EP0404621A1 - Attitude control system using a supraconductive magnetic coil - Google Patents

Attitude control system using a supraconductive magnetic coil Download PDF

Info

Publication number
EP0404621A1
EP0404621A1 EP90401488A EP90401488A EP0404621A1 EP 0404621 A1 EP0404621 A1 EP 0404621A1 EP 90401488 A EP90401488 A EP 90401488A EP 90401488 A EP90401488 A EP 90401488A EP 0404621 A1 EP0404621 A1 EP 0404621A1
Authority
EP
European Patent Office
Prior art keywords
loop
solar generator
closed loop
satellite
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90401488A
Other languages
German (de)
French (fr)
Other versions
EP0404621B1 (en
Inventor
Alain Reboux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0404621A1 publication Critical patent/EP0404621A1/en
Application granted granted Critical
Publication of EP0404621B1 publication Critical patent/EP0404621B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/32Guiding or controlling apparatus, e.g. for attitude control using earth's magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/26Guiding or controlling apparatus, e.g. for attitude control using jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/285Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using momentum wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications
    • Y10S136/292Space - satellite

Definitions

  • the invention relates to an attitude control and stabilization system for satellites.
  • a satellite is subject to slowly varying external disturbing torques linked to its environment, the main causes of which are: - atmospheric drag (especially in the case of low orbit), - solar radiation pressure, - the terrestrial gravity gradient, - the Earth's magnetic field.
  • the use of magnetic coils allows continuous compensation.
  • the low value of the Earth's magnetic field (around 10 ⁇ 7 tesla) and the level of the couples to compensate (10 ⁇ 5 to 10 ⁇ 4Nm depending on the asymmetry of the satellite) lead to typical performances of 100 to 1000 amperes.tours.m2 and therefore to masses generally large magnetic coils (10 to 20 kg or more).
  • the use of magnetic coils is thus generally limited to control on a single axis of the satellite, for the desaturation of the flywheels.
  • certain satellite configurations may exhibit strong asymmetry.
  • many earth observation missions require cooling of the focal plane of the infrared instrument, with a view to satisfactory performance in the IR (infrared) wavelengths.
  • the required temperatures ( ⁇ 100 ° K) are generally obtained by means of passive radiators, located on the non-sunny north or south faces of the satellite (we assume the geostationary orbit).
  • the invention aims to overcome the aforementioned drawbacks by proposing a satellite with solar generator equipped with an attitude compensation device which is light, reliable, compact and energy efficient and which is adapted to effectively attenuate the disturbing couples in particular due at the pressure of solar radiation.
  • the invention thus proposes a satellite comprising a deployable solar generator orientable with respect to the satellite body and intended to be permanently maintained facing the Sun, as well as an attitude stabilization device, characterized in that this device attitude stabilization includes at least: - a closed loop of superconductive material carried by a support linked to the solar generator, and arranged on one face of this support which is substantially oriented away from the Sun; - A secondary loop parallel to the closed loop, substantially of the same shape and dimensions as the closed loop, carried by this support near this loop; - a resistive circuit carried by this support near at least part of the closed loop; and - an electric selective supply circuit electrically connected to the secondary loop and to the resistive circuit.
  • the closed loop of superconductive material is in a plane parallel to the panels of the solar generator; - the support is either an additional panel mechanically linked to the solar generator, or a panel thereof (carrying solar cells); - this additional panel is articulated on the end of the solar generator which is furthest from the body of the satellite; the closed loop of superconductive material is formed of a substantially circular ribbon or else by the deposition of thin layers of superconductive material on a substrate, or the like; - The closed loop is carried by a frame mechanically connected to the support by means of thermally insulating material; - The secondary loop is arranged on the support opposite this loop; - the resistive circuit and the secondary loop are electrically supplied by the solar generator; - the solar generator has a high asymmetry, for example with a single wing.
  • the solution proposed by the invention is therefore based on: - the use of a current loop located on the wing of the solar generator and interacting with the earth's magnetic field, so as to create a torque that is substantially equal and directly opposite to the torque of solar pressure, - the installation of this circuit on the "shadow" side (not exposed to solar radiation) of the solar generator (solar panel or one of its appendages) and at a suitable distance from the body of the satellite, so as to obtain a temperature compatible with the use of superconductive materials for current circulation.
  • This attitude stabilization device essentially consists of the following elements: - a current loop of superconductive material, for example of the YBa2Cu3O7, Bi2 Sr2 Ca2 Cu3O10 or Bi2 Sr2 Ca Cu9O8 type ... presenting a critical temperature compatible with the temperature imposed by the proximity of the surrounding elements (solar generator, body of the satellite) .
  • the characteristics of this loop are such that its magnetic moment interacts with the earth's magnetic field by creating a torque that is substantially equal to and opposite to the value of the pressure couple of solar radiation exerted on the satellite.
  • the external shape and the section of the circuit are arbitrary, provided that the preceding condition, at least approximately, is fulfilled; - a support, receiving in addition to the previous superconductive circuit, a resistive circuit made of conventional resistive material (nickel-chromium, graphite or other) intended to provide heating of limited duration of at least part of the superconductive loop (one to a few minutes ) of the first circuit, causing its transition to the non-superconductive state; - an auxiliary current loop of conventional conductive material (for example an aluminum winding or the like), adjacent and capable of being structurally linked to the preceding ones. The latter is intended: . to the initializations of the current in the superconductive loop, . to replace the main loop in the event of its breakdown.
  • this auxiliary loop The characteristics of this auxiliary loop are such that it can generate a magnetic flux equal to that which should prevail in the main loop under nominal conditions, the latter being obtained by "transfer” from one loop to the other (conservation of the magnetic flux ).
  • the heat dissipation due to this circuit must also remain compatible with the temperature requirements of the main loop.
  • the entire device can be installed on a solar panel of the solar generator or on an appendage of the latter.
  • the device can be either outside (space side) or inside the solar generator.
  • the second solution has the advantage of authorizing an operation of the solar generator "without deployment" in transfer orbit.
  • FIG. 1 represents an example of configuration of a satellite according to the invention.
  • It mainly comprises a satellite body 1 equipped with a solar generator 2 deployable between a folded configuration (launch phase) and a deployed service configuration in which it is connected to the body 1 by an arm 3.
  • This solar generator is orientable vis opposite the satellite body and is kept, by known conventional means, permanently facing the sun.
  • the satellite also includes an attitude stabilization device 4 carried by this solar generator.
  • the satellite is in geostationary orbit and has an asymmetrical configuration (single-wing solar generator facing north) giving rise to a disturbing torque T due to the pressure of solar radiation on this solar generator.
  • An average value of the order of 10 ⁇ 4 Newton.meter will be considered here for this couple T.
  • the typical dimensions of the solar generator considered here (length 5 to 10 m, width 1 to 2.5 m) and the constraints of storage under cover at launch of the staellite, in practice allow the implantation of the compensation loop 4 on a shutter of the solar generator or, as is the case here, on an additional shutter of dimensions typically equal to 1.5 meters per side (square), here articulated like the other shutters of the solar generator, at the free end of the latter.
  • This additional flap or panel on which the compensation system 4 rests, comprises a support panel 6, a closed superconductive loop 7, a support frame 8, an auxiliary loop 9, a resistive circuit 10 and a control circuit 11.
  • the support panel 6 can be made of composite material ("Nida” fiberglass sandwich type “NOMEX” with carbon soles for example); the typical thickness is approximately 1.5 cm for the lateral dimensions considered.
  • This panel is coated with a material 12 with high reflectivity (SSM or OSR, English abbreviations for "Secondary Surface Mirror” or “Optical Surface Reflector”) on the face exposed to solar radiation for a minimum temperature.
  • SSM single-semiconductor
  • OSR optical Surface Reflector
  • the closed loop 7 is made of YBa2 Cu3 O7 type superconductive material, forming the main current loop of the compensation device.
  • Other superconductive materials can also be used: Bi2 Sr2 CaCu2O8, Th2Ba2 CaCu2O8, Bi2 Sr2 Ca2 Cu2 O10 .
  • Typical ribbon dimensions are: - outside diameter of the loop: about 1.5 meters - width: about 1 cm - thickness: about 10 to 100 ⁇ m.
  • the frame 8 supports the previous circuit and is of the "crown" type.
  • This frame can be made of composite material like the panel 6 and has an adequate coating, intended to maintain the temperature of the loop 7 at a level corresponding to its superconductive state (here of the order of 75 ° K taking into account a suitable margin).
  • black paint will be used for this purpose on the side of the loop 7 side and a multi-layer thermally insulating coating on the other side (side of the panel 6).
  • the frame 8 is mechanically connected to the support panel 6 by means of supports 13 made of material with very low thermal conductivity (carbon fiber for example) of a height ensuring sufficient spacing between the panel 6 and the frame 8 (typically 10 cm) .
  • the auxiliary circuit 9 is made of conductive material (aluminum for example); it is intended for the initialization of the current in the main loop 7. Its external dimensions are substantially the same as those of the loop (equivalent circular sections, neighboring diameters) and its installation is carried out on the opposite face (exposed to the sun) for a minimal thermal impact on the loop 7 when the latter is in the superconductive state and current flows in the loop 9.
  • This auxiliary circuit or loop is in practice a winding with turns parallel to the loop 7.
  • this auxiliary loop 9 is supplied with current by means of the solar generator (control on board the satellite), for the time necessary (of the order of a few minutes) for the initialization operations.
  • the current to flow is such that the flow induced in the main loop 7 corresponds to the desired current intensity in this loop.
  • a value close to Ampere.tours distributed over n turns of current is necessary, i.e. around 600 Ampere.tours here.
  • the number of turns n is such that the voltage at the terminals of circuit 9 corresponds at most to that supplied by the solar generator to the satellite. With a voltage of about 50 volts, we obtain for example of the order of 100 to 200 turns of a section of the order of a square millimeter.
  • the initialization method of loop 7, using an auxiliary loop D described here, is not limiting.
  • the circuit 10 is intended for local heating of the loop 7; it is intended to cancel its superconductive properties of this loop 7 when necessary.
  • This circuit is made by means of a resistor, a few centimeters in length, made of resistive material (such as Nickel Chromium or graphite for example), powered by the solar generator.
  • the control circuit shown diagrammatically at 11 is connected to the electrical part of the solar generator (or to batteries) to the auxiliary loop 9 and to the resistive circuit 10. It is used to trigger and interrupt the electrical supply of the elements 9 and 10.
  • the modulation of the compensation torque so as to compensate for the seasonal variations in the torque of solar radiation pressure (of the order of 10%, due to the 23 ° 5 tilt of the Earth's orbit), or any other disruptive of a different nature, possibly, can be obtained: -
  • this loop 7 is dimensioned so as to compensate for the maximum value of the disturbing torque; and its operation is periodically interrupted according to a predetermined control law (or determinable on the ground or on board) adapted to follow on average the variations in disturbing torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Position Or Direction (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Particle Accelerators (AREA)

