EP0401107A1 - Combustion chamber for ram jet - Google Patents

Combustion chamber for ram jet Download PDF

Info

Publication number
EP0401107A1
EP0401107A1 EP90401425A EP90401425A EP0401107A1 EP 0401107 A1 EP0401107 A1 EP 0401107A1 EP 90401425 A EP90401425 A EP 90401425A EP 90401425 A EP90401425 A EP 90401425A EP 0401107 A1 EP0401107 A1 EP 0401107A1
Authority
EP
European Patent Office
Prior art keywords
chamber
flow
injection
injection device
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90401425A
Other languages
German (de)
French (fr)
Other versions
EP0401107B1 (en
Inventor
Philippe H. Ramette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Europeenne de Propulsion SEP SA
Original Assignee
Societe Europeenne de Propulsion SEP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Europeenne de Propulsion SEP SA filed Critical Societe Europeenne de Propulsion SEP SA
Publication of EP0401107A1 publication Critical patent/EP0401107A1/en
Application granted granted Critical
Publication of EP0401107B1 publication Critical patent/EP0401107B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion

Definitions

  • the present invention relates to a supersonic combustion ramjet.
  • Supersonic combustion ramjet engines are currently being studied for the propulsion of hypersonic vehicles, for example recoverable space planes with horizontal takeoff.
  • the propulsion phase by supersonic combustion ramjet makes it possible to accelerate the vehicle by the speed - approximately Mach 6 - reached at the end of the propulsion phase by subsonic combustion ramjet, up to a speed of approximately Mach 15 to Mach 25.
  • the air circulates at a speed which is always supersonic in the middle of the air stream, where the wall effects are hardly felt, and the fuel, generally hydrogen gas. is introduced through the wall of the chamber.
  • the injection of the hydrogen gas flow is generally carried out by holes or slots formed in the wall of the chamber. It is difficult to ensure a satisfactory mixture between hydrogen and air, and therefore to obtain good energy efficiency, without aerodynamic flow losses due to interactions or shocks between the air flow and the flow.
  • injected hydrogen In fact, an injection of hydrogen through holes directed towards the axis of the combustion chamber necessarily produces shocks between the gas flows.
  • the hydrogen is injected tangentially to the wall of the chamber, it tends to remain confined against it under the effect of the air flowing at high speed in the chamber, and combustion occurs. incomplete because of the short air residence time in the room.
  • the present invention aims to provide a ramjet chamber with supersonic combustion into which a flow of gaseous fuel can be introduced without creating damaging shocks with the air flowing in the chamber, at speed. supersonic, while obtaining satisfactory energy efficiency.
  • a ramjet comprising a combustion chamber intended to be traversed longitudinally by an air flow at supersonic speed, and a first injection device for injecting into the chamber a flow of gaseous fuel with a speed entry into the chamber having a low amplitude transverse component
  • ramjet in which a second injection device is located downstream of the first, in the direction of the flow of air at supersonic speed, for injecting into the chamber a flow of gaseous oxidizer which contributes to detaching from the wall of the chamber the flow of gaseous fuel injected by the first injection device.
  • the first injection device preferably comprises a first wall part of the combustion chamber, for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.
  • a first wall part of the combustion chamber for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.
  • the second injection device can be produced in the same way.
  • porous material through which the gas flow transpires is an injection means which is perfectly suitable for injecting the gas flow into the chamber with an input speed having a radial component of low amplitude.
  • the porous material is advantageously a porous composite material with a ceramic or carbon matrix.
  • a material is particularly suitable for producing a device for injecting a gas flow into a ramjet combustion chamber.
  • thermostructural that is to say a mechanical behavior at high temperature which makes it possible to produce an injection device constituting a structural element of the chamber.
  • the porosity of this material can be controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix.
  • a material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide), or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.
  • the wall of the chamber at least in its parts adjacent to the injection devices, is also made of non-porous composite material with ceramic or carbon matrix.
  • the connection between the injection devices and the other parts of the wall of the combustion chamber can then advantageously be carried out by co-densification of the wall parts forming injection devices and of the other wall parts assembled in an incomplete state. densified. This co-densification is preferably carried out by chemical vapor deposition.
  • Injection methods other than by transpiration through a porous material may be used to inject the flow of gaseous fuel or the flow of gaseous oxidant.
  • the fuel flow must be injected with a low speed radial component so as not to cause violent interactions or shocks with the air flow at supersonic speed; it is preferably the same for the injection of the gaseous oxidant flow.
  • Injectors or injection orifices opening into the chamber substantially tangentially to the wall thereof may be provided.
