EP0411819A2 - White light handleable negative-acting silver halide photographic elements - Google Patents

White light handleable negative-acting silver halide photographic elements Download PDF

Info

Publication number
EP0411819A2
EP0411819A2 EP90308153A EP90308153A EP0411819A2 EP 0411819 A2 EP0411819 A2 EP 0411819A2 EP 90308153 A EP90308153 A EP 90308153A EP 90308153 A EP90308153 A EP 90308153A EP 0411819 A2 EP0411819 A2 EP 0411819A2
Authority
EP
European Patent Office
Prior art keywords
silver halide
halide photographic
photographic element
water
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP90308153A
Other languages
German (de)
French (fr)
Other versions
EP0411819A3 (en
Inventor
Steven M. C/O Minnesota Mining And Shor
Hall P. C/O Minnesota 3M Research Ltd. Kevin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of EP0411819A2 publication Critical patent/EP0411819A2/en
Publication of EP0411819A3 publication Critical patent/EP0411819A3/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/815Photosensitive materials characterised by the base or auxiliary layers characterised by means for filtering or absorbing ultraviolet light, e.g. optical bleaching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain

Definitions

  • the present invention relates to UV sensitive negative acting silver halide photographic elements, and more particularly to UV sensitive negative acting silver halide photographic elements which can be handled under room lighting conditions without significant loss in image density, and which upon development of a half-tone image thereon can be dry etched with improved performance characteristics.
  • Light sensitive recording materials may suffer from a phenomenon known as halation which causes degradation in the quality of the recorded image. Such degradation may occur when a fraction of the imaging light which strikes the photosensitive layer is not absorbed but passes through to the film base on which the photosensitive layer is coated. A portion of the light reaching the base may be reflected back to strike the photosensitive layer from the underside. Light thus reflected may, in some cases, contribute significantly to the total exposure of the photosensitive layer. Any particulate matter in the photosensitive element may cause light passing through the element to be scattered. Scattered light which is reflected from the film base will, on its second passage through the photosensitive layer, cause exposure over an area adjacent to the point of intended exposure. It is this effect which leads to image degradation.
  • halation causes degradation in the quality of the recorded image. Such degradation may occur when a fraction of the imaging light which strikes the photosensitive layer is not absorbed but passes through to the film base on which the photosensitive layer is coated. A portion of the light reaching the base may be reflected back to strike the photosensitive layer from the underside
  • Silver halide based photograhic materials are prone to this form of image degradation since the photosensitive layers contain light scattering particles.
  • the effect of light scatter on image quality is well documented and is described, for example, in T. H. James "The Theory of the Photographic Process", 4th Edition, Chapter 20, Macmillan 1977.
  • a similar effect may be achieved by a light absorbing layer interposed between the photosensitive layer and the base.
  • This construction described as an "antihalation underlayer” is applicable to photosensitive coatings on transparent or non-transparent bases.
  • a light absorbing substance may be incorporated into the photosensitive layer itself, in order to absorb scattered light. Substances used for this purpose are known as "acutance dyes". It is also possible to improve image quality by coating a light absorbing layer above the photosensitive layer of a wet processed photographic element. Coatings of this kind, described in U.S. Patent Specification No. 4,312,941 prevent multiple reflections of scattered light between the internal surfaces of a photographic element.
  • Antihalation dyes can be rendered colorless by way of heat bleaching, development solution bleaching, a specific bleaching solution, or removal from the medium in a dissolving bath.
  • the wavelength of sensitivity of the medium and hence the wavelength of absorption of the antihalation dye, is outside the visible region, it is not necessary to decolorize the antihalation dye since it has no color (i.e., it is not visible).
  • Some antihalation dyes may have absorption tails that extend into the visible region and would therefore have to be decolorized (e.g., U.S. Patent 4,581,325).
  • U.S. Reissue Patent No. 30,303 describes UV absorbing dyes useful as filter dyes in photographic elements.
  • the claims are for molecules of the type wherein n is 1 or 2, when n is 1, R1 and R2 are independently chosen to represent hydrogen, an alkyl group of 1 to 10 carbon atoms, or a cyclic alkyl group of 5 or 6 carbon atoms provided that R1 and R2 cannot both be hydrogen, or R1 and R2 taken together represent the atoms necessary to complete a cyclic amino group and when n is 2 at least one of R1 and R2 is alkylene and G represents an electron withdrawing group.
  • the first patent refers to polymeric versions of the dye class and is fairly far removed from our proposed use.
  • Advantages are claimed for improved absorption profiles, easier and more consistent dispersions obtainable and show a reduced speed loss compared to the derivatives claimed in Reissue Patent 30,303.
  • the main application is for the UV filter dye in the color negative constructions.
  • the dyes are hydrophobic in U.S. Patents 4,307,184 and 4,576,908 and presumably would not be bleached in processing.
  • a UV sensitive negative acting silver halide photographic element for contacting processes which can be safely handled under white light, said element comprising a support, a hydrophilic colloidal silver halide emulsion layer comprising negative acting silver halide grains, and a backside coated antihalation layer, wherein said backside coated antihalation layer comprises a water removable UV absorbing compound having at least 80% absorption in the range of 350 to 400 nm.
  • the present invention relates to a UV sensitive negative acting silver halide photographic element comprising a support, a hydrophilic colloidal silver halide emulsion layer comprising negative acting UV sensitive photographic silver halide grains, and at least a backside coated UV absorbing antihalation layer, wherein said antihalation layer comprises a water removable UV absorbing compound having at least 80% of absorption in the range of 350 to 400 nm.
  • the UV absorbing compounds for use in the silver halide photographic element according to the present invention correspond to the general formula: in which: R1 and R2, the same or different, each represents an alkyl group, an aryl group or a cyclic alkyl group, or R1 and R2 taken together represent the atoms necessary to complete a cyclic amino group, G represents an electron withdrawing group, and at least one of R1, R2 and G is substituted with a water solubilizing group.
  • R1 and R2 can be the same or different and represent alkyl groups, preferably alkyl groups having 1 to 10 carbon atoms, more preferably alkyl groups having 1 to 4 carbon atoms, including substituted alkyl groups such as cyanoalkyl or alkoxyalkyl groups, aryl groups, preferably aryl groups having 6 to 20 carbon atoms, more preferably aryl groups having 6 to 10 carbon atoms or cyclic alkyl groups, preferably cyclic alkyl groups having 5 or 6 carbon atoms or R1 and R2 taken together represent the elements necessary to complete a cyclic amino group such as, for example, a piperidino, a morpholino, a pyrrolidino, a hexahydroazepino and a piperazino group, G represents an electron withdrawing group of any electron withdrawing groups known in the art such as, for example, CN, NO2, COOR or SO2R wherein R represents an alkyl groups known in the art such as
  • the UV absorbing compounds for use in the silver halide photographic elements according to the present invention correspond to the general formula: in which: R1 represents an alkyl group having 1 to 10 carbon atoms, preferably a lower alkyl group having 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl or tert-butyl group, and R3 represents an alkylene group having 1 to 10 carbon atoms whose carbon atom chain may comprise divalent groups such as, for example, -O-, -S-, -COO- or -SO2-.
  • the UV absorbing compounds of the photographic elements according to the present invention have a strong absorption in the region of the electromagnetic spectrum at the boundary between the UV and the visible region.
