EP0411254B1 - Herstellung von trockenem Stickstoff von hoher Reinheit - Google Patents

Herstellung von trockenem Stickstoff von hoher Reinheit Download PDF

Info

Publication number
EP0411254B1
EP0411254B1 EP90108908A EP90108908A EP0411254B1 EP 0411254 B1 EP0411254 B1 EP 0411254B1 EP 90108908 A EP90108908 A EP 90108908A EP 90108908 A EP90108908 A EP 90108908A EP 0411254 B1 EP0411254 B1 EP 0411254B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
dryer
membrane
dry
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90108908A
Other languages
English (en)
French (fr)
Other versions
EP0411254A1 (de
Inventor
Oscar William Haas
Ravi Prasad
James Smolarek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Priority to AT90108908T priority Critical patent/ATE97107T1/de
Publication of EP0411254A1 publication Critical patent/EP0411254A1/de
Application granted granted Critical
Publication of EP0411254B1 publication Critical patent/EP0411254B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/0438Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0062Water

Definitions

  • the invention relates to the production of nitrogen from air. More particularly, it relates to the production of dry, high purity nitrogen.
  • PSA pressure swing adsorption
  • feed air is passed at a higher adsorption pressure to an adsorbed bed capable of selectively adsorbing either nitrogen or oxygen as the more readily adsorbable component of air.
  • the bed is thereafter depressurized to a lower desorption pressure for desorption of said more readily adsorbable component and its removal from the bed prior to the introduction of additional quantities of feed air to the bed as cyclic adsorption-desorption operations are continued in the bed.
  • the PSA process is commonly carried out in multi-bed systems, with each bed employing the desired processing sequence on a cyclic basis interrelated to the carrying out of said processing sequence in other beds in the system.
  • a rate selective carbon molecular sieve adsorbent is used in a fast processing cycle, based on the selective adsorption of oxygen as the more readily adsorbable component of air, to produce nitrogen, as the less readily adsorbable component withdrawn from the product and of the bed, at the adsorption pressure and with a relatively low dewpoint, such as -40°F (-40°C). It has been recognized, however, that the presence of moisture in the feed air to such a PSA system significantly reduces the separation efficiency of the adsorbent beds. For this reason, it is common practice to employ a separate PSA adsorbent dryer ahead of the air separation PSA system to remove moisture from the feed air before it passes to said air separation PSA system.
  • adsorbents capable of selectively adsorbing nitrogen from air on an equilibrium selective basis are employed.
  • air is passed to the adsorbent bed, typically at slightly above atmospheric, and vacuum pumps are used to draw off a nitrogen-rich wet nitrogen product stream from the bed.
  • Zeolitic molecular sieves are commonly employed in such operations.
  • the nitrogen product obtained is generally wet since, in addition to the moisture transferred from the inlet air to the product nitrogen, some additional moisture is commonly added thereto from the water seals of the vacuum pumps.
  • a membrane dryer system is employed in conjunction with a PSA-nitrogen system to provide a simple, low cost alternative to the use of an adsorptive dryer to produce high purity nitrogen in dry form.
  • the membrane dryer is desirably operated with a countercurrent flow pattern and is refluxed on the low pressure permeate side thereof with a relatively dry purge gas to reduce the area requirements of the membrane and to increase desired product recovery.
  • Such purge stream is desirably obtained from the oxygen waste from the PSA system or from the dry nitrogen product gas.
  • the objects of the invention are accomplished by the integration of a membrane system for nitrogen or feed air drying with a PSA system under conditions enabling desired moisture removal from the high purity nitrogen product, or from the feed air, to be accomplished without reduction in the overall product recovery of the process and system to unacceptable levels.
  • Such conditions advantageously relate to the integration of separate processing systems, the selectivity for moisture removal of the particular membrane composition employed, and membrane bundle design conditions under which countercurrent flow is preferably achieved in the dryer membrane system. This enables high purity nitrogen product to be recovered in dry form with minimum loss of said product during the drying operation.
  • waste gas or a portion of the dry nitrogen product gas from the PSA system is used to provide purge gas to the dryer membrane system so as to enable a dry, high purity nitrogen stream to be obtained with minimum loss of desired product because of the requirements of the drying operation.
  • the overall process and system of the invention can be illustrated with reference to the drawings. Details concerning the PSA systems suitable for use in the practice of the invention, and the membrane systems to be integrated therewith for achieving enhanced drying of nitrogen product are described below.
  • feed air is passed in line 1 to air separation PSA-nitrogen system 2, in which nitrogen is selectively adsorbed as the more readily adsorbable component of air, and oxygen, the less readily adsorbable component, is removed from the unit as a waste gas.
  • PSA-nitrogen system 2 nitrogen, as a wet, low pressure gas stream having a purity of about 99.5% by volume nitrogen, is passed in line 3 to product compressor 4 for compression, e.g. to about 80 psig (552 kPa), with the thus-compressed, wet nitrogen product stream passed in line 5 being subject to heat rejection and condensation, with water being removed therefrom in vessel 6, and discharged from the system through line 7.
  • the purified, partially dried nitrogen product is passed in line 8 to dryer membrane system 9.
  • Permeable gas which contains moisture that permeates through the membrane in said system 9, is withdrawn, together with purge gas, through line 10 for discharge to waste.
  • the desired high purity nitrogen product is recovered from dryer membrane system 9 through line 11 in dry form as non-permeate gas.
  • the oxygen gas discharged as waste gas from PSA-nitrogen system 2 is passed in line 12 at low pressure, e.g. about 3 psig (21 kPa), to dryer membrane system 9 for use as relatively dry purge gas, it being understood that the moisture content of the feed air tends to selectively adsorb, along with the nitrogen, upon the nitrogen selective adsorbent employed in said PSA system.
  • Such oxygen waste gas, passed from the membrane system through said line 10 carries the moisture which permeates said membrane 9 away from the surface thereof on said permeate side so that a high driving force is maintained across membrane 9 to system the desired moisture removal.
  • a portion of the dry product nitrogen stream is used as said dry purge gas, with the moisture-containing purge gas removed from the dryer membrane system being recycled for passage with the wet, high purity nitrogen product gas for further drying in the dryer membrane unit rather than being discharged to waste as in the Fig. 1 embodiment.
  • feed air in line 20 is passed to a PSA-nitrogen system 21 in which nitrogen is selectively adsorbed, and oxygen is passed through the system for discharge to waste through line 22.
