EP0408667B1 - Transmission de donnees acoustiques au travers d'un cordon de tube de forage - Google Patents
Transmission de donnees acoustiques au travers d'un cordon de tube de forage Download PDFInfo
- Publication number
- EP0408667B1 EP0408667B1 EP19890905949 EP89905949A EP0408667B1 EP 0408667 B1 EP0408667 B1 EP 0408667B1 EP 19890905949 EP19890905949 EP 19890905949 EP 89905949 A EP89905949 A EP 89905949A EP 0408667 B1 EP0408667 B1 EP 0408667B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drill string
- signal
- acoustical
- receiver
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 title claims description 41
- 230000003111 delayed effect Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 31
- 238000002592 echocardiography Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 7
- 230000003044 adaptive effect Effects 0.000 claims description 5
- 238000005553 drilling Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 7
- 210000002683 foot Anatomy 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000005534 acoustic noise Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/16—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the drill string or casing, e.g. by torsional acoustic waves
Definitions
- This invention relates generally to a system for transmitting data along a drill string, and more particularly to a system for transmitting data through a drill string by modulation of intermediate-frequency acoustic carrier waves.
- Deep wells of the type commonly used for petroleum or geothermal exploration are typically less than 39 cm (12 inches) in diameter and on the order of 2 km (1.5 miles) long. These wells are drilled using drill strings assembled from relatively light sections (either 30 or 45 feet long) of drill pipe that are connected end-to-end by tool joints, additional sections being added to the uphole end as the hole deepens.
- the downhole end of the drill string typically includes a drill collar, a dead weight assembled from sections of relatively heavy lengths of uniform diameter collar pipe having an overall length on the order of 300 meters (1000 feet).
- a drill bit is attached to the downhole end of the drill collar, the weight of the collar causing the bit to bite into the earth as the drill string is rotated from the surface.
- Drilling mud or air is pumped from the surface to the drill bit through an axial hole in the drill string. This fluid removes the cuttings from the hole, provides a hydrostatic head which controls the formation gases, and sometimes provides cooling for the bit.
- This invention is directed towards the acoustical transmission of data through the metal drill string.
- the history of such efforts is recorded in columns 2 - 4 of U.S. Patent No. 4,293,936, issued Oct. 6, 1981, of Cox and Chaney.
- the first efforts were in the late 1940's by Sun Oil Company, which organization concluded there was too much attenuation in the drill string for the technology at that time. Another company came to the same conclusion during this period.
- the aforementioned Cox and Chaney patent concluded from their interpretation of the measured data obtained from a field test in a petroleum well that the Barnes model must be in error, because the center of the passbands measured by Cox and Chaney did not agree with the predicted passbands of Barnes et al.
- the patent uses acoustic repeaters along the drill string to ensure transmission of a particular frequency for a particular length of drill pipe to the surface.
- the present invention is based upon a more thorough consideration of the underlying theory of acoustical transmission through a drill string.
- the work of Barnes et al. has been analyzed as a banded structure of the type discussed by L. Brillouin, Wave Propagation in Periodic Structures , McGraw-Hill Book Co., New York, 1946.
- the theoretical results have also been correlated to extensive laboratory experiments on scale models of the drill string, and the original data tape obtained from Cox and Chaney's field-test has been reanalyzed. This analysis shows that Cox and Chaney's measurements contain data which is in excellent agreement with the theoretical predictions; that Sharp misinterpreted the cause of the fine structure; and that the ringing and the frequency limitations cited by Shawhan and Hixon are easily overcome by signal processing.
- Figure 1 shows some of the results of the new analysis of the data recorded by Cox and Chancy. This figure is a plot of the power amplitude versus frequency of the transmitted signal. The theoretical boundaries between the passbands and the stopbands are shown by the vertical dotted lines. If this figure is compared to Figure 1 in Cox and Chaney's patent significant and obvious differences can be noted. These are attributable to error in Cox and Chaney's analysis.
- the present invention relates to a method for transmitting data on a continuous data carrier signal through a drill string, comprising the steps of acoustically transmitting said signal from a first location near a first end to a second end of the drill string and detecting said acoustically transmitted signal at a second location near said second end of the drill string.
- a first object of the present invention is to improve said method to counteract distortions caused by the drill string; said distortions corresponding to the effects of multiple passbands and stopbands having characteristics dependent upon properties of the drill string.