Abstract

The satellite carries a solar generator (2) which can be deployed and oriented with respect to the satellite body (1) and which is intended to be maintained permanently facing the sun, and a device (4) for stabilizing the attitude, characterized in that this attitude- stabilizing device consists of at least:… &cirf& a closed loop (7) of superconducting material carried by a support (6) connected to the solar generator and placed on a face of this support which is oriented approximately in a direction opposite to that of the sun;… &cirf& a secondary loop (9) parallel to the closed loop, of approximately the same shape and size as the closed loop and carried by the support near the closed loop;… &cirf& a resistive circuit (10) carried by this support near at least a part of the closed loop;… &cirf& a selective electrical supply circuit (11) connected electrically to the secondary loop and to the resistive circuit.

Description

L'invention concerne un système de contrôle et de stabilisation d'attitude pour satellite.The invention relates to an attitude control and stabilization system for satellites.

Quelle que soit son orbite, un satellite est soumis à des couples perturbateurs externes à variation lente, liés à son environnement, dont les causes majeures sont :
- la trainée atmosphérique (surtout en cas d'orbite basse),
- la pression de radiation solaire,
- le gradient de gravité terrestre,
- le champ magnétique terrestre.
Whatever its orbit, a satellite is subject to slowly varying external disturbing torques linked to its environment, the main causes of which are:
- atmospheric drag (especially in the case of low orbit),
- solar radiation pressure,
- the terrestrial gravity gradient,
- the Earth's magnetic field.

Ces couples apparaissent d'une façon générale du fait de la dissymétrie du satellite (sur le plan mécanique ou géométrique, ou celui des propriétés mécani­ques ou optiques des matériaux utilisés).These couples appear generally due to the asymmetry of the satellite (on the mechanical or geometric level, or that of the mechanical or optical properties of the materials used).

Dans le cas d'un satellite stabilisé par rotation, l'action de ces perturbations est freinée grâce à la rigidité gyroscopique offerte par la rotation du corps du satellite.In the case of a satellite stabilized by rotation, the action of these disturbances is slowed down thanks to the gyroscopic rigidity offered by the rotation of the body of the satellite.

Dans le cas d'un satellite stabilisé trois axes, une telle rididité est en général créée artificiel­lement au moyen de roues d'inertie. L'effet des couples externes - variation du vecteur moment cinétique - peut être annulé en contrôlant de façon convenable la vitesse des roues (création d'un écart de vitesse). Lorsque la vitesse limite est atteinte, la "désaturation" des roues (vitesse différentielle) est effectuée en utilisant des actuateurs de contrôle d'attitude : tuyères, voiles solaires ou bobines magnétiques en général.In the case of a three-axis stabilized satellite, such ridiculousness is generally created artificially by means of inertia wheels. The effect of external torques - variation of the angular momentum vector - can be canceled by appropriately controlling the speed of the wheels (creation of a speed difference). When the speed limit is reached, the "desaturation" of the wheels (differential speed) is carried out using attitude control actuators: nozzles, solar sails or magnetic coils in general.