  • the UV absorbing compounds according to this invention have a peak or plateau in its absorbing spectrum around 380 nm. At least 80% of their absorption is in the range of from 350 to 400 nm, their absorption below 350 nm being such as not to affect significantly the response of the silver halide emulsion to the UV radiation of the exposure light, preferably such as not to absorb more than 30% of the radiation emitted by exposure lamps having a maximum emulsion wavelength of 317nm.
  • the UV absorbing compounds of the photographic elements according to the present invention are highly soluble in water, so that they can be washed out of the element during processing, without a significant retention of UV absorption.
  • the absorption of the element in D min areas after processing is, in the range from 300 nm to 400 nm, less than 0.10.
  • the UV absorbing compounds of this invention can be prepared according to methods well known in the art.
  • the UV absorbing compounds of general formulas (I) and (II) can be prepared by treating an appropriate amine compound containing the water solubilizing group with an appropriate intermediate in an organic solvent at boiling temperature followed by usual techniques for isolating the compounds.
  • Useful intermediates are for example described in U.S. Patent 4,045,229.
  • the UV absorbing compounds are used in an aqueous penetrable binder layer hydrophilic colloidal layer on the backside of the base or support layer. Said backside layer is further from the exposure light source than the silver halide emulsion layer and on the opposite side of the base from the silver halide emulsion layer.
  • the UV absorbing compounds may be added in the form of a water solution to the hydrophilic colloidal coating composition.
  • the amount of the UV absorbing compounds used is generally about 0.02g/m2 or greater (preferably no more than 0.3g/m2).
  • the antihalation dye should provide an absorbance between 350 and 400 nm (e.g., 375 nm) of at least 0.3, preferably at least 0.5, and more preferably at least 0.8.
  • silver halide emulsions for use in the photographic elements according to this invention are preferably higher chloride silver halide emulsions. They preferably contain at least 50% mole and more preferably at least 75% mole of silver chloride. The higher the silver chloride content, the lower is the natural blue and visible light sensitivity, even if the UV radiation sensitivity remains high.
  • the silver halide emulsions to be used in type photographic elements according to the present invention are emulsions wherein at least 75% by weight of all silver halide grains are silver halide grains wherein at least at 80% mole is silver chloride.
  • the remaining silver halide, if any, will be silver bromide and/or silver iodide but the latter should normally be present in an amount not exceeding 10% mole.
  • the spectral sensitivity is even more extended to visible region and it may be useful to combine the UV absorbing compounds according to this invention with dyes capable of absorbing visible radiations so that the photographic element can be safely handled in bright light conditions.
  • the dyes include, for example, oxonol dyes, benzylidene dyes, and the like, which can be bleachable or washable during processing. Examples of useful dyes are described, for example, in U.S. patent 4,140,531.
  • sensitizing dyes are used to extend the sensitivity of the emulsion to longer wavelengths of visible light.
  • the high chloride silver halide emulsions it also appears to be desirable for the high chloride silver halide emulsions to have a relatively small grain size, e.g. a mean grain size of from 0.05 to 0.6 micron, the preferred grain size being in the range of from 0.05 to 0.3 microns and the most preferred being from 0.05 to 0.1 micron.
  • the high chloride silver halide grains preferably have a cubic shape, but may have other shapes, such as octahedra, spheres, tabular shapes, etc.
  • silver halides are preferably prepared in the presence of at least a doping metallic element of the 8th Group of the Periodic Table of Elements, such as rhodium, iridium and ruthenium, which acts as electron acceptor.
  • Said doping element is preferably chosen among water-soluble iridium salts, water-soluble ruthenium salts, or water-soluble rhodium salts.
  • Iridium salts include iridium and alkaline metal halides, such as potassium iridium (III) hexachloride and sodium iridium (III) hexabromide.
  • Rhodium salts include rhodium halides, such as rhodium (III) trichloride and rhodium (IV) tetrachloride and rhodium and alkaline metal halides such as potassium rhodium (III) hexabromide and sodium rhodium (III) hexachloride. These salts may be added in a quantity of from 0.5x10 ⁇ 4 to 10x10 ⁇ 4 moles, and preferably from 2x10 ⁇ 4 to 7x10 ⁇ 4 moles per mole of silver halide.
  • Gold compounds used for chemical sensitization, include alkali metal chloroaurates, chloroauric acid, gold sulfide, gold selenide, and the like. Said gold compounds are generally used in a quantity of from 1x10 ⁇ 6 to 10 ⁇ 4 moles per mole of silver halide.
  • the UV sensitive silver halide emulsions of the photographic elements according to this invention may contain various other photographic additives wich include sensitizers, desensitizers, solarization accelerators, stabilizers, hardeners, coating aids, preservatives, matting agents, antistatic agents, and the like, as described, for example, in U.S. Patent 4,495,274.
  • Gelatin is generally used as hydrophilic colloid for the silver halide photographic elements of the present invention.
  • hydrophilic colloids gelatin derivatives, natural substances such as albumin, casein, agar-agar, alginic acid and the like, and hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrolidone, cellulose ethers, partially hydrolized polyvinyl acetate, and the like can be used in addition to or instead of gelatin.
  • gelatin can be partially substituted with polymer latexes obtained by emulsion polymerization of vinyl monomers, such as polyethylacrylate latexes, to improve the physical characteristics of the photographic layers.
  • Support bases used in the negative-acting silver halide photographic elements according to this invention can be any of the conventionally used support bases, such as glass, cloth, metal, film including for example cellulose acetate, cellulose acetate-butyrate, cellulose nitrate, polyester, polyamine, polystyrene, and the like, paper including baryta-coated paper, resin-coated paper, and the like.
  • the silver halide photographic elements according to this invention may be used in the field of Graphic Arts for various purposes, such as, for example, for contacting, for reproduction, for making offset printing masters, as well as in radiography for special purposes, in electron photography, and the like, where high UV sensitivity is required together with low blue light sensitivity.
  • the silver halide photographic elements according to this invention are highly UV sensitive and give high contrast and low minimum density (fog) when they are exposed with light rich in UV rays, and they can be handled in bright white room light.
  • a silver halide emulsion containing 84 mole % chloride and 16 mole % bromide was prepared by adding simultaneously and under stirring, over a period of 25 minutes, with a double-jet technique, water solution B and water solution C to water gelatin solution A, said water solutions having the composition reported herein below.
  • the gelatin solution was kept at constant temperature of 30°C.
  • the addition rate of solution B was constant, while the addition rate of solution C varied such as to maintain the millivolt of the emulsion thus formed at a value of 120 ⁇ 2 mv measured with a specific electrode for Br ion and a reference electrode of the saturated Ag/AgCl type.
  • the emulsion was then chemically sensitized with sodium thiosulfate and sodium gold chloride. At the end of the chemical sensitization a triazole stabilizer was added and the emulsion was prepared for coating with the addition of additional gelatin, coating surface active agents and formaldehyde hardener.
  • the emulsion was then coated at a silver coating weight of 2.7g Ag/m2 onto a polyethylene terephthalate support base which was backed with green antihalation layers that had varying amounts of yellow, blue and UV dye as shown as explained in Table 1 and Figures 1 and 2.
  • the resulting films were exposed through a 0-2, 20 cm continuus wedge.
  • the exposing lamp was a violux 1500S UV lamp at a distance of 52 inches from the film plane.
  • the exposed films were developed in 3M RDC developer for 20 sec at 40°C and fixed in 3M fix roll fixer.
  • the dry etch test then consists of making contact exposures to the original of 1x, 2x, 4x, 6x, 8x, 10x, 12x, 14x and 16x the dot-for-dot exposure.
  • the resulting dot enlargement is measured.
  • Both the highlight, shadow and midtone are of importance with the objective being to obtain a very cbntrolled movement of all dot sizes and as large a movement as possible in the midtone and shadow before the highlights veil in.