- a second object of the present invention is to provide an apparatus for carrying out said improved method.
- the apparatus and method for transmitting data along a drill string preferably use a modulated continuous acoustical carrier wave (waves) which is (are) centred within one (several) of the passbands of the drill string.
- waves modulated continuous acoustical carrier wave
- Preferred embodiments provide a system for suppressing the transmission of noise within the transmission band or bands.
- this invention involves the transmission of acoustical data along a drill string 10 which consists of a plurality of lengths of constant diameter drill pipe 15 fastened end-to-end at thicker diameter joint portions 18 by means of screw threads as is well known in this art.
- Lower end 12 of drill string 10 may include a length of constant diameter drill collar to provide downward force to drill bit 22 .
- a constant diameter mud channel 24 extends axially through each component of drill string 10 to provide a path for drilling mud to be pumped from the surface at upper end 14 through holes in drill bit 22 as is well known in this art.
- drill string 10 is terminated in conventional structure such as a derrick, rotary pinion, and kelly, represented by box 25, to permit additional lengths of drill pipe to be added to the string, and the string to be rotated for drilling. Details of this conventional string structure may be found in the aforementioned patent of E. Hixon.
- each piece of drill pipe consists of a tube of length d1, mass density p1, cross-sectional area a1, speed of sound c1 , and mass r1; and a tool joint of length d2, mass density p2, cross-sectional area a2, speed of sound c2, and mass r2.
- Brillouin shows that frequencies which yield real solutions for k are banded and separated by frequency bands which yield complex solutions for k . He calls these two types of regions passbands and stopbands. The attenuation in the stopbands is generally quite large. Within each of the passbands the value of the phase velocity ⁇ /k depends upon the value of ⁇ .
- the drill string functions as an acoustic comb filter, and frequencies which propagate in the passbands are dispersed. Thus, signals which have broad frequency spectra are severely distorted by passage through a drill string. However, signal processing techniques can be used to remove this distortion.
- comb filter refers to the gross structure in the frequency spectrum which is produced by the stopbands and the passbands, where each tooth of the comb is an individual passband.
- Sharp's reference to a comb refers to a fine structure which exists within each passband.
- Figure 4 shows a plot of the characteristic determinate of Equation 2 using values for p ⁇ , a ⁇ , c ⁇ , and d ⁇ representative of actual drill pipe parameters.
- the straight dotted line represents the solution for a uniform drill string, e.g., one where the diameter of the joints is equal to the diameter of the pipe.
- the velocity of propagation for a given frequency is represented by the phase velocity.
- this ratio is constant and equal to the bar velocity of steel.
- the gaps represent stopbands. This analysis predicts the same values for the boundaries between the stopbands and the passbands as that of Barnes et al; however, it also shows the characteristics of wave propagation within each of the passbands. Barnes et al. did not predict the distortion resulting from the effects of the passbands.
- Fig. 2 shows the third and fourth passbands of a fast Fourier transform of the waveform which results from a signal which represents, to a rough approximation, the hammer blow used in the Cox and Chaney field test. This signal has a relatively narrow frequency content which only stimulates the third and fourth passband of the drill string.
- Ten sections of drill pipe were used in this field test, and the ends of the drill string produced nearly perfect reflection of the acoustic waves which resulted from the hammer blows.
- This figure shows the "fine structure" of Sharp et al. to be caused by standing wave resonances within the drill string.
- the number of spikes in each passband correlates with the number of sections of pipe in the drill string, as explained in greater detail in the Appendix.
- the analysis suggests the following technique for processing data signals and compensating for the effects of the stopbands and dispersion.
- First transmit information continuously (as opposed to a broad-band pulse mode) and only within the passbands and away from the edges of the stopbands.
- Second compensate for dispersion by multiplying each frequency component by exp( -ikL ), where L is the transmission length in the drill pipe section 18 of the drill string. Where a large amount of acoustical noise is present, such as would be caused by a drill bit or drill mud, it is preferable to transform the data signal before transmission, resulting in an undispersed signal at the receiver position.
- the foregoing analysis is based on the assumption that echos are suppressed at each end of the drill string. This is necessary to eliminate the spikes or fine structure within each of the passbands. It is common knowledge that signal processing is effective when echo strength is 20 dB below the the signal level. Each time the acoustic wave interacts with the intersection of the drill pipe and the drill collar 80 , the signal weakens by 6 dB. Also, from the analysis of Cox and Chaney's field test, the signal attenuates about (2 dB/1000 feet).