  • the chamber 10 is of cylindrical shape with circular section and comprises, in the direction of air flow at supersonic speed (arrow A), an upstream sealed section 12, a first injection ring 20 for the injection of a flow of gaseous fuel, a central sealed section 14, a second injection ring 30 for the injection of a flow of gaseous oxidizer and a downstream sealed section 16.
  • the interior surfaces of the sections 12, 14, 16 and injection rings 20, 30 define the continuous cylindrical internal wall of the ramjet chamber.
  • the outer surface of the ring 20 defines a chamber 22 for injecting gaseous fuel which communicates with a fuel source (not shown).
  • the fuel is for example hydrogen which is injected in the gaseous state, the pressure prevailing in the injection chamber 22 being greater than that prevailing in the combustion chamber of the ramjet.
  • the ring 20 is made in a single piece of porous refractory composite material.
  • the porosity of the material constituting the ring 20 gives the latter the permeability necessary to allow the injection of the gaseous flow of hydrogen by transpiration through the injection ring.
  • the hydrogen gas flow thus enters the chamber with a low radial velocity component.
  • the flow of hydrogen injected into the combustion chamber is defined by the porosity of the injection ring, the length of the latter, and the pressure difference between the outer and inner surfaces of the ring.
  • the constituent material of the ring 20 is a composite material consisting of a refractory fibrous reinforcement partially densified by a ceramic material, or of a fibrous carbon reinforcement partially densified by a carbon matrix and protected against oxidation.
  • a refractory fibrous reinforcement partially densified by a ceramic material
  • a fibrous carbon reinforcement partially densified by a carbon matrix and protected against oxidation.
  • the preform is made of carbon fibers or ceramic fibers, for example fibers essentially of silicon carbide.
  • the fiber preform is produced by winding on a mandrel of a strip of fabric until the desired thickness is obtained.
  • the superimposed layers of fabric can be linked together by needling or implantation of threads.
  • the preform is densified by gas or by liquid.
  • a matrix is produced by chemical vapor infiltration of ceramic material, for example silicon carbide, or carbon (for a protected C / C type material).
  • the preform is impregnated with a precursor of the matrix material, which is then obtained by heat treatment.
  • an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume ratio of approximately 35% and densifying it by chemical vapor infiltration of silicon carbide until reaching a residual porosity of about 40
  • the ring 30 delimits by its outer surface a chamber 32 for injecting gaseous oxidant.
  • This can consist of air taken from the surrounding medium or oxygen from a source (not shown).
  • the ring 30 is made in a single piece of porous composite material either with a ceramic matrix, for example in C / SiC material, or of C / C type protected against oxidation, in the same way as the ring 20.
  • the porosity of the material of the ring 30 gives the latter the permeability necessary to allow the injection of a flow of gaseous oxidizer by transpiration through the ring 30, the pressure in the injection chamber 32 being greater than that prevailing in the chamber ramjet.
  • the flow of gaseous oxidizer into the chamber is therefore also carried out with a low radial velocity component.
  • the sections 12, 14, 16 of the ramjet chamber are preferably also made of a composite material with a ceramic or carbon matrix.
  • a material having a reinforcement and a matrix of the same type as those of the injection rings 20 and 30 will be chosen.
  • the sections 12, 14 and 16 are sealed, the seal being obtained by densification sufficiently advanced to fill the porosity of the fibrous reinforcement until the material is impermeable.
  • connection between the sections 12, 14, 16 of the wall of the chamber 10 and the injection rings 20, 30 is produced by co-densification.
  • the sections 12, 14, 16 and the rings 20, 30 are produced separately while being incompletely densified with respect to the desired degree of final densification.
  • the elements are then assembled end to end and placed in an infiltration oven to undergo a final co-densification by chemical vapor infiltration.
  • the continuity of the matrix material at the interfaces between the sections 12, 14, 16 and the rings 20, 30 ensures the connection between these elements.
  • This final co-densification is continued until the desired degree of porosity is obtained for the injection rings 20 and 30, the sections 12, 14, 16 having previously been sufficiently pre-densified to finally obtain the desired seal.
  • the gas flow 34 of oxidant transpiring through the injection ring 30 forces the gas flow 24 of fuel to move away from the wall of the chamber 10 despite the supersonic air flow having tendency to press it against this wall.
  • a satisfactory mixture is thus obtained between the combustible gas and the oxidizer constituted by the supersonic air and the flow 34.
  • Complete combustion of the combustible gas can thus be carried out in a very short time, without creating violent interactions between the current d supersonic air and gas flows transpiring through the injection rings. This results in an increase in performance of the ramjet chamber, therefore better thrust and specific impulse of the propulsion system.
  • porous materials for example porous metallic structures, can be used in the case of a metallic chamber.