Abstract

UV-sensitive negative acting silver halide photographic elements are used in contacting processes, and especially dry etch correction processes and can be safely handled under white light. These elements comprise a support base, a negative acting hydrophilic colloidal silver halide emulsion layer comprising photographic silver halide grains, and one or more hydrophilic colloidal layers, wherein said silver halide emulsion support base has on its surface most distant from the layer an antihalation layer comprising a water-removable UV-absorbing compound having significant absorption in the range of from 350 to 400 nm.

Description

    FIELD OF THE INVENTION
  • The present invention relates to UV sensitive negative acting silver halide photographic elements, and more particularly to UV sensitive negative acting silver halide photographic elements which can be handled under room lighting conditions without significant loss in image density, and which upon development of a half-tone image thereon can be dry etched with improved performance characteristics.
  • BACKGROUND OF THE ART
  • Light sensitive recording materials may suffer from a phenomenon known as halation which causes degradation in the quality of the recorded image. Such degradation may occur when a fraction of the imaging light which strikes the photosensitive layer is not absorbed but passes through to the film base on which the photosensitive layer is coated. A portion of the light reaching the base may be reflected back to strike the photosensitive layer from the underside. Light thus reflected may, in some cases, contribute significantly to the total exposure of the photosensitive layer. Any particulate matter in the photosensitive element may cause light passing through the element to be scattered. Scattered light which is reflected from the film base will, on its second passage through the photosensitive layer, cause exposure over an area adjacent to the point of intended exposure. It is this effect which leads to image degradation. Silver halide based photograhic materials (including photothermographic materials) are prone to this form of image degradation since the photosensitive layers contain light scattering particles. The effect of light scatter on image quality is well documented and is described, for example, in T. H. James "The Theory of the Photographic Process", 4th Edition, Chapter 20, Macmillan 1977.
  • It is common practice to minimise the effects of light scatter by including a light absorbing layer within the photographic element. To be effective the absorption of this layer must be at the same wavelengths as the sensitivity of the photosensitive layer. In the case of imaging materials coated on transparent base, a light absorbing layer is frequently coated on the reverse side of the base from the photosensitive layer. Such a coating, known as an "antihalation layer", effectively prevents reflection of any light which has passed through the photosensitive layer.
  • A similar effect may be achieved by a light absorbing layer interposed between the photosensitive layer and the base. This construction, described as an "antihalation underlayer" is applicable to photosensitive coatings on transparent or non-transparent bases. A light absorbing substance may be incorporated into the photosensitive layer itself, in order to absorb scattered light. Substances used for this purpose are known as "acutance dyes". It is also possible to improve image quality by coating a light absorbing layer above the photosensitive layer of a wet processed photographic element. Coatings of this kind, described in U.S. Patent Specification No. 4,312,941 prevent multiple reflections of scattered light between the internal surfaces of a photographic element.
  • When the wavelength of sensitivity of the imaging medium is within the visible regions of the electromagnetic spectrum it is often necessary to have the antihalation dye rendered colorless prior to viewing of the final image. If the dye is not rendered colorless, the visible antihalation dye will provide a background density or stain to the final image. Antihalation dyes can be rendered colorless by way of heat bleaching, development solution bleaching, a specific bleaching solution, or removal from the medium in a dissolving bath.
  • When the wavelength of sensitivity of the medium, and hence the wavelength of absorption of the antihalation dye, is outside the visible region, it is not necessary to decolorize the antihalation dye since it has no color (i.e., it is not visible). Some antihalation dyes may have absorption tails that extend into the visible region and would therefore have to be decolorized (e.g., U.S. Patent 4,581,325).
  • It is very desirable to produce silver halide photographic elements for duplicating and contacting processes which may be handled safely in bright white light. The benefits of this include ease of working and inspection of the element during exposure and processing, and generally more pleasant working conditions for the operators. Negative acting silver halide elements can generally be made resistant to fogging in room light by making use of an accentuated low intensity reciprocity failure effect.
  • In the use of negative acting ultraviolet radiation sensitive photographic silver halide emulsions and elements, it is desirable to have the elements room light or white light handlable. Providing these emulsions and elements with ultraviolet radiation sensitivity below 400nm can provide an element with good room light handlability. These elements, primarily useful as black and white image forming elements, can still benefit from and often need backside antihalation layers in order to provide sharp images. Using UV absorbing antihalation dyes without any significant tail in the visible region of the electromagnetic spectrum has eliminated the need for decolorizing of the antihalation dye.
  • It has been discovered by applicants, however, that when half-tone images produced from such UV sensitive photographic media are used in dry etch processes, there is an adverse affect on the process from the residual antihalation dye. In the dry etch process, the photosensitive medium of this invention is repeatedly exposed through the black-and-white half-tone color separation image. These multiple exposures increase the dot sizes, minimizing on-press dot gain or correcting color balance or tone. If the UV dye is not present in the antihalation layer of the unexposed UV sensitive film, what is ordinarily observed is that the higher percentage dots expand to fill in the highlights (veiling) before there is sufficient dot gain in the low percentage and intermediate dots. Conversely if the UV dye is still present in the imaged medium after processing then subsequent exposures to duplicating, proofing or plate materials necessitates higher exposure to burn through the high UV Dmin areas which causes a shift in dot size, leading to inaccurate dot reproduction.