- an echo which is generated by a reflection of the data signal 2 dB/300 m at the top of the drill string 14 will lose 6 + 4 (L/300) dB (if L in metres or 6+4 (L/1000) dB (if L in feets) as it travels back down the drill string to 80 and then returns to the receiver.
- the drill pipe section has a length of 1065m (3500 feet) or more, the echos from the receiving end of the string will be naturally attenuated to an acceptable level.
- a terminating transducer For shorter drill strings, additional echo suppression will be required. This can be accomplished with a device called a terminating transducer. This device has an acoustical impedance which matches the acoustical impedance of the drill string and an acoustical loss factor which is sufficient to make up the required 20 dB of echo suppression.
- the characteristic impedance of the drill string is the force F divided by velocity
- This value is the eigenvalue part of Equation 2, a complex number with a real part called the viscous component and an imaginary part called the elastic component.
- the terminating transducers must have a stiffness equal to the elastic component and a damping coefficient equal to the viscous component. Practically, the response need only make up the difference between 20 dB and the natural attenuation of the drill string.
- the characteristic impedance is a function of frequency and position, the position dependence being periodic in accordance with the period of the drill string. Calculations show that tool joints are not a good location for a termination because the impedance is a sensitive function of position. For the fourth passband, a location 1/3 or 2/3 along the pipe is better.
- termination transducers is a conventional problem to those of ordinary skill in that art provided with the impedance data from Equation 2.
- This device could consist of a ring of polarized PZT ceramic elements and an electronic circuit whose reactive and resistive components are adjusted to tune the transducer to the characteristic impedance of the drill string and provide the necessary acoustic loss factor.
- Echo suppression is a more critical problem at the downhole end of the drill string where echos travel freely up and down the drill collar section and confuse the transmission of data. At this location, it is useful to use noise cancellation techniques both to suppress echos and to prevent the noise of the drill bit or drilling mud from interfering with the desired data signal uphole.
- a noise cancellation technique for use with this invention is disclosed hereinafter.
- Fig. 5 shows a section 30 of drill collar 20 located relatively close to downhole end 12 of drill string 10 and containing apparatus for transmitting a data signal towards the other end of the drill string while suppressing the transmission of acoustical noise up the drill string.
- this apparatus includes a transmitter 40 for transmitting data uphole, but not downhole, a sensor 50 for detecting acoustical noise from downhole and applying it to transmitter 40 to cancel the uphole transmission of the noise, and a sensor 60 for providing adaptive control to transmitter 40 and sensor 50 to minimize uphole transmission of noise.
- Transmitter 40 includes a pair of spaced transducers 42 , 44 for converting an electrical input signal into acoustical energy in drill collar 30.
- Each transducer may be a magnetostrictive ring element with a winding of insulated conducting wire. These transducers are spaced apart a distance b equal to one quarter wavelength of the center frequency of the passband selected for transmission.
- a data signal from source 28 is applied directly to uphole transducer 44 , preferably through a summing circuit 46 .
- the data signal is also applied to transducer 42 through a delay circuit 47 and an inverting circuit 48 .
- Delay circuit 47 has a delay value equal to distance b divided by the speed of sound in drill collar 30 at transmitter 40 .
- Each of transducers 42 , 44 provide an acoustical signal F 2, F 4 that travels both uphole and downhole. Accordingly the resulting upward and downward waves from both transducers are: where x is the uphole distance from transducer 42 and c is the speed of sound.
- transmitter 40 transmits an uphole signal having approximately twice the amplitude A of the applied signal, and no downhole signal.
- Noise sensor 50 includes a pair of spaced sensors 52 , 54 which operate in a similar manner to provide an indication of acoustic energy moving uphole, and no indication of energy moving downhole.
- the output of sensor 52 which sensor may be an accelerometer or strain gauge, is an electrical signal that is summed in summing circuit 56 with the output of similar sensor 54 , which output is delayed by delay circuit 57 and and inverted by inverting circuit 58 . If the delay of circuit 57 is equal to the spacing b divided by the speed of sound c , downward moving energy is first detected by sensor 54 and delayed, and later detected by downhole sensor 52 .