L'emploi des tuyères a pour principal incon­vénient de conduire à des perturbations brutales d'at­titude, à amortir sur un temps important, conduisant à des interruptions de mission, en particulier pour l'observation de la terre.The main drawback of the use of nozzles leads to brutal attitude disturbances, to be amortized over a long period of time, leading to mission interruptions, in particular for earth observation.

L'utilisation de bobines magnétiques autorise une compensation continue. Cependant, la faible valeur du champ magnétique terrestre (environ 10⁻⁷ tesla) et le niveau des couples à compenser (10⁻⁵ à 10⁻⁴Nm suivant la dissymétrie du satellite) conduisent à des performances typiques de 100 à 1000 ampères.tours.m² et donc à des masses de bobines magnétiques généralement importantes (10 à 20 kg voire plus). L'utilisation des bobines magnétiques est ainsi généralement limitée au contrôle sur un seul axe du satellite, pour la désaturation des roues d'inertie.The use of magnetic coils allows continuous compensation. However, the low value of the Earth's magnetic field (around 10⁻⁷ tesla) and the level of the couples to compensate (10⁻⁵ to 10⁻⁴Nm depending on the asymmetry of the satellite) lead to typical performances of 100 to 1000 amperes.tours.m² and therefore to masses generally large magnetic coils (10 to 20 kg or more). The use of magnetic coils is thus generally limited to control on a single axis of the satellite, for the desaturation of the flywheels.

Par ailleurs, certaines configurations de satellite peuvent présenter une forte dissymétrie. Par exemple, de nombreuses missions d'observation de la terre nécessitent un refroidissement du plan focal de l'instru­ment infrarouge, en vue de performances satisfaisantes dans les longueurs d'onde IR (infrarouge). Les températures requises (< 100°K) sont généralement obtenues au moyen de radiateurs passifs, situés sur les faces Nord ou Sud non ensoleillés du satellite (on suppose l'orbite géostation­naire).In addition, certain satellite configurations may exhibit strong asymmetry. For example, many earth observation missions require cooling of the focal plane of the infrared instrument, with a view to satisfactory performance in the IR (infrared) wavelengths. The required temperatures (<100 ° K) are generally obtained by means of passive radiators, located on the non-sunny north or south faces of the satellite (we assume the geostationary orbit).

Dans le cas d'une stabilisation trois axes, ces faces sont généralement utilisées pour implanter les deux ailes d'un générateur solaire orientable. Or, de tels appendices sont incompatibles avec le fonctionnement correct d'un radiateur passif qui nécessite un champ de vue parfaitement dégagé vers le froid spatial.In the case of three-axis stabilization, these faces are generally used to locate the two wings of an orientable solar generator. However, such appendages are incompatible with the correct operation of a passive radiator which requires a perfectly clear field of view towards space cold.

Ceci conduit à recourir par exemple à une configuration dissymétrique, avec un générateur solaire à aile unique, implanté sur la face opposée au(x) refroidis­seur(s). La compensation du couple de pression de radiation solaire important ainsi créé impose généralement dans ce cas l'implantation d'une "voile solaire" au bout d'un mât de grande longueur, sur la face opposée à l'aile du générateur solaire. Le niveau (environ 10⁻⁴Nm) et l'orien­tation de ce couple rendent en effet les bobines magné­tiques peu adaptées à ce cas de figure.This leads to resorting, for example, to an asymmetrical configuration, with a single-wing solar generator, located on the face opposite to the cooler (s). Compensation for the high solar radiation pressure torque thus created generally requires the installation of a "solar sail" at the end of a very long mast, on the face opposite to the wing of the solar generator. The level (around 10⁻⁴Nm) and the orientation of this torque make the magnetic coils hardly suited to this scenario.

Cette solution implique, outre sa masse, les inconvénients suivants :
- une diminutation des performances du système de refroi­ dissement, puisque la voile se trouve nécessairement dans le champ de vue de ce dernier,
- le déploiement de la voile constitue un point de défaillance unique, ce que l'on cherche à éviter pour des raisons de fiabilité,
- l'impossibilité de moduler le couple créé opposé au couple de pression de radiation solaire, alors que ce dernier subit une variation saisonnière (dûe à l'in­clinaison du plan de l'orbite terrestre).
This solution involves, in addition to its mass, the following drawbacks:
- a decrease in the performance of the cooling system dissement, since the sail is necessarily in the field of view of the latter,
- the deployment of the sail constitutes a single point of failure, which we seek to avoid for reasons of reliability,
- the impossibility of modulating the couple created opposite the pressure couple of solar radiation, while the latter undergoes a seasonal variation (due to the inclination of the plane of the Earth's orbit).

L'invention vise à pallier les inconvénients précités en proposant un satellite à générateur solaire équipé d'un dispositif de compensation d'attitude qui soit léger, fiable, peu enconbrant et économe en énergie et qui soit adapté à atténuer efficacement les couples pertur­bateurs notamment dûs à la pression de radiation solaire.The invention aims to overcome the aforementioned drawbacks by proposing a satellite with solar generator equipped with an attitude compensation device which is light, reliable, compact and energy efficient and which is adapted to effectively attenuate the disturbing couples in particular due at the pressure of solar radiation.

L'invention propose ainsi un satellite comportant un générateur solaire déployable orientable vis à vis du corps de satellite et destiné à être maintenu en permanence en regard du Soleil, ainsi qu'un dispositif de stabilisation d'attitude, caractérisé en ce que ce dispositif de stabilisation d'attitude comporte au moins :
- une boucle fermée en matériau supracon­ducteur portée par un support lié au générateur solaire, et disposée sur une face de ce support qui est sensiblement orientée à l'opposé du Soleil ;
- une boucle secondaire parallèle à la boucle fermée, sensiblement de même forme et dimensions que la boucle fermée, portée par ce support à proximité de cette boucle ;
- un circuit résistif porté par ce support à proximité d'une partie au moins de la boucle fermée ; et
- un circuit électrique d'alimentation sélective connecté électriquement à la boucle secondaire et au circuit résistif.
The invention thus proposes a satellite comprising a deployable solar generator orientable with respect to the satellite body and intended to be permanently maintained facing the Sun, as well as an attitude stabilization device, characterized in that this device attitude stabilization includes at least:
- a closed loop of superconductive material carried by a support linked to the solar generator, and arranged on one face of this support which is substantially oriented away from the Sun;
- A secondary loop parallel to the closed loop, substantially of the same shape and dimensions as the closed loop, carried by this support near this loop;
- a resistive circuit carried by this support near at least part of the closed loop; and
- an electric selective supply circuit electrically connected to the secondary loop and to the resistive circuit.