Abstract

Supersonic combustion ramjet comprising a combustion chamber, through which an air flow is intended to pass longitudinally at supersonic speed; a first injection device (20) for injecting a gaseous fuel flow (24) into the chamber at a speed of entry into the chamber having a transverse component of low amplitude; and a second injection device (30) located downstream of the first in the direction of flow of the air at supersonic speed, in order to inject into the chamber a gaseous oxidant flow (34) which contributes to breaking away from the wall of the chamber the gaseous fuel flow (24) injected by the first injection device. <IMAGE>

Description

La présente invention concerne un statoréacteur à combustion supersonique.The present invention relates to a supersonic combustion ramjet.

Les statoréacteurs à combustion supersonique sont actuellement étudiés pour la propulsion de véhicules hypersoniques, par exemple les avions spatiaux récupérables à décollage horizontal. La phase de propulsion par statoréacteur à combustion supersonique permet en effet d'accélérer le véhicule de la vitesse - environ Mach 6 - atteinte en fin de phase de propulsion par statoréacteur à combustion subsonique, jusqu'à une vitesse d'environ Mach 15 à Mach 25.Supersonic combustion ramjet engines are currently being studied for the propulsion of hypersonic vehicles, for example recoverable space planes with horizontal takeoff. The propulsion phase by supersonic combustion ramjet makes it possible to accelerate the vehicle by the speed - approximately Mach 6 - reached at the end of the propulsion phase by subsonic combustion ramjet, up to a speed of approximately Mach 15 to Mach 25.

Dans une chambre de statoréacteur à combustion supersonique, l'air circule à une vitesse qui est toujours supersonique dans le milieu de la veine d'air, où les effets de paroi se font peu sentir, et le combustible, généralement de l'hydrogène gazeux est introduit à travers la paroi de la chambre.In a supersonic combustion ramjet chamber, the air circulates at a speed which is always supersonic in the middle of the air stream, where the wall effects are hardly felt, and the fuel, generally hydrogen gas. is introduced through the wall of the chamber.

L'injection du flux d'hydrogène gazeux est généralement réalisée par des trous ou des fentes formés dans la paroi de la chambre. Il est difficile d'assurer un mélange satisfaisant entre l'hydrogène et l'air, donc d'obtenir un bon rendement énergétique, sans pertes d'écoulement aérodynamique dues à des interactions ou chocs entre l'écoulement de l'air et le flux d'hydrogène injecté. En effet, une injection d'hydrogène par des trous dirigés vers l'axe de la chambre de combustion produit nécessairement des chocs entre les écoulements gazeux. Par contre, si l'hydrogène est injecté tangentiellement à la paroi de la chambre, il a tendance à rester confiné contre celle-ci sous l'effet de l'air s'écoulant à haute vitesse dans la chambre, et la combustion se produit de façon incomplète en raison du bref temps de séjour de l'air dans la chambre.The injection of the hydrogen gas flow is generally carried out by holes or slots formed in the wall of the chamber. It is difficult to ensure a satisfactory mixture between hydrogen and air, and therefore to obtain good energy efficiency, without aerodynamic flow losses due to interactions or shocks between the air flow and the flow. injected hydrogen. In fact, an injection of hydrogen through holes directed towards the axis of the combustion chamber necessarily produces shocks between the gas flows. On the other hand, if the hydrogen is injected tangentially to the wall of the chamber, it tends to remain confined against it under the effect of the air flowing at high speed in the chamber, and combustion occurs. incomplete because of the short air residence time in the room.