- the inverted electrical signal from 54 arrives at summing circuit 56 at the same time as the output of sensor 52 , providing a net output of zero for downward moving noise.
- adaptive control 70 a conventional control circuit that has an input from a second pair of sensors 62 , 64 . These sensors, identical to sensors 52 , 54 , also have corresponding delay circuit 67 and inverter 68 to provide an output indicative of an upward moving wave and no output in response to a downward moving wave.
- the upward moving wave at control sensors 60 is a mixture of the noise and data that passed transmitter 40 . Accordingly; by delaying the data signal in delay circuit 72 and adding the result to the output of sensors 60 with summing circuit 74 , an error signal is produced which indicates the effectiveness of noise cancelation.
- This signal is fed into an adaptive control circuit 70 which controls conventional circuitry 75 to adjust voltage amplitudes or phases of the signals being applied to any of sensors 52 and 62 or transmitters 42 , 44 to minimize the amount of noise being transmitted upward towards the surface.
- the spacing b between sensors or transmitters in the third passband would be about 30 cm (78 inches) or about 21 cm (53 inches) in, the fourth passband.
- the operation of the invention is as follows:
- the circuitry of Fig. 5 is mounted on a drill collar, including suitable circuitry 28 for generating data representative of a downhole parameter.
- Power supplies such as batteries or mud-driven electrical generators, and other supportive circuitry known to those of ordinary skill in the art, would also be incorporated into drill collar 30 .
- the drill bit and mud create acoustic noise that travels in both directions through drill string 10 . Downward noise is not sensed by the sensors; however, upward noise, including echos from the bottom of the drill collar, are sensed by sensor circuit 50 and applied to transmitter circuit 40 , yielding a greatly reduced upward noise component. Primarily the data travels to the connection 80 (Fig.
- the data from circuit 28 may be precompensated by multiplying each frequency component of the signal by exp (-ikL) to adjust for the distortion caused by the passbands of the drill string.
- exp -ikL
- Such compensation may be accomplished by any manner known to those of ordinary skill in the art with a device such as an analog-to-digital signal processing circuit.
- This invention recognizes and solves the problems noted by many previous workers in the field of transmitting data along a drill string.
- quality transmission on continuous acoustic carrier waves without extensive downhole circuitry, and without the use of impractical repeater circuits and transducers along the drill string is possible at frequencies on the order of several hundred to several thousand Hertz. These frequencies are high in relation to the ambient drilling noise (about 1 to 10 Hz), and therefore allow transmission relatively free of this noise. Also the bandwidths of the passbands allow data rates far in excess of present mud pulse systems. Also it is recognized that this method will work in drilling situations where air is used instead of mud.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Acoustics & Sound (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Earth Drilling (AREA)
Abstract
Claims (22)
- Procédé pour transmettre des données par un signal continu porteur de données à travers un train de tiges de forage (10), comprenant une transmission acoustique dudit signal depuis un premier endroit situé à proximité d'une première extrémité (12) jusqu'à une seconde extrémité (14) du train de tiges de forage (10),
une détection dudit signal transmis acoustiquement en un second endroit proche de ladite seconde extrémité (14) du train de tiges de forage (10), caractérisé par
une multiplication de chaque composante de fréquence dudit signal par exp(-ikL), où L désigne la longueur de transmission du train de tiges de forage, k désigne le nombre d'onde dans ledit train de tiges de forage à la fréquence de la composante de fréquence respective, et i désigne l'unité imaginaire (i² = -1), de façon à contrebalancer des distorsions analogues à un filtrage en peigne causées par le train de tiges. - Procédé tel que revendiqué dans la revendication 1, caractérisé en ce que le train de tiges (10) comporte des bandes passantes de faible atténuation et de bandes d'arrêt de forte atténuation pour les signaux acoustiques et en ce que les composantes de fréquences dudit signal acoustique transmises sont situées dans lesdites bandes passantes.
- Procédé tel que revendiqué dans la revendication 1 ou 2, caractérisé en ce que le signal porteur de données est un signal électrique qui est converti en un signal acoustique au premier endroit proche de la première extrémité (12) du train de tiges et en ce que ledit signal acoustique détecté est converti en un signal électrique au second endroit proche de la seconde extrémité (14) du train de tiges.
- Procédé tel que revendiqué dans une quelconque des revendications 1 à 3, caractérisé par une suppression d'échos acoustiques à partir de chaque extrémité (12, 14) dudit train de tiges.
