 12 via a time-varying electromagnetic field, this is called the theta pinch, and the efficiency of the accelerator is improved by the inductive amplification. The reference numeral 15 shown in FIG. 2A denotes an HD insulator surrounding the combustion chamber 13.

Entsprechend der Darstellung in Figur 3 besteht die zweite Stufe des elektrothermalen Leichtgasbeschleunigers aus einem Leichtgasbeschleuniger, wobei der Lauf des elektrothermalen Beschleunigers als Pumprohr 22 ausgebildet ist. Der beschleunigte Kolben 27 bewegt sich in das Pumprohr 22 hinein, das mit unter hohem Druck stehenden Gas 28 geringen spezifischen Gewichts gefüllt ist. Vorzugsweise wird hier Wasserstoff oder Helium verwendet. Der Kolben 27 komprimiert dieses Hochdruckgas 28, bis die am Ende des Pumprohres angebrachte Membrane 20 birst. Dann tritt dieses Hochdruckgas 28 in den Lauf des Beschleunigers ein und beschleunigt das dort eingebrachte Projektil 24.According to the illustration in FIG. 3, the second stage of the electrothermal light gas accelerator consists of a light gas accelerator, the barrel of the electrothermal accelerator being designed as a pump tube 22. The accelerated piston 27 moves into the pump tube 22, which is filled with high-pressure gas 28 of low specific weight. Hydrogen or helium is preferably used here. The piston 27 compresses this high pressure gas 28 until the membrane 20 attached to the end of the pump tube bursts. This high-pressure gas 28 then enters the barrel of the accelerator and accelerates the projectile 24 introduced there.

Ferner ist in Figur 3 ein Isolator 26, ein HD-Isolator 25 sowie ein Schalter 29 und eine Kondensatorbank 30 dargestellt.Furthermore, an isolator 26, an HD isolator 25 and a switch 29 and a capacitor bank 30 are shown in FIG.

Der Vorteil dieser Anordnung ist, daß zur Beschleunigung des Projektils nur noch ein Gas von geringem spezifischen Gewicht, nämlich von dem von Wasserstoff oder Helium, beschleunigt werden muß. Dadurch wird weniger Energie zur Beschleunigung des Gases aufgewendet, und es bleibt mehr Energie zur Beschleunigung des Projektils 24 übrig.The advantage of this arrangement is that only a gas of low specific weight, namely that of hydrogen or helium, has to be accelerated to accelerate the projectile. As a result, less energy is used to accelerate the gas and more energy is left to accelerate the projectile 24.

Ein wesentliches Merkmal der Erfindung besteht darin, daß dieser elektrothermale Beschleuniger elektromagnetisch verstärkt ist und diese elektromagnetische Verstärkung aus der gleichen Energie versorgt und mit der gleichen Energiequelle betrieben wird, wie der elektrothermale Beschleuniger als solcher. Damit entfällt eine hierfür einzusetzende zusätzliche Energiequelle mit Schalter und eine Kopplungselektronik. Die hier dargelegten Formen der elektromagnetischen Verstärkung sind zudem so ausgebildet, daß keinerlei Schalter erforderlich sind.An essential feature of the invention is that this electrothermal accelerator is electromagnetically amplified and this electromagnetic amplification is supplied from the same energy and is operated with the same energy source as the electrothermal accelerator as such. This eliminates the need for an additional energy source to be used with a switch and coupling electronics. The forms of electromagnetic amplification presented here are also designed so that no switches are required.

Die Figuren 4A und 4B zeigen eine zweite vorteilhafte Ausführungsform, bei der die in den Figuren 2A, 2B dargestellte induktiv gekoppelte Verstärkung so ausgeführt ist, daß jede einzelne Windung 37, die für die induktive Verstärkung eingesetzt wird, als RLC-Kreis ausgebildet ist.FIGS. 4A and 4B show a second advantageous embodiment in which the inductively coupled amplification shown in FIGS. 2A, 2B is designed such that each individual turn 37 which is used for the inductive amplification is designed as an RLC circuit.