La présente invention vise à fournir une chambre de statoréacteur à combustion supersonique dans laquelle un flux de combustible gazeux peut être introduit sans créer de chocs préjudiciables avec l'air s'écoulant dans la chambre, à vitesse supersonique, tout en obtenant un rendement énergétique satisfaisant.The present invention aims to provide a ramjet chamber with supersonic combustion into which a flow of gaseous fuel can be introduced without creating damaging shocks with the air flowing in the chamber, at speed. supersonic, while obtaining satisfactory energy efficiency.

Ce but est atteint au moyen d'un statoréacteur comprenant une chambre de combustion destinée à être parcourue longitudinalement par un flux d'air à vitesse supersonique, et un premier dispositif d'injection pour injecter dans la chambre un flux de combustible gazeux avec une vitesse d'entrée dans la chambre ayant une composante transversale de faible amplitude, statoréacteur dans lequel un deuxième dispositif d'injection est situé en aval du premier, dans le sens de l'écoulement de l'air à vitesse supersonique, pour injecter dans la chambre un flux de comburant gazeux qui contribue à décoller de la paroi de la chambre le flux de combustible gazeux injecté par le premier dispositif d'injection.This object is achieved by means of a ramjet comprising a combustion chamber intended to be traversed longitudinally by an air flow at supersonic speed, and a first injection device for injecting into the chamber a flow of gaseous fuel with a speed entry into the chamber having a low amplitude transverse component, ramjet in which a second injection device is located downstream of the first, in the direction of the flow of air at supersonic speed, for injecting into the chamber a flow of gaseous oxidizer which contributes to detaching from the wall of the chamber the flow of gaseous fuel injected by the first injection device.

Le premier dispositif d'injection comprend de préférence une première partie de paroi de la chambre de combustion, par exemple une partie en forme d'anneau, qui est réalisée en un matériau perméable au flux de combustible gazeux à injecter dans la chambre et qui a une surface constituant une partie de la surface intérieure de la chambre et une surface opposée en communication avec une source du combustible gazeux à injecter, de sorte que l'injection du flux de combustible gazeux est réalisée par transpiration à travers la porosité du matériau poreux constitutif du premier dispositif d'injection.The first injection device preferably comprises a first wall part of the combustion chamber, for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.

Le deuxième dispositif d'injection peut être réalisé de la même façon.The second injection device can be produced in the same way.

L'utilisation d'un matériau poreux à travers lequel transpire le flux gazeux est un moyen d'injection qui convient parfaitement pour injecter le flux gazeux dans la chambre avec une vitesse d'entrée ayant une composante radiale de faible amplitude.The use of a porous material through which the gas flow transpires is an injection means which is perfectly suitable for injecting the gas flow into the chamber with an input speed having a radial component of low amplitude.

Le matériau poreux est avantageusement un matériau composite poreux à matrice céramique ou carbone. Un tel matériau est particulièrement adapté à la réalisation d'un dispositif d'injection d'un flux gazeux dans une chambre de combustion de statoréacteur. En effet, un tel matériau a des propriétés thermostructurales, c'est-à-dire un comportement mécanique à température élevée qui permet de réaliser un dispositif d'injection constituant un élément de structure de la chambre. En outre, la porosité de ce matériau peut être contrôlée en agissant sur le taux volumique de fibres constitutives de sa texture fibreuse de renfort et/ou sur le degré de densification par le matériau constitutif de la matrice.The porous material is advantageously a porous composite material with a ceramic or carbon matrix. Such a material is particularly suitable for producing a device for injecting a gas flow into a ramjet combustion chamber. Indeed, such a material has properties thermostructural, that is to say a mechanical behavior at high temperature which makes it possible to produce an injection device constituting a structural element of the chamber. In addition, the porosity of this material can be controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix.

Un matériau de type C/SiC (renfort en fibres de carbone et matrice en carbure de silicium), ou de type SiC/SiC (renfort en fibres essentiellement en carbure de silicium et matrice en carbure de silicium), ou de type C/C protégé (renfort en fibres de carbone, matrice de carbone et protection anti-oxydation), pourra convenir.A material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide), or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.