- Procédé tel que revendiqué dans une quelconque des revendications 2 à 4, caractérisé en ce que l'étape de transmission acoustique dudit signal depuis ledit premier endroit vers ladite seconde extrémité (14) du train de tiges consiste à produire un signal acoustique dans le train de tiges (10) et à supprimer la partie dudit signal qui se déplace dans la direction de ladite première extrémité (12) du train de tiges.
- Procédé tel que revendiqué dans la revendication 5, caractérisé en ce que ladite étape de génération et suppression consiste à produire deux signaux acoustiques dans le train de tiges (10) en deux endroits espacés axialement l'un de l'autre le long du train de tiges d'une distance correspondant approximativement à un quart de longueur d'onde de la fréquence centrale de ladite bande passante.
- Procédé tel que revendiqué dans la revendication 6, caractérisé en ce que le signal acoustique produit à l'endroit qui est le plus éloigné de ladite seconde extrémité est retardé d'un temps égal à b/c, où b représente un quart de longueur d'onde de la fréquence centrale de ladite bande passante et c désigne la vitesse du son dans le train de tiges (10) au voisinage des deux endroits précités.
- Procédé tel que revendiqué dans la revendication 7, caractérisé par l'étape consistant à détecter, entre ladite première extrémité (12) du train de tiges et l'endroit où le signal acoustique retardé est engendré, le bruit acoustique se déplaçant de ladite première extrémité (12) vers ladite seconde extrémité (14) du train de tiges.
- Procédé tel que revendiqué dans la revendication 8, caractérisé en ce que la détection dudit bruit acoustique inclut:
une détection des signaux de sortie de deux détecteurs acoustiques (52, 54) espacés axialement l'un de l'autre le long du train de tiges (10) d'une distance correspondant approximativement à un quart de longueur d'onde de la fréquence centrale de ladite bande passante, et
un retardement et une inversion d'un desdits signaux de sortie par rapport à l'autre d'un temps égal à b/c, où b représente un quart de longueur d'onde de la fréquence centrale de ladite bande passante, et c désigne la vitesse du son dans le train de tiges (10). - Procédé tel que revendiqué dans la revendication 9, caractérisé en ce qu'on additionne lesdits signaux de sortie et on utilise ces signaux additionnés pour produire un signal qui annule un bruit acoustique progressant de ladite première extrémité (12) vers ladite seconde extrémité (14) du train de tiges.
- Procédé tel que revendiqué dans la revendication 10, caractérisé par l'étape consistant à détecter, entre l'endroit où le signal acoustique non retardé est produit et ladite seconde extrémité (14) du train de tiges, une énergie acoustique progressant en direction de ladite seconde extrémité (14) du train de tiges.
- Procédé tel que revendiqué dans la revendication 11, caractérisé en ce que la détection de l'énergie acoustique progressant en direction de ladite seconde extrémité du train de tiges inclut:
une détection des signaux de sortie des deux capteurs acoustiques (62, 64) espacés axialement l'un de l'autre le long du train de tiges (10) d'une distance correspondant approximativement à un quart de longueur d'onde de la fréquence centrale de ladite bande passante, et
un retardement et une inversion d'un desdits signaux de sortie par rapport à l'autre d'un temps égal à b/c, où b représente un quart de longueur d'onde de la fréquence centrale de ladite bande passante, et c désigne la vitesse du son dans le train de tiges (10). - Procédé tel que revendiqué dans la revendication 12, caractérisé en ce qu'on additionne le signal de sortie non retardé avec le signal de sortie retardé des capteurs acoustiques (62, 64) et on les utilise pour produire un signal de commande adaptative pour une transmission de données.
- Procédé tel que revendiqué dans une quelconque des revendications 1 à 13, caractérisé par une suppression des échos acoustiques à ladite seconde extrémité (14) du train de tiges par adaptation de l'impédance acoustique dudit train de tiges (10) et en établissant un facteur de perte suffisant pour maintenir la puissance d'écho à environ 20 dB en dessous du niveau de signal pour la terminaison du signal.
- Procédé tel que revendiqué dans une quelconque des revendications 1 à 14, caractérisé en ce que le train de tiges (10) comprend plusieurs tiges de forage (15) reliés bout à bout par des joints (18), la longueur et la section des tiges de forage (15) étant différentes de la longueur et de la section transversale des joints (18), et en ce que ladite première extrémité (12) du train de tiges (10) est située en dessous de la surface du sol et ladite seconde extrémité (14) du train de tiges (10) est située au-dessus de la surface du sol.