  • Thus two key requirements are 1) that the UV dye be present during the image step of the unimaged material for optimal dry etching, and 2) that the UV dye be removed during the chemical process for optimal subsequent contact exposures.
  • U.S. Reissue Patent No. 30,303 describes UV absorbing dyes useful as filter dyes in photographic elements. The claims are for molecules of the type
    Figure imgb0001
    wherein n is 1 or 2, when n is 1, R₁ and R₂ are independently chosen to represent hydrogen, an alkyl group of 1 to 10 carbon atoms, or a cyclic alkyl group of 5 or 6 carbon atoms provided that R₁ and R₂ cannot both be hydrogen, or R₁ and R₂ taken together represent the atoms necessary to complete a cyclic amino group and when n is 2 at least one of R₁ and R₂ is alkylene and G represents an electron withdrawing group.
  • They are incorporated in a photographic element of a suport, silver halide layer(s) and in UV filter layer containing above dye. Alternatively, they can be in the film support. The examples given refer to color negative coatings, though black and white constructions are not excluded. No mention is made of water solubilization or bleachability. There use is to protect the film of unwanted UV exposure to give a more balanced color rendition.
  • Similar abilities are described in U.S. Patents 4,307,184 and 4,756,908. The first patent refers to polymeric versions of the dye class and is fairly far removed from our proposed use. The second patent refers to particular versions of Formula I (R₁-R²-allyl for 3, and R short chain alkyl, C₁-C³ R₁=opt. subs long chain alkyl >C₁₀). Advantages are claimed for improved absorption profiles, easier and more consistent dispersions obtainable and show a reduced speed loss compared to the derivatives claimed in Reissue Patent 30,303. Again the main application is for the UV filter dye in the color negative constructions. The dyes are hydrophobic in U.S. Patents 4,307,184 and 4,576,908 and presumably would not be bleached in processing. In fact it is usually preferred to be nonbleachable and nondiffusing to give UV protection after processing. In U.S. Patent 4,307,183 the supersensitizing combination of a polymeric version of Formula I with a methine spectral sensitizer in silver halide constructions is claimed.
  • Of more relevance is U.S. Patent Application Serial No. [F/381] where water solubilized versions of I are claimed in direct positive (black and white) silver halide constructions. A general formula of water solubilization is used which may make it novel compared to the glass and uses disclosed in Reissue Patent 30,303. The dye has to be reactively associated with the silver halide emulsion and is not disclosed specifically as a backside coating. Advantages are claimed for improved white light safety with minimal residual UV stain after processing.
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided a UV sensitive negative acting silver halide photographic element for contacting processes which can be safely handled under white light, said element comprising a support, a hydrophilic colloidal silver halide emulsion layer comprising negative acting silver halide grains, and a backside coated antihalation layer, wherein said backside coated antihalation layer comprises a water removable UV absorbing compound having at least 80% absorption in the range of 350 to 400 nm.
  • DETAILED DESCRlPTION OF THE INVENTION
  • The present invention relates to a UV sensitive negative acting silver halide photographic element comprising a support, a hydrophilic colloidal silver halide emulsion layer comprising negative acting UV sensitive photographic silver halide grains, and at least a backside coated UV absorbing antihalation layer, wherein said antihalation layer comprises a water removable UV absorbing compound having at least 80% of absorption in the range of 350 to 400 nm.
  • Preferably, the UV absorbing compounds for use in the silver halide photographic element according to the present invention correspond to the general formula:
    Figure imgb0002
    in which:
    R₁ and R₂, the same or different, each represents an alkyl group, an aryl group or a cyclic alkyl group, or R₁ and R₂ taken together represent the atoms necessary to complete a cyclic amino group,
    G represents an electron withdrawing group, and at least one of R₁, R₂ and G is substituted with a water solubilizing group.
  • In the above general formula (I):
    R₁ and R₂ can be the same or different and represent alkyl groups, preferably alkyl groups having 1 to 10 carbon atoms, more preferably alkyl groups having 1 to 4 carbon atoms, including substituted alkyl groups such as cyanoalkyl or alkoxyalkyl groups, aryl groups, preferably aryl groups having 6 to 20 carbon atoms, more preferably aryl groups having 6 to 10 carbon atoms or cyclic alkyl groups, preferably cyclic alkyl groups having 5 or 6 carbon atoms or R₁ and R₂ taken together represent the elements necessary to complete a cyclic amino group such as, for example, a piperidino, a morpholino, a pyrrolidino, a hexahydroazepino and a piperazino group,
    G represents an electron withdrawing group of any electron withdrawing groups known in the art such as, for example, CN, NO₂, COOR or SO₂R wherein R represents an alkyl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, or an aryl group (such as phenyl or naphthyl), preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, and
    at least one of R₁, R₂ and G is substituted with a water solubilizing group of any water solubilizing groups known in the art such as, for example, a COOH group or an alkaline metal or ammonium salt thereof, a SO₃H group or an alkaline metal or ammonium salt thereof, a hydroxy group, a quaternary ammonium salt containing group, a phosphate group or a polyoxyalkylene group.
  • More preferably, the UV absorbing compounds for use in the silver halide photographic elements according to the present invention correspond to the general formula:
    Figure imgb0003
    in which:
    R₁ represents an alkyl group having 1 to 10 carbon atoms, preferably a lower alkyl group having 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl or tert-butyl group, and
    R₃ represents an alkylene group having 1 to 10 carbon atoms whose carbon atom chain may comprise divalent groups such as, for example, -O-, -S-, -COO- or -SO₂-.