Dadurch kann über eine Veränderung der Phase und Amplitude sowie Frequenz dieser RLC-Kreise eine Anpassung der elektromagnetischen Verstärkung erreicht werden. Dies führt zu einer optimalen Anordnung des Gesamtgerätes, sowohl in einstufiger wie in zweistufiger Ausführung.As a result, the electromagnetic amplification can be adjusted by changing the phase, amplitude and frequency of these RLC circuits. This leads to an optimal arrangement of the overall device, both in one-stage and two-stage versions.

In der Figur 4A bezeichnet dabei das Bezugszeichen 38 einen Kondensator des RLC-Kreises, das Bezugszeichen 31 eine erste Elektrode, das Bezugszeichen 32 eine mit dem Lauf ausgebildete zweite Elektrode, das Bezugszeichen 35 einen HD-Isolator, das Bezugszeichen 36 einen Isolator und das Bezugszeichen 33 die Brennkammer.In FIG. 4A, reference symbol 38 denotes a capacitor of the RLC circuit, reference symbol 31 a first electrode, reference symbol 32 a second electrode formed with the barrel, reference symbol 35 an HD insulator, reference symbol 36 an insulator and the reference symbol 33 the combustion chamber.

Die Figuren 5A und 5B zeigen eine weitere vorteilhafte Ausführungsform der Erfindung, bei der die die induktive Kopplung bewirkende Spule 47 aus mehreren Windungen besteht.FIGS. 5A and 5B show a further advantageous embodiment of the invention, in which the inductor coupling coil 47 consists of several turns.

Insbesondere kann die elektromagnetische Verstärkung durch eine einzelne Spule 47 mit mehreren Windungen durchgeführt werden, die torusförmig um den Entladungsraum des elektrothermalen Beschleunigers angeordnet ist.In particular, the electromagnetic amplification can be carried out by a single coil 47 with a plurality of turns, which is arranged in a toroidal shape around the discharge space of the electrothermal accelerator.

Ferner ist in Figur 5A eine erste Elektrode 41, eine im Lauf ausgebildete zweite Elektrode 42, ein HD-Isolator 45 und ein Isolator 46 erkennbar.Furthermore, a first electrode 41, a second electrode 42 formed in the barrel, an HD insulator 45 and an insulator 46 can be seen in FIG. 5A.

Die Figuren 6A und 6B zeigen eine vorteilhafte Ausgestaltung der Erfindung, bei der die Spule 57 wiederum als Teil eines RLC-Kreises ausgebildet ist.FIGS. 6A and 6B show an advantageous embodiment of the invention, in which the coil 57 is in turn formed as part of an RLC circuit.

Der RLC-Kreis umfaßt einen Kondensator 58 und die Figur 6A zeigt ferner eine erste Elektrode 51, eine zweite im Lauf ausgebildete Elektrode 52, einen Brennraum 53 sowie einen HD-Isolator 55 und einen Isolator 56.The RLC circuit comprises a capacitor 58 and FIG. 6A also shows a first electrode 51, a second electrode 52 formed in the barrel, a combustion chamber 53 and an HD insulator 55 and an insulator 56.

Die Figuren 7A und 7B zeigen eine weitere vorteilhafte Ausgestaltung der Erfindung, bei der der Strom zu der hinteren Elektrode 61 dieses elektrothermalen Beschleunigers so geleitet wird, daß er eine Spule 67 mit mindestens einer Windung durchläuft, die den Brennraum 63 des elektrothermalen Beschleunigers umgibt. Das von dieser Spule 67 erzeugte, zeitlich veränderliche elektromagnetische Feld bewirkt eine magnetogasdynamische Kompression des im Brennraum 63 entstandenen Plasmas (Theta-Pinch) und damit eine elektromagnetische Verstärkung des Beschleunigers.FIGS. 7A and 7B show a further advantageous embodiment of the invention, in which the current is conducted to the rear electrode 61 of this electrothermal accelerator in such a way that it passes through a coil 67 with at least one turn, which surrounds the combustion chamber 63 of the electrothermal accelerator. The time-varying electromagnetic field generated by this coil 67 brings about a magnetogas dynamic compression of the plasma (theta pinch) generated in the combustion chamber 63 and thus an electromagnetic amplification of the accelerator.

Ferner ist in Figur 7A eine im Lauf integrierte zweite Elektrode 62, ein HD-Isolator 65 sowie ein Isolator 66 dargestellt.FIG. 7A also shows a second electrode 62 integrated in the barrel, an HD insulator 65 and an insulator 66.