- Appareil pour transmettre des données par un signal continu porteur de données par l'intermédiaire d'un train de tiges (10), comprenant
un transmetteur (40) situé à proximité d'une première extrémité (12) dudit train de tiges pour une transmission acoustique dudit signal jusqu'à une seconde extrémité (14) dudit train de tiges,
un récepteur situé à proximité de la seconde extrémité dudit train de tiges pour recevoir ledit signal porteur de données qui est transmis acoustiquement,
caractérisé par
un circuit de traitement de signaux capable de multiplier chaque composante de fréquence dudit signal porteur de données par exp(-ikL), où L désigne la longueur de transmission dudit train de tiges (10), k désigne le nombre d'onde dans ledit train de tiges à la fréquence de la composante de fréquence respective, et i désigne l'unité imaginaire (i² = -1), ledit circuit de traitement de signaux contrebalançant des distorsions analogues à un filtrage en peigne qui sont causées par le train de tiges (10). - Appareil tel que revendiqué dans la revendication 16, caractérisé par un moyen antibruit actif relié audit transmetteur (40).
- Appareil tel que revendiqué dans la revendication 17, caractérisé en ce que ledit moyen antibruit actif comprend
un premier et un second transmetteur acoustique (42, 44) espacés le long dudit train de tiges (10) d'une distance égale à un multiple impair d'un quart de longueur d'onde dudit signal porteur de données, ledit premier transmetteur (42) étant plus rapproché de ladite première extrémité (12) que ledit second transmetteur (44), et lesdits premier et second transmetteurs (42, 44) constituant ledit transmetteur (40) situé à proximité de la première extrémité (12) dudit train de tiges (10),
un premier circuit de retardement et d'inversion (47, 48) relié audit premier transmetteur (42) pour retarder et inverser ledit signal porteur de données,
un moyen de réglage relié audit premier circuit de retardement et d'inversion (47, 48) pour régler ledit retard au temps de transmission d'un signal acoustique dudit premier transmetteur (42) jusqu'audit transmetteur (44). - Appareil tel que revendiqué dans la revendication 18, caractérisé en ce que ledit moyen antibruit actif comprend en outre
un premier et un second récepteur acoustique (52, 54) espacés le long dudit train de tiges (10) d'une distance égale à un multiple impair d'un quart de longueur d'onde de l'onde porteuse, ledit premier récepteur (52) étant situé entre ladite première extrémité (12) et ledit second récepteur (54), ledit second récepteur (54) étant situé entre ledit premier récepteur (52) et le transmetteur (40),
le second circuit de retardement et d'inversion (57, 58) relié audit second récepteur (54) pour retarder et inverser le signal de bruit reçu par ledit second récepteur (54),
un moyen de réglage relié audit circuit de retardement et d'inversion (57, 58) pour régler le retard au temps de transmission du signal de bruit acoustique transmis dudit premier récepteur (52) audit second récepteur (54),
un premier moyen d'addition (56) pour additionner le signal de bruit inverse et retardé dudit second récepteur (54) et le signal de bruit reçu par le premier récepteur (52),
un troisième circuit de retardement relié audit premier moyen d'addition (56) pour retarder le signal de sortie dudit premier moyen d'additon (56),
un moyen de réglage relié audit troisième circuit de retardement (59) pour régler le retard au temps de transmission du signal de bruit acoustique transmis dudit second récepteur (54) audit transmetteur (40),
un second moyen d'addition (46) pour additionner le signal de sortie dudit troisième circuit de retardement (59) et ledit signal porteur de données, le signal de sortie dudit second moyen d'addition (46) étant le signal d'entrée destiné audit premier circuit de retardement et d'inversion (47, 48) relié audit premier transmetteur (42) et destiné audit second transmetteur (44). - Appareil tel que revendiqué dans la revendication 19, caractérisé en ce que ledit moyen antibruit actif comprend en outre
un troisième et un quatrième récepteur acoustique (62, 64) espacés le long dudit train de tiges (10) d'une distance égale à un multiple impair d'un quart de longueur d'onde de ladite onde porteuse, lesdits récepteurs étant situés entre ledit transmetteur (40) et ladite seconde extrémité (14), ledit troisième récepteur étant situé entre ledit quatrième récepteur (64) et ledit transmetteur (40),