  • high purity, e.g. 99.5% nitrogen is passed from PSA-nitrogen system 21 in line 23, as wet low pressure nitrogen.
  • the nitrogen stream is compressed, as to about 80 psig (552 kPa)., in product compressor 24.
  • product compressor 24 Upon passage therefrom in line 25 for heat removal and condensation, water is removed from the nitrogen stream in vessel 26 and is discharged through line 27.
  • the purified, partially dried nitrogen product is passed in line 28 to dryer membrane system 29.
  • Permeate gas which comprises moisture that permeates through the membrane in system 29 is withdrawn, together with purge gas, through line 30 for recycle to line 23 for compression and repassage to dryer membrane system 29 along with additional quantities of wet, high purity nitrogen from PSA-nitrogen system 21.
  • a side stream of the dry, high purity nitrogen product recovered in line 31 is recycled through line 32 to dryer membrane system 29 for use as relatively dry purge gas, which carries the moisture away from the permeate side of the membrane so that a high driving force is maintained across membrane 29 to sustain the desired moisture removal.
  • FIG. 3 adapted particularly for use in PSA systems in which oxygen is the more readily adsorbable component, employs a dryer membrane system as a pre-dryer in contrast to the Figs. 1 and 2 embodiments in which the dryer membrane system was employed as a post-dryer following treatment of the feed air in a PSA system.
  • feed air is passed in line 40 to feed compressor 41 from which compressed air, e.g. at about 90 psig (620 kPa), is passed in line 42 for heat removal and condensation, with water being removed from the feed air stream in vessel 43 and is discharged through line 44.
  • compressed, partially dry feed air is passed in line 45 to dryer membrane system 46.
  • Permeate gas which comprises moisture that permeates through the membrane in system 46 is withdrawn, together with purge gas, through line 47 for discharge to waste.
  • Dry feed air is recovered from said membrane system 46 through line 48 and is passed to PSA-nitrogen system 49.
  • oxygen selective adsorbent in said PSA system dry, high purity nitrogen product passes through said PSA system and is recovered as the less readily adsorbable component of air in product line 50.
  • the more readily adsorbable component of the feed air namely dry oxygen
  • the dry oxygen purge gas carries the moisture that has permeated to the permeate side of the membrane away from said permeate side of the membrane so that a high driving force is maintained across membrane 46 to sustain the desired moisture removal.
  • dryer membrane systems can be effectively integrated with PSA-nitrogen systems so as to conveniently dry the high purity nitrogen product from a PSA-nitrogen system in the feed air stream to said system.
  • the dryer membrane system operation is enhanced by the use of purge gas on the permeate side thereof, with dry waste gas from the PSA-nitrogen system or a portion of the dry, high purity nitrogen stream from said PSA-nitrogen system being used as the purge gas for the dryer membrane system.
  • PSA system 49 would preferably be a system adapted for the selective adsorption of nitrogen as the more readily adsorbable component of feed air, with oxygen being recovered as the less readily adsorbable component thereof.
  • dry nitrogen would be removed from PSA-oxygen system 49 through line 51 for use as dry purge gas in dryer membrane system 46.
  • PSA-oxygen systems typically multi-bed systems
  • PSA-nitrogen systems utilize, as in PSA-nitrogen systems, cyclic operation of particular processing sequences for the adsorption of the more readily adsorbable component at upper adsorption pressure, depressurization, desorption of the more readily adsorbable component, typically followed by purge, and repressurization to said upper adsorption pressure.
  • the Hiscock, et al. patent, U.S. 4,589,888 describes various PSA-oxygen systems and processing sequences in which oxygen product is recovered as the less readily adsorbable component of feed air.
  • rate-selective adsorbents such as carbon adsorbent materials
  • the equilibrium selective adsorbents such as zeolitic molecular sieves
  • the dryer membrane system is desirably operated in a countercurrent manner, with dry reflux purge gas being passed on the permeate side of the membrane to facilitate the carrying away of moisture from said permeate side and the maintaining of a high driving force across the membrane for moisture removal.
  • This processing feature serves to minimize the membrane area required and the product permeation loss necessary to achieve a given product dewpoint, i.e. level of drying. It is desirable in preferred embodiments of the invention, to maintain nitrogen product/feed air loss due to co-permeation of said nitrogen or feed air to less than 1%, preferably less than 0.5%, of the total product flow.
  • the membrane composition used in the dryer membrane system should be one having a high selectivity for water over nitrogen. That is, moisture must be selectively permeated much more rapidly than nitrogen.
  • the water/nitrogen separation factor should be at least 50, preferably greater than 1,000, for advantageous moisture removal from product nitrogen gas or feed air.
  • the membrane composition should have a relatively low permeability rate for both nitrogen and oxygen.
  • Cellulose acetate is an example of a preferred membrane separation material satisfying such criteria. It will be appreciated that a variety of other materials can also be employed, such as ethyl cellulose, silicone rubber, polyurethane, polyamide, polystyrene and the like.
  • the dryer membrane system having a membrane material of desirable membrane composition which is integrated with a pressure swing adsorption system as disclosed and claimed herein, is preferably operated in a countercurrent manner as indicated above.
  • bundle designs providing for flow patterns of the cross-flow type have been commonly employed in commercial practice.
  • cross-flow operation the flow direction of permeate gas on the permeate side of the membrane is at right angles to the flow of feed gas on the feed side of the membrane.
  • the flow direction of permeate in the bores of the fibers is generally at right angles to the flow of feed over the external surface of the hollow fibers.
  • the permeate gas generally passes from the surface of the hollow fibers in a direction generally at right angles to the direction of the flow of feed within the bores of the hollow fibers and then, within the outer shell, in the direction of the outlet means for the permeate gas.
  • countercurrent flow patterns can be created by the encasing of the hollow fiber bundle within an impervious barrier over the entirety of its longitudinal outer surface except for a non-encased circumferential region near one end of said bundle.
  • This enables the feed gas or permeate gas, depending on the desired manner of operation, i.e. inside-out or outside-in, to pass in countercurrent flow outside the hollow fibers parallel to the flow direction of permeate gas or feed gas in the bores of the hollow fibers.
  • the feed gas on the outside of the hollow fiber bundle for example, is caused to flow parallel to, rather than at right angle to, the central axis of the fiber bundle.
  • the membrane fibers may be organized either in straight assemblies parallel to the central axis of the bundle, or alternatively, can be wound in helical fashion around the central axis, as in cross-flow operations.