Der elektrothermale Leichtgasbeschleuniger besteht jeweils aus einer elektrothermalen ersten Stufe, welche aus einem einfachen elektrothermalen Beschleuniger, vorzugsweise jedoch aus einem elektromagnetisch verstärkten elektrothermalen Beschleuniger besteht, wie er vorstehend anhand der verschiedenen Ausführungsvarianten erläutert worden ist, und einem Leichtgasbeschleuniger als zweiter Stufe. In letzterem Fall ist die Anordnung die gleiche, wie sie in Figur 3 für den einfachen elektrothermalen Beschleuniger angegeben ist, wobei die jeweils benutzte Ausführungsform der elektromagnetischen Verstärkung so wie sie in den Figuren 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B und 7A, 7B dargestellt ist, hinzuzufügen ist.The electrothermal light gas accelerator consists in each case of an electrothermal first stage, which consists of a simple electrothermal accelerator, but preferably an electromagnetically amplified electrothermal accelerator, as has been explained above on the basis of the various design variants, and an light gas accelerator as the second stage. In the latter case, the arrangement is the same as that shown in FIG. 3 for the simple electrothermal accelerator, the respectively used embodiment of the electromagnetic amplification as shown in FIGS. 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B and 7A, 7B is to be added.

Die Figuren 8A bis 8F zeigen eine Ausführungsform des Beschleunigers, bei dem der elektrische Strom, der von dem Magnetfeld, das der im Brennraum 73 verlaufende Lichtbogen erzeugt, und induziert wird, durch eine Leiterschleife 77 mit einem Kondensator 78 geleitet wird, die den Brennraum 73 ringförmig umgibt.FIGS. 8A to 8F show an embodiment of the accelerator in which the electric current, which is induced by the magnetic field, which generates the arc running in the combustion chamber 73, and is conducted through a conductor loop 77 with a capacitor 78, which leads to the combustion chamber 73 surrounds in a ring.

Ferner ist in den Figuren 8A bis 8F eine erste Elektrode 71, eine mit dem Lauf integrale zweite Elektrode 72 sowie ein HD-Isolator 75 sowie ein Kunststoffisolator 76 dargestellt.Furthermore, FIGS. 8A to 8F show a first electrode 71, a second electrode 72 integral with the barrel, and an HD insulator 75 and a plastic insulator 76.

Der zeitlich veränderliche Strom in dieser Leiterschleife 77 erzeugt einen entgegengesetzt gerichteten Strom im Lichtbogenplasma im Brennraum 73. Die Wechselwirkung des Stromes in der ringförmigen Leiterschleife 77 mit dem induzierten Ringstrom in dem Lichtbogenplasma bewirkt eine axiale Beschleunigung des Lichtbogenplasmas und damit eine zusätzliche Beschleunigung des Projektils und einen besseren Wirkungsgrad des Beschleunigers.The time-varying current in this conductor loop 77 generates an oppositely directed current in the arc plasma in the combustion chamber 73. The interaction of the current in the ring-shaped conductor loop 77 with the induced ring current in the arc plasma brings about an axial acceleration of the arc plasma and thus an additional acceleration of the projectile and a better efficiency of the accelerator.

Die elektromagnetische Verstärkung erfolgt also, wie bereits dargestellt, entweder

  • direkt, indem die Stromzu- oder -abführung zur Erzeugung eines zeitlich veränderlichen Magnetfeldes benutzt wird, vgl. die Figuren 7A, 7B,
  • induktiv, wobei das Magnetfeld der Lichtbogenentladung im Brennraum des Beschleunigers in einer Sekundärspule einen Strom erzeugt, der zur elektromagnetischen Verstärkung benutzt wird (vgl. die Figuren 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B und 8A bis 8F).
As already shown, the electromagnetic amplification takes place either
  • directly by using the current supply or dissipation to generate a time-varying magnetic field, cf. FIGS. 7A, 7B,
  • inductively, the magnetic field of the arc discharge in the combustion chamber of the accelerator generating a current in a secondary coil, which is used for electromagnetic amplification (see FIGS. 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B and 8A to 8F).