un quatrième circuit de retardement et d'inversion (67, 68) relié audit quatrième récepteur (64) pour retarder et inverser le signal reçu par le quatrième récepteur (64),
un moyen de réglage relié audit quatrième circuit de retardement et d'inversion (67, 68) pour régler le retard au temps de transmission du signal acoustique transmis dudit troisième récepteur (62) audit quatrième récepteur (64),
un troisième moyen d'addition pour additionner le signal inversé et retardé dudit quatrième récepteur (64) et le signal reçu dudit troisième récepteur (62),
un cinquième circuit de retardement (62) pour retarder le signal porteur de données,
un moyen de réglage relié audit cinquième circuit de retardement (72) pour régler le retard au temps de transmission d'un signal acoustique transmis dudit second transmetteur (44) audit troisième récepteur (62),
un quatrième moyen d'addition pour additionner le signal porteur de données retardé et le signal de sortie dudit troisième moyen d'addition, le signal de sortie dudit quatrième moyen d'addition (74) étant un signal d'entrée destiné au circuit de commande adaptative (70). - Appareil tel que revendiqué dans une quelconque des revendications 16 à 20, caractérisé en ce que ladite première extrémité (12) dudit train de tiges (10) comprend une masse-tige et en ce que ledit transmetteur (40) et ledit moyen antibruit sont fixés sur ladite masse-tige.
- Appareil tel que revendiqué dans une quelconque des revendications 16 à 21, caractérisé en ce que l'impédance acoustique dudit récepteur situé à proximité de la seconde extrémité (14) du train de tiges est adaptée à l'impédance acoustique dudit train de tiges (10) à ladite seconde extrémité (14), en empêchant ainsi la génération d'échos depuis ladite seconde extrémité (14) vers ladite première extrémité (12) dudit train de tiges.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18432688A | 1988-04-21 | 1988-04-21 | |
US184326 | 1988-04-21 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19930111079 Division EP0565141A3 (fr) | 1988-04-21 | 1989-04-21 | Transmission de données acoustiques au travers d'un cordon de tube de forage |
EP93111079.5 Division-Into | 1993-07-10 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0408667A1 EP0408667A1 (fr) | 1991-01-23 |
EP0408667A4 EP0408667A4 (en) | 1991-08-14 |
EP0408667B1 true EP0408667B1 (fr) | 1994-01-19 |
Family
ID=22676440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890905949 Expired - Lifetime EP0408667B1 (fr) | 1988-04-21 | 1989-04-21 | Transmission de donnees acoustiques au travers d'un cordon de tube de forage |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0408667B1 (fr) |
JP (1) | JPH03501408A (fr) |
DE (1) | DE68912584D1 (fr) |
WO (1) | WO1989010572A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010047568A1 (de) * | 2010-04-12 | 2011-12-15 | Peter Jantz | Einrichtung zur Übertragung von Informationen über Bohrgestänge |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151882A (en) * | 1990-08-08 | 1992-09-29 | Atlantic Richfield Company | Method for deconvolution of non-ideal frequency response of pipe structures to acoustic signals |
GB2249852A (en) * | 1990-10-29 | 1992-05-20 | Sandia Corp | Circuit for echo and noise suppression of acoustic signals transmitted through a drillstring |
NO306522B1 (no) * | 1992-01-21 | 1999-11-15 | Anadrill Int Sa | Fremgangsmaate for akustisk overföring av maalesignaler ved maaling under boring |
NO306222B1 (no) * | 1992-01-21 | 1999-10-04 | Anadrill Int Sa | Fjernmålingssystem med bruk av lydoverföring |
JP2000121742A (ja) * | 1998-10-14 | 2000-04-28 | Mitsubishi Electric Corp | 掘削管体音響伝送用送信機およびこの送信機による掘削管体音響伝送方法 |
US6370082B1 (en) | 1999-06-14 | 2002-04-09 | Halliburton Energy Services, Inc. | Acoustic telemetry system with drilling noise cancellation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4066995A (en) * | 1975-01-12 | 1978-01-03 | Sperry Rand Corporation | Acoustic isolation for a telemetry system on a drill string |
US4293936A (en) * | 1976-12-30 | 1981-10-06 | Sperry-Sun, Inc. | Telemetry system |
US4156229A (en) * | 1977-01-31 | 1979-05-22 | Sperry-Sun, Inc. | Bit identification system for borehole acoustical telemetry system |