  • the impermeable barrier material may be a wrap of impervious film, e.g., polyvinylidene or the like.
  • the impermeable barrier may be an impervious coating material, e.g. polysiloxane, applied from an innocuous solvent, or a shrink sleeve installed over the membrane bundle and shrunk onto said bundle.
  • the impermeable barrier thus encases the hollow fiber or other membrane bundle and, as disclosed in said publication, has an opening therein permitting the flow of gas into or from the bundle so that the fluid flows in a direction substantially parallel to the axis of the fiber bundle.
  • the flow pattern should be one of countercurrent flow of the wet, high purity nitrogen or feed air stream and the permeate gas comprising purge gas supplied as indicated above together with moisture and oxygen/nitrogen that permeate through the membrane material in the nitrogen product dryer or the feed air dryer membrane.
  • membrane drying operations are commonly carried out in the art using a dense fiber membrane.
  • the membrane thickness for a dense fiber is also the wall thickness, and is very large in comparison to the skin portion of an asymmetric membrane or to the separation layer of a composite membrane.
  • dense fibers have a very low permeability rate and require the use of a very large surface area for adequate drying of the nitrogen product.
  • asymmetric or composite membranes preferred over dense membranes for purposes of the invention, have very thin membrane separation layers, with the relatively more porous substrate portion of said membranes providing mechanical strength and support for the very thin portion that determines the separation characteristics of the membrane.
  • the PSA-nitrogen system employed for purposes of the invention can be a system of any desired number of adsorbent beds that utilizes an adsorbent that is selective either for nitrogen or for oxygen.
  • Adsorbents selective for nitrogen are typically equilibrium selective whereby an equilibrium front of the more readily adsorbable component, i.e. nitrogen, is formed and moves through the adsorbent bed from the feed to the product end thereof.
  • Zeolitic molecular sieve materials such as 13X and 5A material, are examples of commercially available adsorbent materials of the equilibrium type that are suitable for use in the practice of the invention.
  • carbon molecular sieves are materials of a rate or kinetic separation nature, with such materials being selective for oxygen rather than nitrogen.
  • a purge ratio i.e. reflux purge gas/product gas flow on the non-permeable side, of at least about 10%, but preferably about 20% or above, is desired to keep area requirements, product loss and back diffusion of residual oxygen to a minimum.
  • the purge ratio requirements also tend to be greater at relatively lower product gas pressures than at higher pressures.
  • the amount of any such oxygen back diffusion that can be tolerated will be understood to be dependent on the overall requirements of a particular application. In many instances, it is desirable to limit back diffusion of oxygen to a maximum of 500 ppmv, with such oxygen back diffusion being preferably less that 100 ppmv in the nitrogen product.
  • the amount of reflux purge gas available will, of course, depend on its source and value.
  • a nitrogen selective PSA-nitrogen product system can be used to produce 20,000 ncfh (567 m3/h) of 99.5% nitrogen.
  • Typical air recovery for such a plant would be on the order of 60%, that is, 40% of the feed air flow is available as low pressure waste.
  • the air feed pressure is 8 psig (55 kPa)
  • the waste pressure is 5 psig (34,5 kPa)
  • the pressure of the wet nitrogen product to the dryer membrane system is 80 psig (552 kPa), at 90°F (32°C).
  • a thermal swing adsorption post-dryer system would consume approximately 6 KW of electrical power and require a regeneration purge of about 2%.
  • This conventional system can be advantageously replaced by a simpler, less costly dryer membrane system comprising hollow fibers in a helical configuration and having a water/nitrogen separation factor, i.e. permeability of water/permeability of product nitrogen, of 6,000, and a water/oxygen separation factor of 1,000.
  • the dryer membrane system is operated using an impervious barrier of polyvinylidene to encase the membrane and create a countercurrent flow pattern in the membrane module.
  • the high purity nitrogen product can be effectively dried in said membrane system with a very low dry product loss of less than 0.5% nitrogen. In less preferred, completely cross-flow embodiments, more than 30% of the dry product nitrogen would have to be used to achieve the same level of drying, i.e. the same dewpoint.
  • the permeable membranes employed in the practice of the invention will commonly be employed in assemblies of membrane bundles, typically positioned within enclosures to form membrane modules that comprise the principal element of a membrane system.
  • a membrane system may comprise a single module or a number of such modules, arranged for either parallel or series operation.
  • the membrane modules can be constructed using bundles of membranes in convenient hollow fiber form, or in spiral wound, pleated flat sheet, or other desired membrane configurations.
  • Membrane modules are constructed to have a feed gas (air) side, and an opposite, permeate gas exit side.
  • the feed side can be either the bore side for inside-out operation, or the outside of the hollow fibers for outside-in operation.
  • Means are provided for introducing feed gas to the system and for withdrawing both permeate and non-permeate streams.
  • PSA adsorbents tend to be degraded by contamination with oily vapors and hydrogen sulfide
  • an additional adsorbent unit or trap of a suitable material such as alumina or molecular sieve, to remove such contaminants prior to passage of the feed air to the PSA system.
  • the purge gas employed in the invention should be a dry or a relatively dry purge gas, as from the sources referred to herein.
  • a relatively dry purge gas is one having a moisture partial pressure not exceeding the partial pressure of moisture in the dried nitrogen product gas or dried feed air.
  • said purge gas moisture partial pressure will be less than half the moisture partial pressure in the dried gas stream, as will be the case with respect to the sources of purge gas disclosed above.
  • Membranes will be seen to enable highly desirable systems and processes to be used for drying high purity nitrogen produced in a PSA-nitrogen system or the feed air to said PSA-nitrogen system.
  • By carrying out the drying in convenient membrane dryer systems the more costly and complicated adsorptive or refrigerative techniques and systems of the art for moisture removal can be avoided.
  • By utilizing the integration of processing streams of the dryer membrane system with the air separation PSA-nitrogen system a purge of the low pressure, permeate side of the membrane dryer system with relatively dry purge gas is conveniently accomplished.
  • preferred embodiments of the drying operation can be carried out with an enhanced recovery of dry, high purity nitrogen, avoiding the co-permeation of significant amounts of valuable nitrogen product gas or feed air occurs in cross-flow permeation operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Saccharide Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Treating Waste Gases (AREA)