Bei der induktiven Verstärkung muß die Wirkung des in der Sekundärspule induzierten Stromes entweder von dieser Sekundärspule oder von einer von dieser Sekundärspule gespeisten Stromschleife aus erfolgen. Diese Stromschleife wird an geeigneter Stelle um den Brennraum angeordnet. Der durch diese Leiterschleife fließende zeitlich veränderliche Strom erzeugt am Ort des primären Lichtbogens im Brennraum ein vorwiegend axiales Magnetfeld, und dessen zeitliche Änderung führt zu einem Ringstrom, der in der gleichen Ebene fließt, wie der Strom in der Leiterschleife, diesem aber entgegengesetzt gerichtet ist. Beide Stromschleifen stoßen sich ab und es ergibt sich eine auf das Lichtbogenplasma wirkende axiale Kraft, die das Plasma zusätzlich beschleunigt und damit eine Verstärkung der Projektilbeschleunigung bewirkt.With inductive amplification, the effect of the current induced in the secondary coil must either take place from this secondary coil or from a current loop fed by this secondary coil. This current loop is arranged at a suitable point around the combustion chamber. The time-varying current flowing through this conductor loop generates a predominantly axial magnetic field at the location of the primary arc in the combustion chamber, and its change over time leads to a ring current that flows in the same plane as the current in the conductor loop, but is directed in the opposite direction. Both current loops repel each other and there is an axial force acting on the arc plasma, which additionally accelerates the plasma and thus increases the projectile acceleration.

Diese Anordnung kann von

  • einer Sekundärschleife zu einer Leiterschleife,
  • einem Sekundärspulentorus zu einer Leiterschleife,
  • sowie zu mehreren, entlang der Plasmaströmung angeordneten Leiterschleifen führen.
This arrangement can be from
  • a secondary loop to a conductor loop,
  • a secondary coil torus to a conductor loop,
  • and lead to several conductor loops arranged along the plasma flow.

In allen diesen Fällen ist zu erwarten, daß die Beschleunigung des Projektils verstärkt wird, dies würde im gasdynamischen Modell einer Anordnung mit "mitbewegtem Brennraum" entsprechen.In all of these cases it is to be expected that the acceleration of the projectile is increased, this would correspond to an arrangement with a "moving combustion chamber" in the gas dynamic model.

Claims (12)