  • The UV absorbing compounds of the photographic elements according to the present invention have a strong absorption in the region of the electromagnetic spectrum at the boundary between the UV and the visible region. The UV absorbing compounds according to this invention have a peak or plateau in its absorbing spectrum around 380 nm. At least 80% of their absorption is in the range of from 350 to 400 nm, their absorption below 350 nm being such as not to affect significantly the response of the silver halide emulsion to the UV radiation of the exposure light, preferably such as not to absorb more than 30% of the radiation emitted by exposure lamps having a maximum emulsion wavelength of 317nm. Additionally, the UV absorbing compounds of the photographic elements according to the present invention are highly soluble in water, so that they can be washed out of the element during processing, without a significant retention of UV absorption. Preferably, the absorption of the element in Dmin areas after processing is, in the range from 300 nm to 400 nm, less than 0.10.
  • The following are examples of water soluble UV absorbing compounds which are applicable to the present invention:
    Figure imgb0004
    Figure imgb0005
  • The UV absorbing compounds of this invention can be prepared according to methods well known in the art. The UV absorbing compounds of general formulas (I) and (II) can be prepared by treating an appropriate amine compound containing the water solubilizing group with an appropriate intermediate in an organic solvent at boiling temperature followed by usual techniques for isolating the compounds. Useful intermediates are for example described in U.S. Patent 4,045,229.
  • The following is a preparative example of a UV absorbing compound for use in the present invention.
  • PREPARATIVE EXAMPLE Compound (1): N-(3-allylidenemalononitrile)-sarcosine
  • Sarcosine (89.1 grams, 1 mole) was dissolved in 170 ml of water containing NaOH (40 grams, 1 mole) and 450 ml of methanol. Acetanilidoallylidenemalononitrile (216 grams, 0.91 moles) was then added with stirring. The mixture was refluxed for 30 minutes and then cooled in ice. The addition of 100 ml of 37% HCl separated a yellow colored solid that was filtered and crystallized from a 2:1 ethanol-water mixture. The obtained product (112 grams, yield 65%) had a M.P. = 170-2°C and a percent analysis for C₉H₉N₃O as follows:
    N% C% H%
    Calculated 21.98 56.54 4.74
    Found 21.66 56.22 4.72
    Spectrophometric analysis :
    λmax (in water) = 374nm
    ε (in water) = 52,000
    The product is soluble in water upon addition of a stoichiometric quantity of NaOH.
  • In the photographic elements of this invention, the UV absorbing compounds are used in an aqueous penetrable binder layer hydrophilic colloidal layer on the backside of the base or support layer. Said backside layer is further from the exposure light source than the silver halide emulsion layer and on the opposite side of the base from the silver halide emulsion layer. In order to incorporate the UV absorbing compounds into an hydrophilic colloidal layer of the silver halide photographic elements according to this invention, they may be added in the form of a water solution to the hydrophilic colloidal coating composition. The amount of the UV absorbing compounds used, although different according to the type of the compound or of silver halide emulsion to be used, is generally about 0.02g/m² or greater (preferably no more than 0.3g/m²). The antihalation dye should provide an absorbance between 350 and 400 nm (e.g., 375 nm) of at least 0.3, preferably at least 0.5, and more preferably at least 0.8.
  • It is well known in the art that silver halides have a high natural sensitivity to UV radiations and that silver bromide also has a relatively high sensitivity to blue and shorter wavelength visible light, while silver chloride has a relatively low sensitivity to blue and to shorter wavelength visible light. Therefore, silver halide emulsions for use in the photographic elements according to this invention are preferably higher chloride silver halide emulsions. They preferably contain at least 50% mole and more preferably at least 75% mole of silver chloride. The higher the silver chloride content, the lower is the natural blue and visible light sensitivity, even if the UV radiation sensitivity remains high. More preferably, the silver halide emulsions to be used in type photographic elements according to the present invention are emulsions wherein at least 75% by weight of all silver halide grains are silver halide grains wherein at least at 80% mole is silver chloride. The remaining silver halide, if any, will be silver bromide and/or silver iodide but the latter should normally be present in an amount not exceeding 10% mole. In case of silver halides comprising chloride in the range of from 50 to 75% mole, the remaining halide being essentially bromide, the spectral sensitivity is even more extended to visible region and it may be useful to combine the UV absorbing compounds according to this invention with dyes capable of absorbing visible radiations so that the photographic element can be safely handled in bright light conditions. The dyes include, for example, oxonol dyes, benzylidene dyes, and the like, which can be bleachable or washable during processing. Examples of useful dyes are described, for example, in U.S. patent 4,140,531. In conventional emulsions sensitizing dyes are used to extend the sensitivity of the emulsion to longer wavelengths of visible light. This is not required with the emulsions used in the present invention. It also appears to be desirable for the high chloride silver halide emulsions to have a relatively small grain size, e.g. a mean grain size of from 0.05 to 0.6 micron, the preferred grain size being in the range of from 0.05 to 0.3 microns and the most preferred being from 0.05 to 0.1 micron. The high chloride silver halide grains preferably have a cubic shape, but may have other shapes, such as octahedra, spheres, tabular shapes, etc.
  • In the present invention, silver halides are preferably prepared in the presence of at least a doping metallic element of the 8th Group of the Periodic Table of Elements, such as rhodium, iridium and ruthenium, which acts as electron acceptor. Said doping element is preferably chosen among water-soluble iridium salts, water-soluble ruthenium salts, or water-soluble rhodium salts. Iridium salts include iridium and alkaline metal halides, such as potassium iridium (III) hexachloride and sodium iridium (III) hexabromide. Rhodium salts include rhodium halides, such as rhodium (III) trichloride and rhodium (IV) tetrachloride and rhodium and alkaline metal halides such as potassium rhodium (III) hexabromide and sodium rhodium (III) hexachloride. These salts may be added in a quantity of from 0.5x10⁻⁴ to 10x10⁻⁴ moles, and preferably from 2x10⁻⁴ to 7x10⁻⁴ moles per mole of silver halide.
  • Gold compounds, used for chemical sensitization, include alkali metal chloroaurates, chloroauric acid, gold sulfide, gold selenide, and the like. Said gold compounds are generally used in a quantity of from 1x10⁻⁶ to 10⁻⁴ moles per mole of silver halide.