Claims (21)

  1. Anordnung zum Herstellen von trockenem Stickstoff hoher Reinheit aus Luft, mit:
    (a) einer Druckwechseladsorptionsanordnung, die Adsorptionsmittel enthält, das in der Lage ist, eine leichter adsorbierbare Komponente aus feuchter Einsatzluft selektiv zu adsorbieren, um feuchten Stickstoff hoher Reinheit von Sauerstoff abtrennen zu können;
    (b) einer Trocknermembrananordnung, die in der Lage ist, Wasser selektiv durchzulassen, das in Strömen von feuchtem Stickstoff hoher Reinheit oder feuchter Einsatzluft vorhanden ist;
    (c) einer Leitungsanordnung zum Zuleiten von relativ trockenem Spülgas zu der Niederdruck-Permeatseite der Trocknermembrananordnung, um das Wegtransportieren von Wasserdampf von der Oberfläche der Membran zu ermöglichen und die Antriebskraft für die Beseitigung von Wasserdampf durch die Membran von dem Stickstoffstrom hoher Reinheit oder dem Einsatzluftstrom für verbesserte Feuchtigkeitsbeseitigung aus diesen Strömen aufrechtzuerhalten, wobei das relativ trockene Spülgas Abgas von der Druckwechseladsorptionsanordnung oder Stickstoffproduktgas aufweist,
    wobei die Bereitstellung des Spülgases auf der Permeatseite der Trocknermembrananordnung die gewünschte Feuchtigkeitsbeseitigung mit einem minimalen Verlust an Stickstoffproduktgas ermöglicht.
  2. Anordnung nach Anspruch 1, bei welcher die Druckwechseladsorptionsanordnung für Stickstoff selektives Adsorptionsmittel enthält, feuchter Stickstoff die leichter adsorbierbare Komponente von Luft ist und Sauerstoff die weniger leicht adsorbierbare Komponente von Luft ist.
  3. Anordnung nach Anspruch 2, bei welcher die Trocknermembrananordnung eine Nachtrockneranordnung ist, die für das Trocknen von feuchtem Stickstoff hoher Reinheit aus der Druckwechseladsorptionsanlage geeignet ist, um ein trockenes Stickstoffproduktgas hoher Reinheit zu bilden.
  4. Anordnung nach Anspruch 3, bei welcher der in der Druckwechseladsorptionsanordnung abgetrennte, weniger leicht adsorbierbare Sauerstoff das trockene Spülgas bildet.
  5. Anordnung nach Anspruch 3, bei welcher das trockene Spülgas einen Teil des in der Trocknermembrananordnung gebildeten trockenen Stickstoffproduktgases hoher Reinheit aufweist.
  6. Anordnung nach Anspruch 1, bei welcher die Membrantrockneranordnung Membranbündel enthält, die sich für eine Gegenstrom-Flußverteilung eignen, bei welcher das Permeatgas im wesentlichen parallel zu dem der Anordnung zugehenden Einsatzgasstrom strömt.
  7. Anordnung nach Anspruch 6, bei welcher die Trockpermembrananordnung eine Nachtrockneranordnung ist, die für das Trocknen von feuchtem Stickstoff hoher Reinheit aus der Druckwechseladsorptionsanordnung geeignet ist, die für Stickstoff selektives Adsorptionsmittel enthält, wobei weniger leicht adsobierbarer Sauerstoff das trockene Spülgas bildet.
  8. Anordnung nach Anspruch 6, bei welcher die Druckwechseladsorptionsanordnung sauerstoffselektives Adsorptionsmittel enthält, Stickstoff die weniger leicht adsorbierbare Komponente von Luft ist und Sauerstoff die leichter adsorbierbare Komponente von Luft ist.
  9. Anordnung nach Anspruch 8, bei welcher die Trocknermembrananordnung eine Vortrockneranordnung ist, die für das Trocknen von Einsatzluft geeignet ist, um der Druckwechseladsorptionsanordnung zuzuleitende trockene Einsatzluft zu bilden.
  10. Anordnung nach Anspruch 9, bei welcher der in der Druckwechseladsorptionsanordnung abgetrennte leichter adsorbierbare Sauerstoff das trockene Spülgas bildet.
  11. Anordnung nach Anspruch 6, bei welcher die Druckwechseladsorptionsanordnung für Stickstoff selektives Adsorptionsmittel enthält, die Trocknermembrananordnung eine Nachtrockneranordnung ist, die für das Trocknen von feuchtem Stickstoff hoher Reinheit geeignet ist, und ein Teil des trockenen Stickstoffproduktgases hoher Reinheit das trockene Spülgas bildet.
  12. Verfahren zum Herstellen von trockenem Stickstoff hoher Reinheit aus Luft, bei dem:
    (a) ein feuchter Stickstoffstrom hoher Reinheit oder ein feuchter Einsatzluftstrom einer Trocknermembrananordnung zugeleitet wird, die in der Lage ist, Wasser aus dem feuchten Strom selektiv durchzulassen;
    (b) relativ trockenes Spülgas der Niederdruck-Permeatseite der Trocknermembrananordnung zugeleitet wird, um das Wegtransportieren von Wasserdampf von der Oberfläche der Membran zu ermöglichen und die Antriebskraft für die Beseitigung von Wasserdampf durch die Membran von dem Stickstoffstrom hoher Reinheit oder dem Einsatzluftstrom für verbesserte Feuchtigkeitsbeseitigung aus diesen Strömen aufrechtzuerhalten, wobei das relativ trockene Spülgas Abgas von einer Druckwechseladsorptionsanordnung oder Stickstoffproduktgas aufweist,
    wobei die Bereitstellung des Spülgases auf der Permeatseite der Trocknermembrananordnung die gewünschte Feuchtigkeitsbeseitigung mit einem minimalen Verlust an Produktgas ermöglicht.
  13. Verfahren nach Anspruch 12, bei dem die Druckwechseladsorptionsanlage für Stickstoff selektives Adsorptionsmittel enthält, feuchter Stickstoff die leichter adsorbierbare Komponente von Luft ist und Sauerstoff die weniger leicht adsorbierbare Komponente von Luft ist.
  14. Verfahren nach Anspruch 13, bei dem die Trocknermembrananordnung eine Nachtrockneranordnung ist und feuchter Stickstoff hoher Reinheit aus der Druckwechseladsorptionsanordnung der Trocknermembrananordnung zugeleitet wird, um ein trockenes Stickstoffproduktgas hoher Reinheit zu bilden.
  15. Verfahren nach Anspruch 14, bei dem das trockene Spülgas den weniger leicht adsorbierbaren Sauerstoff aufweist, der in der Druckwechseladsorptionsanordnung abgetrennt wird.
  16. Verfahren nach Anspruch 14, bei dem das trockene Spülgas einen Teil des trockenen Stickstoffproduktgases hoher Reinheit aufweist, das in der Trocknermembrananordnung gebildet wird.
  17. Verfahren nach Anspruch 12, bei dem die Membrantrockneranordnung Membranbündel enthält, die für eine Gegenstrom-Flußverteilung geeignet sind, wobei das Permeatgas im wesentlichen parallel zu dem der Anordnung zugehenden Einsatzgasstrom strömt.
  18. Verfahren nach Anspruch 17, bei dem die Trocknermembrananordnung eine Nachtrockner-Membrananordnung für das Trocknen von feuchtem Stickstoff hoher Reinheit aus der Druckwechseladsorptionsanordnung ist, die für Stickstoff selektives Adsorptionsmittel enthält, wobei weniger leicht adsorbierbarer Sauerstoff das trockene Spülgas bildet.
  19. Anordnung nach Anspruch 17, bei der die Druckwechseladsorptionsanordnung für Sauerstoff selektives Adsorptionsmittel enthält, feuchter Stickstoff die weniger leicht adsorbierbare Komponente von Luft ist und Sauerstoff die leichter adsorbierbare Luftkomponente darstellt.
  20. Verfahren nach Anspruch 17, bei dem die Trocknermembrananordnung eine Vortrockneranordnung ist, die sich für das Trocknen von Einsatzluft zum Bilden einer trockenen Einsatzluft eignet, die der Druckwechseladsorptionsanordnung zugeht, wobei der in der Druckwechseladsorptionsanordnung abgetrennte, leichter adsorbierbare Sauerstoff das trockene Spülgas bildet.
  21. Verfahren nach Anspruch 17, bei dem die Trocknermembrananordnung eine Nachtrockner-Membrananordnung zum Trocknen von feuchtem Stickstoff hoher Reinheit aus der Druckwechseladsorptionsanordnung ist, die für Stickstoff selektives Adsorptionsmittel enthält, wobei ein Teil des trockenen Stickstoffproduktgases hoher Reinheit das trockene Spülgas bildet.
EP90108908A 1989-05-12 1990-05-11 Herstellung von trockenem Stickstoff von hoher Reinheit Expired - Lifetime EP0411254B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90108908T ATE97107T1 (de) 1989-05-12 1990-05-11 Herstellung von trockenem stickstoff von hoher reinheit.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/350,772 US5004482A (en) 1989-05-12 1989-05-12 Production of dry, high purity nitrogen
US350772 1994-12-07