  1. Electrothermal accelerator for the acceleration of a projectile (4, 24) comprising
    - a combustion chamber (3, 13, 33, 53, 73) which is closed at one end and which opens into a barrel (2, 12, 22, 32, 42, 52, 72) at the opposite end,
    - a first electrode (1, 11, 31, 41, 51, 71) provided in the region of the closed end of the combustion chamber (3, 13, 33, 53, 73) and a second electrode (2, 12, 22, 32, 42, 52, 72) provided in the connection region between the combustion chamber and the barrel,
    - a conductor arrangement (17, 37, 47, 57, 77) surrounding the combustion chamber (3, 13, 33, 53, 73),
    and, before starting operation of the accelerator,
    - a projectile (4, 24) which is provided in the barrel in a sealing manner and which can be displaced along the barrel axis, and
    - a metallic conductor which electrically connects the electrodes (1, 11, 31, 41, 51, 71; 2, 12, 22, 32, 42, 52, 72) in the combustion chamber (3, 13, 33, 53, 73),
    wherein the metallic conductor vaporises and at least partially ionises with the generation of excess pressure upon the application of a voltage between the electrodes (1, 11, 31, 41, 51, 71; 2, 12, 22, 32, 42, 52, 72) with the projectile (4, 24) being accelerated in the barrel (2, 12, 32, 42, 52, 72), and wherein a current flowing through the conductor arrangement (17, 37, 47, 57, 77) brings about an electromagnetic amplification of the gas discharge in the combustion chamber (3, 13, 33, 53, 73),
    characterised in that
    - the conductor arrangement (17, 37, 47, 57, 77) has at least one winding which is inductively coupled with the electrode arrangement (1, 11, 31, 41, 51, 71; 2, 12, 22, 32, 42, 52, 72), and
    - generates a magnetic field during a current flux between the electrodes (1, 11, 31, 41, 51, 71; 2, 12, 22, 32, 42, 52, 72), with the axis of symmetry of the magnetic field coinciding with that of the accelerator.
  2. Accelerator in accordance with claim 1,
    characterised in that
    a capacitance (38, 58, 78) is connected in series to the winding(s) of the conductor arrangement (37, 57, 77).
  3. Accelerator in accordance with claim 1 and 2,
    characterised in that
    the conductor arrangement (17, 37, 47, 57, 77) comprises a closed conductor loop (47, 57, 77) extending around the combustion chamber.
  4. Accelerator in accordance with claim 1 or 2,
    characterised in that
    the conductor arrangement (17, 37, 47, 57, 77) comprises a plurality of individual windings (17, 37, 87) which are electrically insulated from one another and which are arranged around the combustion chamber in the peripheral direction at essentially equal distances.
  5. Accelerator in accordance with claim 1 to 3,
    characterised in that
    the conductor arrangement (17, 37, 47, 57, 77) comprises a coil (47, 57) having a plurality of windings.
  6. Accelerator in accordance with claim 5,
    characterised in that
    a capacitance (58) is connected in series to the coil (57).
  7. Accelerator in accordance with claim 5 or 6,
    characterised in that
    the coil (47, 57) is guided in a toroidal manner around the combustion chamber of the electrothermal accelerator.
  8. Electrothermal accelerator for the acceleration of a projectile, comprising
    - a combustion chamber (63) which is closed at one end and which opens into a barrel (67) at the opposite end,
    - a first electrode (61) provided in the region of the closed end of the combustion chamber (63) and a second electrode (62) provided in the connection region between the combustion chamber (63) and the barrel (62),
    - a conductor arrangement (67) having one winding, which surrounds the combustion chamber (63) and which is electrically connected with one of the electrodes 61; 62),
    and, before starting operation of the accelerator,
    - a projectile which is provided in the barrel (62) in a sealing manner and which can be displaced along the barrel axis, and
    - a metallic conductor which electrically connects the electrodes (61; 62) in the combustion chamber (63),
    wherein the metallic conductor vaporises and at least partially ionises with the generation of excess pressure upon the application of a voltage between the electrodes (61; 62) with the projectile being accelerated in the barrel (62), and wherein a current flowing through the conductor arrangement (67) brings about an electromagnetic amplification of the gas discharge in the combustion chamber (63),
    characterised in that
    the winding generates a magnetic field during a current flux between the electrodes (61; 61), with the axis of symmetry of the magnetic field coinciding with that of the accelerator.
  9. Accelerator in accordance with claim 8,
    characterised in that
    the conductor arrangement (67) comprises a single winding which is connected in series with the first electrode (61) and which surrounds the combustion chamber (63).
  10. Accelerator in accordance with one of the preceding claims,
    characterised in that
    the electromagnetic amplification takes place through a combination of at least two electromagnetic conductor arrangements (17, 37, 47, 57, 67, 77) which are in particular at least partly differently constructed.
  11. Accelerator in accordance with one of the preceding claims,
    characterised in that
    a section of the barrel (2, 12, 22, 32, 42, 52, 62, 72) following the combustion chamber (3, 13, 33, 53, 63, 73) is formed as a pump tube (22) with a piston (27) which is movable in a sealing manner being provided at the end of the pump tube which faces the combustion chamber, and with the other end of the pump tube being closed by a membrane (20) which is able to burst and which is arranged behind the projectile (24) in the direction of acceleration.
  12. Accelerator in accordance with claims 11,
    characterised in that
    the pump tube (22) is filled with a gas (28) of low specific weight, in particular with hydrogen or helium.
EP89905663A 1988-11-11 1989-05-11 Accelerator Expired - Lifetime EP0413739B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3838386 1988-11-11
DE19883838386 DE3838386A1 (en) 1987-11-12 1988-11-11 Accelerator
PCT/EP1989/000516 WO1990005278A1 (en) 1988-11-11 1989-05-11 Accelerator

Publications (2)

Publication Number Publication Date
EP0413739A1 EP0413739A1 (en) 1991-02-27
EP0413739B1 true EP0413739B1 (en) 1994-12-21

Family

ID=6367030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89905663A Expired - Lifetime EP0413739B1 (en) 1988-11-11 1989-05-11 Accelerator