  • The UV sensitive silver halide emulsions of the photographic elements according to this invention may contain various other photographic additives wich include sensitizers, desensitizers, solarization accelerators, stabilizers, hardeners, coating aids, preservatives, matting agents, antistatic agents, and the like, as described, for example, in U.S. Patent 4,495,274.
  • Gelatin is generally used as hydrophilic colloid for the silver halide photographic elements of the present invention. As hydrophilic colloids, gelatin derivatives, natural substances such as albumin, casein, agar-agar, alginic acid and the like, and hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrolidone, cellulose ethers, partially hydrolized polyvinyl acetate, and the like can be used in addition to or instead of gelatin. Further, gelatin can be partially substituted with polymer latexes obtained by emulsion polymerization of vinyl monomers, such as polyethylacrylate latexes, to improve the physical characteristics of the photographic layers.
  • Support bases used in the negative-acting silver halide photographic elements according to this invention can be any of the conventionally used support bases, such as glass, cloth, metal, film including for example cellulose acetate, cellulose acetate-butyrate, cellulose nitrate, polyester, polyamine, polystyrene, and the like, paper including baryta-coated paper, resin-coated paper, and the like.
  • The silver halide photographic elements according to this invention may be used in the field of Graphic Arts for various purposes, such as, for example, for contacting, for reproduction, for making offset printing masters, as well as in radiography for special purposes, in electron photography, and the like, where high UV sensitivity is required together with low blue light sensitivity.
  • The silver halide photographic elements according to this invention are highly UV sensitive and give high contrast and low minimum density (fog) when they are exposed with light rich in UV rays, and they can be handled in bright white room light.
  • These and other advantages according to the present invention will be illustrated with reference to the following examples.
  • EXAMPLE 1
  • A silver halide emulsion containing 84 mole % chloride and 16 mole % bromide was prepared by adding simultaneously and under stirring, over a period of 25 minutes, with a double-jet technique, water solution B and water solution C to water gelatin solution A, said water solutions having the composition reported herein below.
    • Solution A
      Water - g 833.3
      Gelatin - g 25
      Polyvinylpyrrolidone (K-30) - 6.33
      KBr - ml 0.167 (1N)
    • Solution B
      Water - g 368
      AgNO₃ - g 170
    • Solution C
      Water - g 361.3
      KCl - g 62.65 (0.84 moles)
      KBr - g 19.04 (0.16 moles)
      Na₃RhCl₆.12H₂O - g 0.200
  • The gelatin solution was kept at constant temperature of 30°C. The addition rate of solution B was constant, while the addition rate of solution C varied such as to maintain the millivolt of the emulsion thus formed at a value of 120 ± 2 mv measured with a specific electrode for Br ion and a reference electrode of the saturated Ag/AgCl type. The emulsion, wherein the soluble salts had been removed with the conventional coagulation method, had a mean grain diameter of 0.09µm. The emulsion was then chemically sensitized with sodium thiosulfate and sodium gold chloride. At the end of the chemical sensitization a triazole stabilizer was added and the emulsion was prepared for coating with the addition of additional gelatin, coating surface active agents and formaldehyde hardener.
  • The emulsion was then coated at a silver coating weight of 2.7g Ag/m² onto a polyethylene terephthalate support base which was backed with green antihalation layers that had varying amounts of yellow, blue and UV dye as shown as explained in Table 1 and Figures 1 and 2.
  • The resulting films were exposed through a 0-2, 20 cm continuus wedge. The exposing lamp was a violux 1500S UV lamp at a distance of 52 inches from the film plane.
  • The exposed films were developed in 3M RDC developer for 20 sec at 40°C and fixed in 3M fix roll fixer.
  • Dmin, Dmax, Speed at .2, Toe Contrast, and Average Contrast of the resulting coatings show that the E-E sensitivity are essentially the same.
  • Next the dry etching characteristics were examined which demonstrates the resulting improvement by incorporating the UV dye into the antihalation formulation.
  • In order to evaluate the dry etching characteristics it is first necessary to determine the optimum dot-for-dot exposure in the E-E mode.
  • For these tests a hard dot original was used. The optimum contact exposure which we will define as producing a Dmax >4.0 with a dot reproduction within 1% at the midtone turned out to be 18 units.
  • The dry etch test then consists of making contact exposures to the original of 1x, 2x, 4x, 6x, 8x, 10x, 12x, 14x and 16x the dot-for-dot exposure. The resulting dot enlargement is measured. Both the highlight, shadow and midtone are of importance with the objective being to obtain a very cbntrolled movement of all dot sizes and as large a movement as possible in the midtone and shadow before the highlights veil in. TABLE 1
    Antihalation Characteristics of the Various Coatings
    Coating No. Absorbance
    *B *Y *UV
    1 .83 .34 .18
    2 .80 .34 .38
    3 .80 .33 .50
    4 .80 .48 0.24
    5 .82 .49 .69
    *B is oxonol blue 628 which has an absorbance peak at 650nm
    *Y is oxonol yellow K which has an absorbance peak at 430nm
    *UV is the water soluble UV dye number 1 of this invention which has an absorbance peak of 370nm
    TABLE 2
    Sensitometry of the Various Coatings
    Ctg. No. Dmin Dmax S.2 Toe Contrast Average Contrast
    1 .04 4.5 -2.86 2.09 9.8
    2 .04 4.5 -2.87 2.14 9.8
    3 .04 4.5 -2.87 2.20 9.6
    4 .04 4.5 -2.86 2.17 9.4
    5 .04 4.5 -2.88 2.17 9.2
  • TABLE 3 Dry Etch Results
  • Table 3 shows how dramatically the addition of the UV dye to the antihalation backing affects the resulting dry etching characteristics. It holds back veiling in the highlights allowing greater movement in the midtone and shadow ends. TABLE 3
    Dry Etch Results
    Coating 1 Coating 2 Coating 3 Coating 4 Coating 5
    10% 50% 91% 10% 50% 91% 10% 50% 91% 10% 50% 91% 10% 50% 91%
    Exposure Original Target Invention Invention Invention
    Resulting contact dot
    18 Units 91 51 9 91 51 9 91 51 9 91 51 9 91 51 9
    2X 93 54 10 92 53 10 92 53 9 92 53 10 92 53 10
    4X 96 58 11 94 57 11 94 57 10 94 57 11 93 56 11
    6X veiling 99 63 12 95 60 12 95 59 11 97 60 12 94 59 11
    8X 97 62 12 96 61 12 99 63 13 95 60 12
    10X veiling 99 64 13 97 63 12 96 61 12
    12X 98 64 13 97 63 13
    14X 98 65 13 97 64 13
    16X veiling 99 66 14 98 65 14