Publications (2)

Publication Number Publication Date
EP0411254A1 EP0411254A1 (de) 1991-02-06
EP0411254B1 true EP0411254B1 (de) 1993-11-10

Family

ID=23378118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90108908A Expired - Lifetime EP0411254B1 (de) 1989-05-12 1990-05-11 Herstellung von trockenem Stickstoff von hoher Reinheit

Country Status (11)

Country Link
US (1) US5004482A (de)
EP (1) EP0411254B1 (de)
JP (1) JPH0641366B2 (de)
KR (1) KR950006632B1 (de)
CN (1) CN1023104C (de)
AT (1) ATE97107T1 (de)
BR (1) BR9002218A (de)
CA (1) CA2016565A1 (de)
DE (1) DE69004515T2 (de)
ES (1) ES2046581T3 (de)
MX (1) MX166428B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027546A (en) * 1997-02-21 2000-02-22 Aquilo Gas Separation B.V. Process for drying compressed air
EP3442692A4 (de) * 2016-04-15 2019-12-11 Automatic Bar Controls, Inc. Stickstoffgenerator und verwendungen davon

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4004532C2 (de) * 1990-02-14 1996-05-09 Fraunhofer Ges Forschung Verfahren zur Regenerierung von Adsorbern
JP2907974B2 (ja) * 1990-08-28 1999-06-21 株式会社ニデック 眼鏡フレームトレース装置
US5102432A (en) * 1990-12-10 1992-04-07 Union Carbide Industrial Gases Technology Corporation Three-stage membrane gas separation process and system
US5226932A (en) * 1991-10-07 1993-07-13 Praxair Technology, Inc. Enhanced meambrane gas separations
US5207806A (en) * 1991-10-08 1993-05-04 Praxair Technology, Inc. Dual product pressure swing adsorption and membrane operations
US5169412A (en) * 1991-11-20 1992-12-08 Praxair Technology Inc. Membrane air drying and separation operations
US5205842A (en) * 1992-02-13 1993-04-27 Praxair Technology, Inc. Two stage membrane dryer
US5344480A (en) * 1992-05-05 1994-09-06 Praxair Technology, Inc. Pressurizing with and recovering helium
US5320818A (en) * 1992-12-22 1994-06-14 Air Products And Chemicals, Inc. Deoxygenation of non-cryogenically produced nitrogen with a hydrocarbon
GB2274253B (en) * 1993-01-14 1997-04-16 Boc Group Plc Gas separation apparatus
US5348592A (en) * 1993-02-01 1994-09-20 Air Products And Chemicals, Inc. Method of producing nitrogen-hydrogen atmospheres for metals processing
US6068683A (en) * 1993-05-20 2000-05-30 The Regents Of The University Of California Apparatus for separating and collecting hydrogen gas
US5480682A (en) * 1993-05-21 1996-01-02 Air Products And Chemicals, Inc. Non-cryogenically generated nitrogen atmosphere for radiation curing
CN1035428C (zh) * 1994-06-08 1997-07-16 中国科学院山西煤碳化学研究所 一种氮气脱氧净化方法
FR2722114B1 (fr) * 1994-07-08 1996-08-23 Air Liquide Procede et installation de production d'azote par permeation gazeuse et adsorption combinees
DE4435702C2 (de) * 1994-10-06 1998-11-26 Druckluft Dannoehl Gmbh Verfahren und Vorrichtung zum Erzeugen von Stickstoff
US5792239A (en) * 1994-10-21 1998-08-11 Nitrotec Corporation Separation of gases by pressure swing adsorption
US5632803A (en) * 1994-10-21 1997-05-27 Nitrotec Corporation Enhanced helium recovery
US5707425A (en) * 1994-10-21 1998-01-13 Nitrotec Corporation Helium recovery from higher helium content streams
US5688306A (en) * 1995-07-18 1997-11-18 Verini; Nicholas A. Apparatus and method to intermittently manufacture and dispense nitrogen gas
US5588984A (en) * 1995-07-18 1996-12-31 Verini; Nicholas A. Apparatus and method to intermittently manufacture and dispense nitrogen
US5641337A (en) * 1995-12-08 1997-06-24 Permea, Inc. Process for the dehydration of a gas
US5700310A (en) 1995-12-29 1997-12-23 Mg Generon, Inc. Removal of oil from compressed gas with macroporous polymeric adsorbent
US5669959A (en) * 1996-05-16 1997-09-23 Uop Process for safe membrane operation
ZA977245B (en) * 1996-08-14 1998-02-16 Bend Res Inc Vapor permeation system.