Country Status (5)

Country Link
US (1) US5223662A (en)
EP (1) EP0413739B1 (en)
JP (1) JPH03502598A (en)
DE (1) DE58908803D1 (en)
WO (1) WO1990005278A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511518A (en) * 1992-05-19 1994-12-22 イーゲンヴェルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Solid surface treatment method and device
FR2768810B1 (en) * 1997-09-24 1999-12-03 Giat Ind Sa IGNITION COMPONENT FOR PYROTECHNIC COMPOSITION OR PROPULSIVE CHARGE
US7254914B2 (en) * 2005-05-25 2007-08-14 Lund Technologies, Llc Hydrogen operated recreational launcher
US9476668B1 (en) * 2012-06-12 2016-10-25 Enig Associates Inc. Hypervelocity projectile launching system
FR3043766B1 (en) 2015-11-17 2017-12-22 Magneto Res DEVICE FOR PROJECTING A COMPRESSED COMPRESSED AIR PROJECTILE WITH AN ELECTROMAGNETIC PISTON, A CONTROL METHOD

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1244844A (en) * 1915-12-14 1917-10-30 Flannery Bolt Co Spark-plug for internal-combustion engines and the like.
US2872846A (en) * 1954-07-07 1959-02-10 William D Crozier High velocity gun
US2783684A (en) * 1956-03-07 1957-03-05 Gen Electric Method and means for propagating a mass
US3148587A (en) * 1962-06-27 1964-09-15 Leonard J Melhart Magnetohydrodynamic hypervelocity gun
US3500123A (en) * 1967-06-07 1970-03-10 Us Navy Plasma ejection system including breech and muzzle,theta-pinch coils
US4658699A (en) * 1983-09-12 1987-04-21 Astron Research And Engineering Wave gun
US4640180A (en) * 1985-06-20 1987-02-03 The United States Of America As Represented By The Secretary Of The Navy Gun-firing system
EP0232594A3 (en) * 1985-12-13 1990-01-24 Gt-Devices Plasma propulsion apparatus and method

Also Published As

Publication number Publication date
EP0413739A1 (en) 1991-02-27
WO1990005278A1 (en) 1990-05-17
JPH0579920B2 (en) 1993-11-05
US5223662A (en) 1993-06-29
DE58908803D1 (en) 1995-02-02
JPH03502598A (en) 1991-06-13

Similar Documents

Publication Publication Date Title
DE927157C (en) Arrangement for practicing a method for maintaining an essentially constant output power in ultra-short wave tubes
EP0261338A2 (en) Inductively excited ion source
US6262638B1 (en) Tunable and matchable resonator coil assembly for ion implanter linear accelerator
EP1269803B1 (en) Plasma accelerator arrangement
EP0413739B1 (en) Accelerator
DE3613260C2 (en)
DE2208431C3 (en) Method and device for igniting an interrupter with crossed fields
US3495125A (en) Quarter-wave transmission line radio frequency voltage step-up transformer
DE900853C (en) Arrangement for the acceleration of charged particles
DE1179309B (en) High frequency ion source
DE2219545A1 (en) ION ENGINE
DE1200447B (en) Device for generating a plasma jet
DE2527609C3 (en) Ion source
DE873594C (en) Arrangement to limit the trajectory of cargo carriers to a prescribed target path area
DE3231166C2 (en)
US4396867A (en) Inductive intense beam source
US5773787A (en) Plasma-gun voltage generator
US5760496A (en) Inverse-pinch voltage pulse generator
DE3838386A1 (en) Accelerator
DE4302630C1 (en) Coaxial plasma ring accelerator - forms poloidal alternating magnetic field for shape-stabilising plasma confinement
EP0028303B1 (en) Plasma and ion source
DE652506C (en) Discharge tubes for generating vibrations
DE1196801B (en) Process for generating and confining a high energy plasma
DE2738813C2 (en)
DE1107847B (en) Device for generating high electrical field strengths to achieve strong accelerations of electrically charged particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19921106

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941221

Ref country code: NL

Effective date: 19941221

REF Corresponds to:

Ref document number: 58908803

Country of ref document: DE

Date of ref document: 19950202

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950117

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950517

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950522

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960511

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970826

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302