Selon des dispositions préférées de l'inven­tion :
- la boucle fermée en matériau supraconducteur est dans un plan parallèle aux panneaux du générateur solaire ;
- le support est soit un panneau additionnel lié mécanique­ment au générateur solaire, soit un panneau de celui-ci (portant des cellules solaires) ;
- ce panneau additionnel est articulé sur l'extrémité du générateur solaire qui est le plus éloigné du corps de satellite ;
- la boucle fermée en matériau supraconducteur est formée d'un ruban sensiblement circulaire ou bien par un dépôt de couches minces de matériau supraconducteur sur un substrat, ou analogue ;
- la boucle fermée est portée par un cadre relié mécanique­ment au support par des moyens en matériau thermiquement isolant ;
- la boucle secondaire est disposée sur le support à l'opposé de cette boucle ;
- le circuit résistif et la boucle secondaire sont alimentés électriquement par le générateur solaire ;
- le générateur solaire est à forte dissymétrie, par exemple à aile unique.
According to preferred arrangements of the invention:
- the closed loop of superconductive material is in a plane parallel to the panels of the solar generator;
- the support is either an additional panel mechanically linked to the solar generator, or a panel thereof (carrying solar cells);
- this additional panel is articulated on the end of the solar generator which is furthest from the body of the satellite;
the closed loop of superconductive material is formed of a substantially circular ribbon or else by the deposition of thin layers of superconductive material on a substrate, or the like;
- The closed loop is carried by a frame mechanically connected to the support by means of thermally insulating material;
- The secondary loop is arranged on the support opposite this loop;
- the resistive circuit and the secondary loop are electrically supplied by the solar generator;
- the solar generator has a high asymmetry, for example with a single wing.

La solution proposée par l'invention repose donc sur :
- l'utilisation d'une boucle de courant implantée sur l'aile du générateur solaire et interagissant avec le champ magnétique terrestre, de façon à créer un couple sensible­ment égal et directement opposé au couple de pression solaire,
- l'implantation de ce circuit sur la face "à l'ombre" (non exposée au rayonnement solaire) du générateur solaire (panneau solaire ou un de ses appendices) et à une distance convenable du corps du satellite, de façon à obtenir une température compatible avec l'emploi de matériaux supracon­ducteurs pour la circulation du courant.
The solution proposed by the invention is therefore based on:
- the use of a current loop located on the wing of the solar generator and interacting with the earth's magnetic field, so as to create a torque that is substantially equal and directly opposite to the torque of solar pressure,
- the installation of this circuit on the "shadow" side (not exposed to solar radiation) of the solar generator (solar panel or one of its appendages) and at a suitable distance from the body of the satellite, so as to obtain a temperature compatible with the use of superconductive materials for current circulation.

Ce dispositif de stabilisation d'attitude se compose essentiellement des éléments suivants :
- une boucle de courant en matériau supraconducteur, par exemple du type YBa₂Cu₃O₇, Bi₂ Sr₂ Ca₂ Cu₃O₁₀ ou Bi₂ Sr₂ Ca Cu₉O₈... présentant une température critique compatible avec la température imposée par la proximité des éléments environnant (générateur solaire, corps du satellite). Les caractéristiques de cette boucle sont telles que son moment magnétique interagisse avec le champ magnétique terrestre en créant un couple sensiblement égal et opposé à la valeur du couple de pression de radiation solaire exercé sur le satellite. La forme extérieure et la section du circuit sont quelconques, pourvu que la condition précédente, au moins approximativement, soit remplie ;
- un support, recevant outre le circuit supraconducteur précédent, un circuit résistif en matériau résistif classique (nickel-chrome, graphite ou autre) destiné à assurer un réchauffage de durée limitée d'au moins une partie de la boucle supraconductrice (une à quelques minutes) du premier circuit, provoquant sa transition à l'état non supraconducteur ;
- une boucle auxiliaire de courant en matériau conducteur classique (par exemple un bobinage en aluminium ou autre), voisine et pouvant être liée structuralement aux précé­dentes. Cette dernière est destinée :
. aux initialisations du courant dans la boucle supraconductrice,
. à se substituer à la boucle principale en cas de panne de celle-ci.
This attitude stabilization device essentially consists of the following elements:
- a current loop of superconductive material, for example of the YBa₂Cu₃O₇, Bi₂ Sr₂ Ca₂ Cu₃O₁₀ or Bi₂ Sr₂ Ca Cu₉O₈ type ... presenting a critical temperature compatible with the temperature imposed by the proximity of the surrounding elements (solar generator, body of the satellite) . The characteristics of this loop are such that its magnetic moment interacts with the earth's magnetic field by creating a torque that is substantially equal to and opposite to the value of the pressure couple of solar radiation exerted on the satellite. The external shape and the section of the circuit are arbitrary, provided that the preceding condition, at least approximately, is fulfilled;
- a support, receiving in addition to the previous superconductive circuit, a resistive circuit made of conventional resistive material (nickel-chromium, graphite or other) intended to provide heating of limited duration of at least part of the superconductive loop (one to a few minutes ) of the first circuit, causing its transition to the non-superconductive state;
- an auxiliary current loop of conventional conductive material (for example an aluminum winding or the like), adjacent and capable of being structurally linked to the preceding ones. The latter is intended:
. to the initializations of the current in the superconductive loop,
. to replace the main loop in the event of its breakdown.

Les caractéristiques de cette boucle auxiliaire sont telles qu'elle puisse engendrer un flux magnétique égal à celui devant régner dans la boucle principale en régime nominal, ce dernier étant obtenu par "transfert" d'une boucle sur l'autre (conservation du flux magnétique). La dissipation thermique dûe à ce circuit doit par ailleurs rester compatible avec les exigences de température de la boucle principale.The characteristics of this auxiliary loop are such that it can generate a magnetic flux equal to that which should prevail in the main loop under nominal conditions, the latter being obtained by "transfer" from one loop to the other (conservation of the magnetic flux ). The heat dissipation due to this circuit must also remain compatible with the temperature requirements of the main loop.

L'ensemble du dispositif peut être implanté sur un panneau solaire du générateur solaire ou bien sur un appendice de ce dernier.The entire device can be installed on a solar panel of the solar generator or on an appendage of the latter.

En configuration générateur solaire stocké, le dispositif peut se trouver indifféremment à l'extérieur (côté espace) ou à l'intérieur du générateur solaire. La seconde solution a l'avantage d'autoriser un fonctionnement du générateur solaire "sans déploiement" en orbite de transfert.In the stored solar generator configuration, the device can be either outside (space side) or inside the solar generator. The second solution has the advantage of authorizing an operation of the solar generator "without deployment" in transfer orbit.