Claims (8)

1. A UV sensitive silver halide photographic element comprising a support, a hydrophilic colloidal silver halide emulsion layer comprising UV sensitive negative acting silver halide grains, and a backside coated antihalation layer, said antihalation layer comprising a water removable UV absorbing compound having at least 80% radiation absorption in the wavelength range of 350 to 400 nm.
2. The silver halide photographic element of claim 1, wherein said UV absorbing compound is represented by the general formula:
Figure imgb0006
in which:
R₁ and R₂, the same or different, each represents an alkyl group, an aryl group or a cyclic alkyl group, or R₁ and R₂ taken together represent the atoms necessary to complete a cyclic amino group,
G represents an electron withdrawing group, and
at least one of R₁, R₂ and G is substituted with a water solubilizing group.
3. The silver halide photographic element of claim 1, wherein said UV absorbing compound is represented by the general formula:
Figure imgb0007
in which:
R₁ represents an alkyl group, and
R₃ represents an alkylene group.
4. The silver halide photographic element of claim 1, wherein the added quantity of said water removable UV absorbing compound is in the range greater than 0.02 g/m² such that the absorbance in the coated element is greater than 0.3.
5. The silver halide photographic element of claim 1, wherein said water removable UV absorbing compound is comprised in a backside gelatin antihalation layer.
6. The silver halide photographic element of claim 1, wherein said UV absorbing compound is comprised in a hydrophilic colloid layer.
7. The silver halide photographic element of claim 1, wherein said silver halide emulsion is a high chloride silver halide emulsion.
8. The silver halide photographic element of claim 1, wherein said silver halide grains have been prepared in the presence of a water soluble iridium salt or a water soluble rhodium salt.
EP19900308153 1989-07-31 1990-07-25 White light handleable negative-acting silver halide photographic elements Ceased EP0411819A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US386631 1982-06-09
US38663189A 1989-07-31 1989-07-31