US4283780A (en) * | 1980-01-21 | 1981-08-11 | Sperry Corporation | Resonant acoustic transducer system for a well drilling string |
US4282588A (en) * | 1980-01-21 | 1981-08-04 | Sperry Corporation | Resonant acoustic transducer and driver system for a well drilling string communication system |
US4562559A (en) * | 1981-01-19 | 1985-12-31 | Nl Sperry Sun, Inc. | Borehole acoustic telemetry system with phase shifted signal |
-
1989
- 1989-04-21 DE DE89905949T patent/DE68912584D1/de not_active Expired - Lifetime
- 1989-04-21 EP EP19890905949 patent/EP0408667B1/fr not_active Expired - Lifetime
- 1989-04-21 WO PCT/US1989/001641 patent/WO1989010572A1/fr active IP Right Grant
- 1989-04-21 JP JP50585689A patent/JPH03501408A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010047568A1 (de) * | 2010-04-12 | 2011-12-15 | Peter Jantz | Einrichtung zur Übertragung von Informationen über Bohrgestänge |
US9982529B2 (en) | 2010-04-12 | 2018-05-29 | Universitaet Siegen | Communication system for transmitting information via drilling rods |
Also Published As
Publication number | Publication date |
---|---|
DE68912584D1 (de) | 1994-03-03 |
JPH03501408A (ja) | 1991-03-28 |
EP0408667A1 (fr) | 1991-01-23 |
WO1989010572A1 (fr) | 1989-11-02 |
EP0408667A4 (en) | 1991-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5128901A (en) | Acoustic data transmission through a drillstring | |
US5274606A (en) | Circuit for echo and noise suppression of accoustic signals transmitted through a drill string | |
US5222049A (en) | Electromechanical transducer for acoustic telemetry system | |
US6535458B2 (en) | Method and apparatus for suppressing drillstring vibrations | |
US7158446B2 (en) | Directional acoustic telemetry receiver | |
CA2497432C (fr) | Determination de la vitesse de l'onde transversale a l'aide d'une onde multipolaire | |
RU2419996C2 (ru) | Система и способ связи по зашумленным каналам связи | |
US5130951A (en) | Method for reducing noise effects in acoustic signals transmitted along a pipe structure | |
US5969638A (en) | Multiple transducer MWD surface signal processing | |
US6781520B1 (en) | Motion sensor for noise cancellation in borehole electromagnetic telemetry system | |
US5151882A (en) | Method for deconvolution of non-ideal frequency response of pipe structures to acoustic signals | |
CA2483592C (fr) | Procede de detection de signaux dans une telemetrie acoustique de trains de tiges | |
US5128902A (en) | Electromechanical transducer for acoustic telemetry system | |
US5056067A (en) | Analog circuit for controlling acoustic transducer arrays | |
US5124953A (en) | Acoustic data transmission method | |
US6781521B1 (en) | Filters for canceling multiple noise sources in borehole electromagnetic telemetry system | |
US3909775A (en) | Methods and apparatus for acoustic logging through casing | |
EP0408667B1 (fr) | Transmission de donnees acoustiques au travers d'un cordon de tube de forage | |
US5541890A (en) | Method for predictive signal processing for wireline acoustic array logging tools | |
EP0565141A2 (fr) | Transmission de données acoustiques au travers d'un cordon de tube de forage | |
GB2249852A (en) | Circuit for echo and noise suppression of acoustic signals transmitted through a drillstring | |
CA2004204A1 (fr) | Transmission de donnees sonores via un train de sondes | |
Drumheller | Acoustic data transmission through a drill string | |
Alenezi | Experimental Results On the Drill String Design for Borehole Acoustic Communicatio | |
Farraj | Acoustical communications for wireless downhole telemetry systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900411 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19910626 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 19921012 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940119 Ref country code: FR Effective date: 19940119 Ref country code: DE Effective date: 19940119 |
|
REF | Corresponds to: |
Ref document number: 68912584 Country of ref document: DE Date of ref document: 19940303 |
|
EN | Fr: translation not filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940620 Year of fee payment: 6 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950421 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950421 |