En fonctionnement, la succession des prin­cipales opérations est la suivante :

  • 1. Déploiement complet du générateur solaire en orbite. Le dispositif se stabilise thermique­ment à une température correspondant à un état supraconducteur.
  • 2. Réchauffage de la boucle supraconductrice de façon à provoquer la transition de la boucle à l'état non supraconducteur (T > Tc).
  • 3. Alimentation de la boucle auxiliaire de façon à générer le flux nominal dans le dispositif. La puissance nécessaire à cette initialisation est assurée par le générateur solaire, ainsi que celle nécessaire au réchauffage.
  • 4. Arrêt du réchauffage.
  • 5. Arrêt de l'alimentation de la boucle auxi­liaire.
  • 6. Fonctionnement nominal de la boucle supracon­ductrice, le couple produit équilibrant sensiblement le couple de pression solaire.
  • 7. Alimentation contrôlée de la boucle auxiliaire de façon à équilibrer les variations saison­nières de la pression solaire (il peut y avoir plusieurs boucles supraconductrices et plusieurs boucles auxiliaires dont un nombre variable est actif à un moment donné).
In operation, the sequence of the main operations is as follows:
  • 1. Full deployment of the solar generator in orbit. The device stabilizes thermally at a temperature corresponding to a superconductive state.
  • 2. Heating of the superconductive loop so as to cause the transition of the loop to the non-superconductive state (T> Tc).
  • 3. Supply of the auxiliary loop so as to generate the nominal flux in the device. The power required for this initialization is provided by the solar generator, as well as that required for heating.
  • 4. Heating stops.
  • 5. Power off of the auxiliary loop.
  • 6. Nominal operation of the superconducting loop, the torque produced appreciably balancing the solar pressure torque.
  • 7. Controlled supply of the auxiliary loop so as to balance the seasonal variations in solar pressure (there may be several superconductive loops and several auxiliary loops of which a variable number is active at a given time).

Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple non limitatif, en regard des dessins annexés sur lesquels :

  • - la figure 1 est une vue schématique d'un satellite conforme à l'invention comportant une boucle supraconductrice pour sa stabilisation en attitude. Ce générateur solaire étant vu de dos, et
  • - la figure 2 est une vue en coupe selon la ligne 2-2 de la figure 1 du dispositif de stabilisation en attitude de la figure 1.
Objects, characteristics and advantages of the invention appear from the description which follows, given to by way of nonlimiting example, with reference to the appended drawings in which:
  • - Figure 1 is a schematic view of a satellite according to the invention comprising a superconductive loop for its stabilization in attitude. This solar generator being seen from the back, and
  • - Figure 2 is a sectional view along line 2-2 of Figure 1 of the attitude stabilization device of Figure 1.

La figure 1 représente un exemple de configura­tion d'un satellite conforme à l'invention.FIG. 1 represents an example of configuration of a satellite according to the invention.

Il comporte principalement un corps de satellite 1 équipé d'un générateur solaire 2 déployable entre une configuration repliée (phase de lancement) et une configuration déployée de service dans laquelle il est connecté au corps 1 par un bras 3. Ce générateur solaire est orientable vis à vis du corps de satellite et est maintenu, par des moyens classiques connus, en permanence en regard du soleil.It mainly comprises a satellite body 1 equipped with a solar generator 2 deployable between a folded configuration (launch phase) and a deployed service configuration in which it is connected to the body 1 by an arm 3. This solar generator is orientable vis opposite the satellite body and is kept, by known conventional means, permanently facing the sun.

Le satellite comporte en outre un dispositif de stabilisation en attitude 4 porté par ce générateur solaire.The satellite also includes an attitude stabilization device 4 carried by this solar generator.

Dans l'exemple considéré ici, le satellite est en orbite géostationnaire et présente une configuration dissymétrique (générateur solaire à aile unique orientée vers le Nord) donnant lieu à un couple perturbateur T dû à la pression de radiation solaire sur ce générateur solaire. Une valeur moyenne de l'ordre de 10⁻⁴ Newton.mètre sera considérée ici pour ce couple T.In the example considered here, the satellite is in geostationary orbit and has an asymmetrical configuration (single-wing solar generator facing north) giving rise to a disturbing torque T due to the pressure of solar radiation on this solar generator. An average value of the order of 10⁻⁴ Newton.meter will be considered here for this couple T.

Le moment magnétique nécessaire à la compensa­tion de ce couple vaut M = T B

Figure imgb0001
, soit environ 1.000 ampères. m², pour une valeur du champ terrestre de l'ordre de 10⁻⁷ Tesla à cette position spatiale.The magnetic moment necessary for the compensation of this couple is worth M = T B
Figure imgb0001
, or about 1,000 amps. m², for a value of the Earth's field of the order of 10⁻⁷ Tesla at this spatial position.

Les dimensions typiques du générateur solaire considérées ici (longueur 5 à 10 m, largeur 1 à 2,5 m) et les contraintes de stockage sous coiffe au lancement du staellite, permettent en pratique d'implanter la boucle de compensation 4 sur un volet du générateur solaire ou, comme c'est le cas ici, sur un volet supplémentaire de dimensions typiquement égales à 1.5 mètre par côté (carré), ici articulé comme les autres volets du générateur solaire, à l'extrémité libre de ce dernier.The typical dimensions of the solar generator considered here (length 5 to 10 m, width 1 to 2.5 m) and the constraints of storage under cover at launch of the staellite, in practice allow the implantation of the compensation loop 4 on a shutter of the solar generator or, as is the case here, on an additional shutter of dimensions typically equal to 1.5 meters per side (square), here articulated like the other shutters of the solar generator, at the free end of the latter.

Ce volet ou panneau supplémentaire, sur lequel repose le système de compensation 4 comprend un panneau support 6, une boucle supraconductrice fermée 7, un cadre de support 8, une boucle auxiliaire 9, un circuit résistif 10 et un circuit de commande 11.This additional flap or panel, on which the compensation system 4 rests, comprises a support panel 6, a closed superconductive loop 7, a support frame 8, an auxiliary loop 9, a resistive circuit 10 and a control circuit 11.

Le panneau support 6 peut être réalisé en matériau composite (sandwich "Nida" fibre de verre type "NOMEX" avec semelles carbone par exemple) ; l'épaisseur typique est d'environ 1,5 cm pour les dimensions latérales considérées.The support panel 6 can be made of composite material ("Nida" fiberglass sandwich type "NOMEX" with carbon soles for example); the typical thickness is approximately 1.5 cm for the lateral dimensions considered.

Ce panneau est revêtu d'un matériau 12 à haute réflectivité (SSM ou OSR, abréviations anglaises de "Secondary Surface Mirror" ou "Optical Surface Reflector") sur la face exposée au rayonnement solaire en vue d'une température minimale.This panel is coated with a material 12 with high reflectivity (SSM or OSR, English abbreviations for "Secondary Surface Mirror" or "Optical Surface Reflector") on the face exposed to solar radiation for a minimum temperature.

La boucle fermée 7 est réalisée en matériau supraconducteur type YBa₂ Cu₃ O₇, formant la boucle de courant principale du dispositif de compensation. D'autres matériaux supraconducteurs sont utilisables également : Bi₂ Sr₂ CaCu₂O₈, Th₂Ba₂ CaCu₂O₈, Bi₂ Sr₂ Ca₂ Cu₂ O₁₀..... On considérera, ici une forme extérieure circulaire, cor­respondant à l'utilisation du matériau sous forme de ruban. Des formes différentes sont également envisageables (rectangulaires (avec des angles arrondis favorables à hautes densités de courant) ...) dans le cas d'une réalisation du matériau supraconducteur sous forme d'un dépôt de couche mince sur un substrat.The closed loop 7 is made of YBa₂ Cu₃ O₇ type superconductive material, forming the main current loop of the compensation device. Other superconductive materials can also be used: Bi₂ Sr₂ CaCu₂O₈, Th₂Ba₂ CaCu₂O₈, Bi₂ Sr₂ Ca₂ Cu₂ O₁₀ ..... We will consider here a circular external shape, corresponding to the use of the material in the form of ribbon. Different shapes are also conceivable (rectangular (with favorable rounded angles at high current densities) ...) in the case of an embodiment of the superconductive material in the form of a deposit of thin layer on a substrate.