US6059857A (en) * 1996-08-14 2000-05-09 Bend Research, Inc. Ultrapurification of organic solvents
US5753010A (en) * 1996-10-28 1998-05-19 Air Products And Chemicals, Inc. Hydrogen recovery by pressure swing adsorption integrated with adsorbent membranes
US5906673A (en) * 1997-05-15 1999-05-25 Nitrotec Corporation Pressure swing system with auxiliary adsorbent bed
US5944874A (en) * 1997-06-23 1999-08-31 Praxair Technology, Inc. Solid electrolyte ionic conductor systems for the production of high purity nitrogen
US5851266A (en) * 1997-06-23 1998-12-22 Praxair Technology,Inc. Hybrid solid electrolyte ionic conductor systems for purifying inert gases
US6168774B1 (en) 1997-08-07 2001-01-02 Praxair Technology, Inc. Compact deoxo system
FR2778581B1 (fr) * 1998-05-12 2000-06-09 Commissariat Energie Atomique Procede de purification, et de concentration en un constituant minoritaire, d'un melange gazeux, procede de detection de ce constituant, et installation
EP1412057B1 (de) * 2001-07-31 2008-12-03 Praxair Technology, Inc. Steuersystem zur rückgewinnung von helium
US6607100B2 (en) * 2001-11-26 2003-08-19 Vin Valet, Inc. Wine or champagne preservation and dispensing apparatus
US7022283B2 (en) * 2001-11-26 2006-04-04 Vin Valet, Inc. Apparatus and method for preserving collectible items
DE10226485A1 (de) * 2002-06-14 2005-06-23 Infineon Technologies Ag Halbleiterspeicher mit Adressdecodiereinheit
KR100550408B1 (ko) * 2002-11-04 2006-02-08 주식회사 케이피씨 공기 중의 산소와 질소 분리 공급 장치
US7025803B2 (en) * 2002-12-02 2006-04-11 L'Air Liquide Societe Anonyme A Directoire et Counsel de Surveillance Pour L'Etude et L'Exploration des Procedes Georges Claude Methane recovery process
GB2399775B (en) * 2003-03-28 2005-07-27 Council Scient Ind Res Process for the preparation of a molecular sieve adsorbent for the size/shape selective separation of air
US7319082B2 (en) * 2003-10-27 2008-01-15 Council Of Scientific And Industrial Research Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
US7081153B2 (en) * 2003-12-02 2006-07-25 Honeywell International Inc. Gas generating system and method for inerting aircraft fuel tanks
US20060230935A1 (en) * 2004-03-23 2006-10-19 Keith Michael Method and system for producing inert gas from combustion by-products
FR2873594B1 (fr) * 2004-07-28 2006-09-29 Air Liquide Installation de production d'oxygene de haute purete
EP1855785A2 (de) * 2005-03-11 2007-11-21 Uop Llc Membrantrennungsverfahren und systeme zur verbesserten durchdringungs-wiederherstellung
US20070151447A1 (en) * 2005-12-30 2007-07-05 Membrane Technology And Research, Inc. Gas separation membranes and processes for controlled environmental management
JP4521373B2 (ja) * 2006-04-04 2010-08-11 エア・ウォーター株式会社 高純度窒素ガスの製造方法
US7384297B2 (en) * 2006-11-07 2008-06-10 King Jr Lloyd Herbert Wire connector
US7780768B2 (en) * 2006-11-28 2010-08-24 Inogen, Inc. Gas concentrator with improved water rejection capability
DE102009058054B4 (de) * 2009-12-14 2011-12-08 Airco Systemdruckluft Gmbh Stickstoff-Generator, dessen Verwendung sowie Verfahren zur vor Ort Herstellung von Stickstoff
JP6500499B2 (ja) * 2015-02-27 2019-04-17 三菱ケミカル株式会社 分離膜モジュール及びその運転方法
DE102017205598A1 (de) * 2017-04-03 2018-10-04 Inficon Gmbh Verfahren zur Gewinnung von Helium aus einem Helium und Sauerstoff enthaltenden Gasgemisch
AU2018269511A1 (en) 2017-05-16 2019-11-28 Terrence J. Ebert Apparatus and process for liquefying gases
CN108918789A (zh) * 2018-09-08 2018-11-30 深圳市能源环保有限公司 一种电厂烟气连续在线监测系统的吹扫气供气系统
CN113154796B (zh) * 2021-03-23 2022-12-09 金川集团股份有限公司 一种回收氧氮资源的可变多循环氧氮冷能利用装置及方法
IT202200027105A1 (it) * 2022-12-29 2024-06-29 Priver Ind Srl Sistema e metodo per la produzione di azoto gassoso