Publications (2)

Publication Number Publication Date
EP0411819A2 true EP0411819A2 (en) 1991-02-06
EP0411819A3 EP0411819A3 (en) 1991-12-18

Family

ID=23526402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900308153 Ceased EP0411819A3 (en) 1989-07-31 1990-07-25 White light handleable negative-acting silver halide photographic elements

Country Status (3)

Country Link
EP (1) EP0411819A3 (en)
JP (1) JPH0368935A (en)
CA (1) CA2020382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525445A1 (en) * 1991-07-30 1993-02-03 Minnesota Mining And Manufacturing Company Negative-acting silver halide photographic elements having extended UV exposure latitude

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69517160T2 (en) * 1995-06-06 2000-11-16 Agfa Gevaert Nv Photographic materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101646A (en) * 1982-12-02 1984-06-12 Konishiroku Photo Ind Co Ltd Photosensitive silver halide material for daylight room
EP0210409A2 (en) * 1985-07-11 1987-02-04 Minnesota Mining And Manufacturing Company 3-Aminoallylidenemalononitrile uv-absorbing compounds and photographic elements containing them
EP0219010A2 (en) * 1985-10-04 1987-04-22 Fuji Photo Film Co., Ltd. Silver halide photographic materials
EP0295945A2 (en) * 1987-06-18 1988-12-21 Konica Corporation Negative silver halide photographic light-sensitive material capable of being handled in light room
EP0300257A2 (en) * 1987-07-21 1989-01-25 Minnesota Mining And Manufacturing Company White light handeable direct-positive silver halide photographic elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101646A (en) * 1982-12-02 1984-06-12 Konishiroku Photo Ind Co Ltd Photosensitive silver halide material for daylight room
EP0210409A2 (en) * 1985-07-11 1987-02-04 Minnesota Mining And Manufacturing Company 3-Aminoallylidenemalononitrile uv-absorbing compounds and photographic elements containing them
EP0219010A2 (en) * 1985-10-04 1987-04-22 Fuji Photo Film Co., Ltd. Silver halide photographic materials
EP0295945A2 (en) * 1987-06-18 1988-12-21 Konica Corporation Negative silver halide photographic light-sensitive material capable of being handled in light room
EP0300257A2 (en) * 1987-07-21 1989-01-25 Minnesota Mining And Manufacturing Company White light handeable direct-positive silver halide photographic elements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
* abstract * *
JAPANESE PATENTS GAZETTE Week 8429, 29 August 1984 Derwent Publications Ltd., London, GB; Page 16, AN 84-18& JP-A-59 101 646 (KONISHIROKU PHOTO KK) 12 June 1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525445A1 (en) * 1991-07-30 1993-02-03 Minnesota Mining And Manufacturing Company Negative-acting silver halide photographic elements having extended UV exposure latitude
US5316901A (en) * 1991-07-30 1994-05-31 Minnesota Mining And Manufacturing Company Negative-acting silver halide photographic elements having extended UV exposure latitude

Also Published As

Publication number Publication date
CA2020382A1 (en) 1991-02-01
JPH0368935A (en) 1991-03-25
EP0411819A3 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
US4803150A (en) Radiographic element exhibiting reduced crossover
EP0264288B1 (en) High contrast scanner photographic elements employing ruthenium and iridium dopants
EP0276566B1 (en) Radiographic element exhibiting reduced crossover
EP0383055B1 (en) High-contrast photographic element
KR950004964B1 (en) Process and element for obtaining a photographic image
US4849326A (en) White light handeable direct-positive silver halide photographic elements
US4078937A (en) Process for sensitizing a fine grain silver halide photographic emulsion
US3816121A (en) Direct positive photographic material containing a color coupler under one micron in size and fogged silver halide grains with substantially no internal sensitivity having absorbed on the surface a desensitizing dye containing a solubilizing group
JPH0612427B2 (en) Photo silver complex salt diffusion transfer inversion method
EP0300258B1 (en) Photographic elements comprising light-sensitive silver bromo-iodide emulsions
US5213954A (en) White light handleable negative-acting silver halide photographic elements
EP0411819A2 (en) White light handleable negative-acting silver halide photographic elements
US5316901A (en) Negative-acting silver halide photographic elements having extended UV exposure latitude
JPH0675342A (en) Radiation detecting element
EP0398600B1 (en) Speed and contrast promoted silver halide doped emulsions
JP2892832B2 (en) Photographic recording material having an absorption layer for reducing photographic speed sensitivity
JPH03163440A (en) Heat developable photosensitive material
SU464135A3 (en) Photo emulsion
US5882846A (en) Infrared sensitive photographic elements
EP0587230A2 (en) Filter dyes for rapid processing applications
DE3406246A1 (en) PHOTOGRAPHIC, LIGHT-SENSITIVE SILVER HALOGENIDE MATERIAL
US6235457B1 (en) Arylidene compound, azomethine compound and silver halide photographic material
JP2794248B2 (en) Printable silver halide photographic material
CA2054716A1 (en) Direct positive films
EP0536647A1 (en) Direct positive silver halide photographic materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19910102

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19940908

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19970302