Les dimensions typiques du ruban sont:
- diamètre extérieur de la boucle : environ 1,5 mètre
- largeur : environ 1 centimètre
- épaisseur : environ 10 à 100 µmètre.
Typical ribbon dimensions are:
- outside diameter of the loop: about 1.5 meters
- width: about 1 cm
- thickness: about 10 to 100 µm.

De telles valeurs autorisent des densités de courant de 10⁴ à 10⁵ ampères/cm² et sont donc compatibles avec l'intensité nécessaire à l'obtention du moment magnétique souhaité, soit ici :

Figure imgb0002
Such values allow current densities of 10⁴ to 10⁵ amperes / cm² and are therefore compatible with the intensity necessary to obtain the desired magnetic moment, i.e. here:
Figure imgb0002

Le cadre 8 supporte le circuit précédent et est de forme type "couronne". Ce cadre peut être réalisé en matériau composite comme le panneau 6 et comporte un revêtement adéquat, destiné à maintenir la température de la boucle 7 à un niveau correspondant à son état supracon­ducteur (ici de l'ordre de 75°K compte tenu d'une marge convenable). On utilisera à cet effet en principe de la peinture noire sur la face du côté de la boucle 7 et un revêtement thermiquement isolant multi-couches sur l'autre face (côté du panneau 6).The frame 8 supports the previous circuit and is of the "crown" type. This frame can be made of composite material like the panel 6 and has an adequate coating, intended to maintain the temperature of the loop 7 at a level corresponding to its superconductive state (here of the order of 75 ° K taking into account a suitable margin). In principle, black paint will be used for this purpose on the side of the loop 7 side and a multi-layer thermally insulating coating on the other side (side of the panel 6).

Le cadre 8 est relié mécaniquement au panneau support 6 au moyen de supports 13 en matériau à très faible conductivité thermique (fibre de carbone par exemple) d'une hauteur assurant un écartement suffisant entre le panneau 6 et le cadre 8 (typiquement 10 cm).The frame 8 is mechanically connected to the support panel 6 by means of supports 13 made of material with very low thermal conductivity (carbon fiber for example) of a height ensuring sufficient spacing between the panel 6 and the frame 8 (typically 10 cm) .

Le circuit auxiliaire 9 est en matériau conducteur (aluminium par exemple) ; il est destiné à l'initialisation du courant dans la boucle principale 7. Ses dimensions extérieures sont sensiblement les mêmes que celles de la boucle (sections circulaires équivalentes, diamètres voisins) et son implantation s'effectue sur la face opposée (exposée au soleil) en vue d'un impact thermique minimal sur la boucle 7 quand celle-ci est à l'état supraconducteur et que du courant circule dans la boucle 9.The auxiliary circuit 9 is made of conductive material (aluminum for example); it is intended for the initialization of the current in the main loop 7. Its external dimensions are substantially the same as those of the loop (equivalent circular sections, neighboring diameters) and its installation is carried out on the opposite face (exposed to the sun) for a minimal thermal impact on the loop 7 when the latter is in the superconductive state and current flows in the loop 9.

Ce circuit ou boucle auxiliaire est en pratique un bobinage à spires parallèles à la boucle 7.This auxiliary circuit or loop is in practice a winding with turns parallel to the loop 7.

Lors de l'initialisation du système, cette boucle auxiliaire 9 est alimentée en courant au moyen du générateur solaire (commande à bord du satellite), pendant le temps nécessaire (de l'ordre de quelques minutes) aux opérations d'initialisation. Le courant devant circuler est tel que le flux induit dans la boucle principale 7 corresponde à l'intensité de courant souhaitée dans cette boucle. Compte tenu du fort couplage entre les deux boucles, une valeur voisine en Ampères.tours répartis sur n spires de courant est nécessaire, soit environ 600 Ampères.tours ici.When the system is initialized, this auxiliary loop 9 is supplied with current by means of the solar generator (control on board the satellite), for the time necessary (of the order of a few minutes) for the initialization operations. The current to flow is such that the flow induced in the main loop 7 corresponds to the desired current intensity in this loop. Given the strong coupling between the two loops, a value close to Ampere.tours distributed over n turns of current is necessary, i.e. around 600 Ampere.tours here.

Le nombre de spires n est tel que la tension aux bornes du circuit 9 corresponde au plus à celle fournie par le générateur solaire au satellite. Avec une tension d'environ 50 volts, on obtient par exemple de l'ordre de 100 à 200 spires d'une section de l'ordre du millimètre carré.The number of turns n is such that the voltage at the terminals of circuit 9 corresponds at most to that supplied by the solar generator to the satellite. With a voltage of about 50 volts, we obtain for example of the order of 100 to 200 turns of a section of the order of a square millimeter.

La méthode d'initialisation de la boucle 7, à l'aide d'une boucle auxiliaire D décrite ici, n'est pas limitative. On peut envisager d'autres dispositifs, reposant par exemple sur l'injection directe d'un courant dans la boucle 7, en utilisant un commutateur supracon­ducteur.The initialization method of loop 7, using an auxiliary loop D described here, is not limiting. One can envisage other devices, based for example on the direct injection of a current into the loop 7, by using a superconductive switch.

Le circuit 10 est destiné au réchauffage local de la boucle 7 ; il est destiné à annuler ses propriétés supraconductrice de cette boucle 7 lorsque cela s'avère nécessaire. Ce circuit est réalisé au moyen d'un résistor, d'une longueur de quelques centimètres, en matériau résistif (type Nickel Chrome ou graphite par exemple), alimenté par le générateur solaire.The circuit 10 is intended for local heating of the loop 7; it is intended to cancel its superconductive properties of this loop 7 when necessary. This circuit is made by means of a resistor, a few centimeters in length, made of resistive material (such as Nickel Chromium or graphite for example), powered by the solar generator.

Le circuit de commande schématisé en 11 est connecté à la partie électrique du générateur solaire (ou à des batteries) à la boucle auxiliaire 9 et au circuit résistif 10. Il sert à déclencher et interrompre l'alimen­tation électrique des éléments 9 et 10.The control circuit shown diagrammatically at 11 is connected to the electrical part of the solar generator (or to batteries) to the auxiliary loop 9 and to the resistive circuit 10. It is used to trigger and interrupt the electrical supply of the elements 9 and 10.

Le fonctionnement de l'ensemble du système s'effectue comme indiqué précédemment.How the whole system works is carried out as previously indicated.