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940071B1 (de) * 1970-01-09 1974-10-30
US3735558A (en) * 1971-06-29 1973-05-29 Perma Pure Process Inc Process for separating fluids and apparatus
US3967464A (en) * 1974-07-22 1976-07-06 Air Products And Chemicals, Inc. Air separation process and system utilizing pressure-swing driers
JPS5263178A (en) * 1975-11-17 1977-05-25 Toshiba Corp Gas separation unit
US4264340A (en) * 1979-02-28 1981-04-28 Air Products And Chemicals, Inc. Vacuum swing adsorption for air fractionation
US4439213A (en) * 1981-12-30 1984-03-27 The C. M. Kemp Manufacturing Co. Nitrogen generation system
US4398926A (en) * 1982-04-23 1983-08-16 Union Carbide Corporation Enhanced hydrogen recovery from low purity gas streams
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
US4448595A (en) * 1982-12-02 1984-05-15 Union Carbide Corporation Split column multiple condenser-reboiler air separation process
FR2540396B1 (fr) * 1983-02-04 1988-09-23 Petroles Cie Francaise Procede de deshydratation de gaz
US4639257A (en) * 1983-12-16 1987-01-27 Costain Petrocarbon Limited Recovery of carbon dioxide from gas mixture
GB8412932D0 (en) * 1984-05-21 1984-06-27 Boc Group Plc Purification of gases
US4589888A (en) * 1984-10-05 1986-05-20 Union Carbide Corporation Pressure swing adsorption process
US4594085A (en) * 1984-11-15 1986-06-10 Union Carbide Corporation Hybrid nitrogen generator with auxiliary reboiler drive
DE3650465T2 (de) * 1985-02-09 1996-09-12 Asahi Chemical Ind Durchlässige Polymer-Membran für die Gastrocknung
US4599094A (en) * 1985-03-07 1986-07-08 Union Carbide Corporation Enhanced pressure swing adsorption processing
US4734106A (en) * 1985-05-08 1988-03-29 A/G Technology Corporation Gas separating
US4645516A (en) * 1985-05-24 1987-02-24 Union Carbide Corporation Enhanced gas separation process
US4781907A (en) * 1985-12-04 1988-11-01 Mcneill John M Production of membrane-derived nitrogen from combustion gases
EG18145A (en) * 1985-12-10 1992-08-30 Albany Int Corp Hollow fiber separatory modul with encased fiber bundle
US4687498A (en) * 1986-02-24 1987-08-18 The Boc Group, Inc. Argon recovery from hydrogen depleted ammonia plant purge gas utilizing a combination of cryogenic and non-cryogenic separating means
US4690695A (en) * 1986-04-10 1987-09-01 Union Carbide Corporation Enhanced gas separation process
US4765804A (en) * 1986-10-01 1988-08-23 The Boc Group, Inc. PSA process and apparatus employing gaseous diffusion barriers
ZA876419B (en) * 1986-10-01 1988-06-29 Boc Group Inc Psa process and apparatus employing gaseous diffusion barriers
EP0263212B1 (de) * 1986-10-08 1990-12-27 Ube Industries, Ltd. Verfahren zur Entfernung von Wasserdampf aus einem wasserdampfhaltigen Gas
US4701187A (en) * 1986-11-03 1987-10-20 Air Products And Chemicals, Inc. Process for separating components of a gas stream
US4857081A (en) * 1987-10-15 1989-08-15 Separation Dynamics, Inc. Separation of water from hydrocarbons and halogenated hydrocarbons
US4783203A (en) * 1987-10-22 1988-11-08 Union Carbide Corporation Integrated pressure swing adsorption/membrane separation process
US4783201A (en) * 1987-12-28 1988-11-08 Rice Arthur W Gas dehydration membrane apparatus
US4881953A (en) * 1988-09-15 1989-11-21 Union Carbide Corporation Prevention of membrane degradation
US4863492A (en) * 1988-11-28 1989-09-05 Uop Integrated membrane/PSA process and system
US4894068A (en) * 1988-12-27 1990-01-16 Permea, Inc. Process for capturing nitrogen from air using gas separation membranes
US4931070A (en) * 1989-05-12 1990-06-05 Union Carbide Corporation Process and system for the production of dry, high purity nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027546A (en) * 1997-02-21 2000-02-22 Aquilo Gas Separation B.V. Process for drying compressed air
EP3442692A4 (de) * 2016-04-15 2019-12-11 Automatic Bar Controls, Inc. Stickstoffgenerator und verwendungen davon

Also Published As

Publication number Publication date
ES2046581T3 (es) 1994-02-01
US5004482A (en) 1991-04-02
JPH035308A (ja) 1991-01-11
EP0411254A1 (de) 1991-02-06
KR950006632B1 (ko) 1995-06-21
DE69004515T2 (de) 1994-03-03
CA2016565A1 (en) 1990-11-12
JPH0641366B2 (ja) 1994-06-01
CN1047266A (zh) 1990-11-28
DE69004515D1 (de) 1993-12-16
ATE97107T1 (de) 1993-11-15
CN1023104C (zh) 1993-12-15
BR9002218A (pt) 1991-08-13
KR900017902A (ko) 1990-12-20
MX166428B (es) 1993-01-07

Similar Documents

Publication Publication Date Title
EP0411254B1 (de) Herstellung von trockenem Stickstoff von hoher Reinheit
EP0397192B1 (de) Verfahren und Vorrichtung zur Herstellung von trockenem und hochreinem Stickstoff
EP0463535B1 (de) Hybrider Vorreiniger für kryogene Lufttrennungseinrichtung
EP0397204B1 (de) Verfahren und System zur Herstellung von trockenem, sehr reinem Stickstoff
EP0702995B1 (de) Gastrennung mittels Membranen
EP0547387B1 (de) Membran Lufttrocknungs- und Trennungsverfahren
US5205842A (en) Two stage membrane dryer
KR910003113B1 (ko) 가스 분리공정
US5122355A (en) Membrane nitrogen process and system
JPH04298216A (ja) 水蒸気含有供給ガスから油蒸気を除去するための吸着方法
EP0390392A2 (de) Trennung von Gasmischungen
EP0692297A2 (de) Gasvorreinigung
EP0613857A1 (de) Reinigung von Rohargon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901231

17Q First examination report despatched

Effective date: 19920526

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PRAXAIR TECHNOLOGY, INC.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931110

Ref country code: AT

Effective date: 19931110

REF Corresponds to:

Ref document number: 97107

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69004515

Country of ref document: DE

Date of ref document: 19931216

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046581

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90108908.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950412

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950420

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950425

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950428

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950508

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960415

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960423

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

Ref country code: BE

Effective date: 19960531

BERE Be: lapsed

Owner name: PRAXAIR TECHNOLOGY INC.

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 90108908.6

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050511