La modulation du couple de compensation de façon à compenser les variations saisonnières du couple de pression de radiation solaire (de l'ordre de 10 %, du fait de l'inclinaison de 23°5 de l'orbite terrestre), ou de tout autre perturbateur de nature différente, éventuellement, peut être obtenue :
- par un fonctionnement de la boucle 7 commandé en tout ou rien : cette boucle 7 est dimensionnée de façon à compenser la valeur maximum du couple perturbateur ; et son fonctionnement est interrompu périodiquement selon une loi de contrôle prédéterminée (ou déterminable au sol ou à bord) adaptée à suivre en moyenne les variations de couple perturbateur. Le nombre d'interruptions/ré-initialisations n'est pas limité ;
- par un dispositif de contrôle du niveau du moment magnétique total du système décrit précédemment ;
- par l'utilisation d'une boucle secondaire découplée des précédentes, dont l'intensité du courant y circulant est assujettie à suivre les seules variations, saisonnières ou autres ;
- par la mise en oeuvre de plusieurs ensembles 4 indépendants, de puissances avantageusement différentes ; par le choix approprié de ceux de ces ensembles que l'on active ou non à un moment donné, on peut varier le couple compensateur total et suivre par paliers les variations du couple perturbateur (par exemple il peut y avoir 3 ensembles dont deux ensembles de puissance plus faibles que le premier).
The modulation of the compensation torque so as to compensate for the seasonal variations in the torque of solar radiation pressure (of the order of 10%, due to the 23 ° 5 tilt of the Earth's orbit), or any other disruptive of a different nature, possibly, can be obtained:
- By an operation of the loop 7 controlled in all or nothing: this loop 7 is dimensioned so as to compensate for the maximum value of the disturbing torque; and its operation is periodically interrupted according to a predetermined control law (or determinable on the ground or on board) adapted to follow on average the variations in disturbing torque. There is no limit to the number of interruptions / resets;
- By a device for controlling the level of the total magnetic moment of the system described above;
- by the use of a secondary loop decoupled from the previous ones, the intensity of the current flowing therein is subject to following only seasonal or other variations;
- By the implementation of several independent sets 4, of advantageously different powers; by the appropriate choice of those of these sets which one activates or not at a given moment, one can vary the total compensating torque and follow in stages the variations of the disturbing torque (for example there can be 3 sets including two sets of lower power than the first).

Il va de soi que la description qui précède n'a été proposée qu'à titre d'exemple non limitatif et que de nombreuses variantes peuvent être proposées par l'homme de l'art sans sortir du cadre de l'invention.It goes without saying that the foregoing description has been offered only by way of nonlimiting example and that numerous variants can be proposed by those skilled in the art without departing from the scope of the invention.

Claims (10)

1. Satellite comportant un générateur solaire (2) déployable orientable vis à vis du corps (1) de satellite et destiné à être maintenu en permanence en regard du Soleil, ainsi qu'un dispositif (4) de stabilisa­tion d'attitude, caractérisé en ce que ce dispositif de stabilisation d'attitude comporte au moins :
- une boucle fermée (7) en matériau supracon­ducteur portée par un support lié (6) au générateur solaire, et disposée sur une face de ce support qui est sensiblement orientée à l'opposé du Soleil ;
- une boucle secondaire (9) parallèle à la boucle fermée, sensiblement de même forme et dimensions que la boucle fermée, portée par ce support à proximité de cette boucle ;
- un circuit résistif (10) porté par ce support à proximité d'une partie au moins de la boucle fermée ; et
- un circuit électrique (11) d'alimentation sélective connecté électriquement à la boucle secondaire et au circuit résistif.
1. Satellite comprising a deployable solar generator (2) orientable with respect to the body (1) of the satellite and intended to be permanently maintained facing the Sun, as well as a device (4) for attitude stabilization, characterized in what this attitude stabilization device comprises at least:
- a closed loop (7) of superconductive material carried by a support linked (6) to the solar generator, and disposed on one face of this support which is substantially oriented opposite the Sun;
- A secondary loop (9) parallel to the closed loop, substantially of the same shape and dimensions as the closed loop, carried by this support near this loop;
- a resistive circuit (10) carried by this support near at least part of the closed loop; and
- an electric circuit (11) of selective supply electrically connected to the secondary loop and to the resistive circuit.
2. Satellite selon la revendication 1, caractérisé en ce que la boucle fermée (7) en matériau supraconducteur est dans un plan parallèle aux panneaux du générateur solaire.2. Satellite according to claim 1, characterized in that the closed loop (7) of superconductive material is in a plane parallel to the panels of the solar generator. 3. Satellite selon la revendication 1 ou la revendication 2, caractérisé en ce que le support (6) est un panneau additionnel lié mécaniquement au générateur solaire.3. Satellite according to claim 1 or claim 2, characterized in that the support (6) is an additional panel mechanically linked to the solar generator. 4. Satellite selon la revendication 3, caractérisé en ce que ce panneau additionnel est articulé sur l'extrémité du générateur solaire qui est le plus éloigné du corps de satellite.4. Satellite according to claim 3, characterized in that this additional panel is articulated on the end of the solar generator which is furthest from the body of the satellite. 5. Satellite selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la boucle fermée (7) en matériau supraconducteur est formée d'un ruban sensiblement circulaire.5. Satellite according to any one of claims 1 to 4, characterized in that the closed loop (7) of superconductive material is formed of a substantially circular ribbon. 6. Satellite selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la boucle fermée est constituée par un dépôt de couches minces de matériau supraconducteur sur un substrat.6. Satellite according to any one of claims 1 to 4, characterized in that the closed loop consists of a deposit of thin layers of superconductive material on a substrate. 7. Satellite selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la boucle fermée est portée par un cadre (8) relié mécaniquement au support par des moyens (13) en matériau thermiquement isolant.7. Satellite according to any one of claims 1 to 6, characterized in that the closed loop is carried by a frame (8) mechanically connected to the support by means (13) of thermally insulating material. 8. Satellite selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la boucle secondaire (9) est disposée sur le support à l'opposé de cette boucle.8. Satellite according to any one of claims 1 to 7, characterized in that the secondary loop (9) is arranged on the support opposite this loop. 9. Satellite selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le circuit résistif (10) et la boucle secondaire (9) sont alimentés électriquement par le générateur solaire.9. Satellite according to any one of claims 1 to 8, characterized in that the resistive circuit (10) and the secondary loop (9) are electrically supplied by the solar generator. 10. Satellite selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le générateur solaire est à aile unique.10. Satellite according to any one of claims 1 to 9, characterized in that the solar generator is single wing.
EP90401488A 1989-06-23 1990-06-01 Attitude control system using a supraconductive magnetic coil Expired - Lifetime EP0404621B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908416 1989-06-23
FR8908416A FR2648782B1 (en) 1989-06-23 1989-06-23 SATELLITE ATTITUDE MONITORING SYSTEM USING A SUPERCONDUCTING MAGNETIC LOOP

Publications (2)

Publication Number Publication Date
EP0404621A1 true EP0404621A1 (en) 1990-12-27
EP0404621B1 EP0404621B1 (en) 1993-09-01

Family

ID=9383080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90401488A Expired - Lifetime EP0404621B1 (en) 1989-06-23 1990-06-01 Attitude control system using a supraconductive magnetic coil

Country Status (7)

Country Link
US (1) US5141180A (en)
EP (1) EP0404621B1 (en)
JP (1) JP3038228B2 (en)
CA (1) CA2018386A1 (en)
DE (1) DE69003028T2 (en)
ES (1) ES2044473T3 (en)
FR (1) FR2648782B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603869A1 (en) * 1992-12-22 1994-06-29 Hughes Aircraft Company Magnetic torque attitude control system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682931B1 (en) * 1991-10-28 1994-01-28 Aerospatiale Ste Nationale Indle SPACE OBSERVATION VEHICLE, ESPECIALLY INFRARED, WITH COOLED DETECTOR SYSTEM CONNECTED BY SUPERCONDUCTING WIRES.
US5399405A (en) * 1993-06-14 1995-03-21 Morgan Adhesives Company Trunk security seal
US6861770B2 (en) * 2001-11-13 2005-03-01 Craig Travers Using the transition state of a superconductor to produce energy
CN103818565B (en) * 2014-03-18 2016-03-30 西北工业大学 A kind of PCB magnetic torquer device and preparation method thereof
RU2568827C1 (en) * 2014-08-14 2015-11-20 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (АО "ВПК "НПО машиностроения") Magnetic unloading of spacecraft flywheel engines
JP6323277B2 (en) * 2014-09-19 2018-05-16 三菱電機株式会社 Solar panel
CN104570853B (en) * 2014-12-18 2017-04-05 中国科学院长春光学精密机械与物理研究所 Highly reliable combination intelligent spatial overlay
US10618678B1 (en) * 2015-10-20 2020-04-14 Space Systems/Loral, Llc Self-balancing solar array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390848A (en) * 1966-05-19 1968-07-02 Air Force Usa Magnetic torquing of spin axis stabilization
CH470288A (en) * 1966-02-28 1969-03-31 Gen Electric satellite
EP0295978A1 (en) * 1987-05-22 1988-12-21 Centre National D'etudes Spatiales Method and Device for positioning a spacecraft in the direction of a celestial body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2048666A1 (en) * 1970-09-25 1972-05-31 Goeres H D Superconducting coil in supratransformer and in flying objects with associated commutators
US4034941A (en) * 1975-12-23 1977-07-12 International Telephone And Telegraph Corporation Magnetic orientation and damping device for space vehicles
US4939976A (en) * 1988-04-01 1990-07-10 Minovitch Michael Andrew Electromagnetic ground to orbit propulsion method and operating system for high mass payloads
US5017549A (en) * 1989-10-31 1991-05-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electromagnetic Meissner effect launcher

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH470288A (en) * 1966-02-28 1969-03-31 Gen Electric satellite
US3390848A (en) * 1966-05-19 1968-07-02 Air Force Usa Magnetic torquing of spin axis stabilization
EP0295978A1 (en) * 1987-05-22 1988-12-21 Centre National D'etudes Spatiales Method and Device for positioning a spacecraft in the direction of a celestial body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603869A1 (en) * 1992-12-22 1994-06-29 Hughes Aircraft Company Magnetic torque attitude control system

Also Published As

Publication number Publication date
FR2648782B1 (en) 1991-10-18
JPH0331100A (en) 1991-02-08
EP0404621B1 (en) 1993-09-01
JP3038228B2 (en) 2000-05-08
DE69003028D1 (en) 1993-10-07
CA2018386A1 (en) 1990-12-23
US5141180A (en) 1992-08-25
DE69003028T2 (en) 1994-01-13
FR2648782A1 (en) 1990-12-28
ES2044473T3 (en) 1994-01-01

Similar Documents

Publication Publication Date Title
EP1247741B1 (en) Deployable radiator for spacecraft
CA2969037C (en) Radiator deployable for a satellite stabilized on three axes
EP0436425B1 (en) Attitude control system provided by solar sails for a satellite stabilized around three axes
EP0404621B1 (en) Attitude control system using a supraconductive magnetic coil
FR2681041A1 (en) THERMAL REGULATION ARRANGEMENTS FOR A GEOSYNCHRONOUS SPACE MACHINE.
EP3118103A1 (en) Balloon equipped with a concentrated solar generator and employing an optimised arrangement of solar cells to power said balloon in flight
EP2597031B1 (en) Balloon comprising photovoltaic means and an apparatus for concentrating sun light
EP3003860B1 (en) Space craft comprising at least one pair of supporting arms, said arm pair being equipped with a hollow mounting module, and method for employing such a craft
FR2710314A1 (en) 3-axis stabilized satellite with geocentric pointing in low orbit with orientable 1-axis solar generator.
EP0519038A1 (en) Method for controlling the pitch attitude of a satellite by means of solar radiation pressure, and a satellite, for implementing same.
FR2522614A1 (en) CONFIGURATION OF SATELLITE WITH EQUATORIAL ORBIT WITH PERFECTED SOLAR MEANS
US3778312A (en) Solar cell generator for flight missions in the vicinity of the sun
WO2016097575A1 (en) Spacecraft
EP3433173A1 (en) Spacecraft
WO2010034730A2 (en) Photovoltaic cell array with mechanical uncoupling of the cells from the carrier thereof
FR2472509A1 (en) ARTIFICIAL SATELLITE CONFIGURATION FOR CONTINUOUS ATTITUDE MONITORING FOLLOWING THREE AXES
EP0100715A1 (en) De-icing device for an aerodynamic angle detector
EP0064917B1 (en) Method of bringing an artificial satellite into orbit
FR2789653A1 (en) Low orbit satellite constellation solar panel support system having extending arm lengthened satellite body attached and solar panels arm end 360 degree rotatable with limited second axis movement.
FR3096030A1 (en) Air vehicle without humans on board with electromagnetically protective housing and mechanically protected airfoil
EP0817744B1 (en) Device for adjusting a solar panel on a spacecraft, and spacecraft comprising same
EP3413355B1 (en) Solar panel including mainly a structure and at least two photovoltaic cells
FR2472853A1 (en) ANTENNA WITH AN ADJUSTABLE BEAM AND SATELLITE COMPRISING SUCH ANTENNA
EP0887260A1 (en) Satellite with enhanced thermal rejection
FR3067520A1 (en) SOLAR PANEL COMPRISING A STRUCTURE, AT LEAST TWO PHOTOVOLTAIC CELLS AND A BARRIER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL SE

17P Request for examination filed

Effective date: 19910309

17Q First examination report despatched

Effective date: 19921119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL SE

REF Corresponds to:

Ref document number: 69003028

Country of ref document: DE

Date of ref document: 19931007

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931011

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2044473

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940617

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940630

Year of fee payment: 5

Ref country code: ES

Payment date: 19940630

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90401488.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950602

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19950602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960101

EUG Se: european patent has lapsed

Ref document number: 90401488.3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000512

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000526

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050601