De préférence, la paroi de la chambre, au moins dans ses parties adjacentes aux dispositifs d'injection, est réalisée également en matériau composite non poreux à matrice céramique ou carbone. La liaison entre les dispositifs d'injection et les autres parties de la paroi de la chambre de combustion peut alors être avantageusement réalisée par co-densification des parties de paroi formant dispositifs d'injection et des autres parties de paroi assemblées à l'état incomplètement densifiés. Cette co-densification est réalisée de préférence par dépôt chimique en phase vapeur.Preferably, the wall of the chamber, at least in its parts adjacent to the injection devices, is also made of non-porous composite material with ceramic or carbon matrix. The connection between the injection devices and the other parts of the wall of the combustion chamber can then advantageously be carried out by co-densification of the wall parts forming injection devices and of the other wall parts assembled in an incomplete state. densified. This co-densification is preferably carried out by chemical vapor deposition.

Des procédés d'injection autres que par transpiration à travers un matériau poreux pourront être utilisés pour injecter le flux de combustible gazeux ou le flux de comburant gazeux. L'injection du flux de combustible doit être réalisée avec une composante radiale de vitesse faible pour ne pas provoquer d'interactions ou chocs violents avec le flux d'air à vitesse supersonique ; il en est de préférence de même pour l'injection du flux de comburant gazeux. Des injecteurs ou orifices d'injection débouchant dans la chambre sensiblement tangentiellement à la paroi de celle-ci peuvent être prévus.Injection methods other than by transpiration through a porous material may be used to inject the flow of gaseous fuel or the flow of gaseous oxidant. The fuel flow must be injected with a low speed radial component so as not to cause violent interactions or shocks with the air flow at supersonic speed; it is preferably the same for the injection of the gaseous oxidant flow. Injectors or injection orifices opening into the chamber substantially tangentially to the wall thereof may be provided.

L'invention sera mieux comprise à la lecture de la description faite ci-après, à titre indicatif, mais non limitatif, en référence au dessin annexé sur lequel la figure unique est une vue très schématique, en coupe axiale, d'une chambre de statoréacteur à combustion supersonique constituant un mode particulier de réalisation de l'invention.The invention will be better understood on reading the description given below, for information, but not limitation, with reference to the appended drawing in which the single figure is a very schematic view, in axial section, of a ramjet chamber with supersonic combustion constituting a particular embodiment of the invention.

Dans l'exemple illustré, la chambre 10 est de forme cylindrique à section circulaire et comprend, dans le sens d'écoulement de l'air à vitesse supersonique (flèche A), un tronçon étanche amont 12, un premier anneau d'injection 20 pour l'injection d'un flux de combustible gazeux, un tronçon étanche central 14, un deuxième anneau d'injection 30 pour l'injection d'un flux de comburant gazeux et un tronçon étanche aval 16. Les surfaces intérieures des tronçons 12, 14, 16 et des anneaux d'injection 20, 30 définissent la paroi interne continue cylindrique de la chambre du statoréacteur.In the example illustrated, the chamber 10 is of cylindrical shape with circular section and comprises, in the direction of air flow at supersonic speed (arrow A), an upstream sealed section 12, a first injection ring 20 for the injection of a flow of gaseous fuel, a central sealed section 14, a second injection ring 30 for the injection of a flow of gaseous oxidizer and a downstream sealed section 16. The interior surfaces of the sections 12, 14, 16 and injection rings 20, 30 define the continuous cylindrical internal wall of the ramjet chamber.

La surface extérieure de l'anneau 20 délimite une chambre 22 d'injection de combustible gazeux qui communique avec une source de combustible (non représentée). Le combustible est par exemple de l'hydrogène qui est injecté à l'état gazeux, la pression régnant dans la chambre d'injection 22 étant supérieure à celle régnant dans la chambre de combustion du statoréacteur.The outer surface of the ring 20 defines a chamber 22 for injecting gaseous fuel which communicates with a fuel source (not shown). The fuel is for example hydrogen which is injected in the gaseous state, the pressure prevailing in the injection chamber 22 being greater than that prevailing in the combustion chamber of the ramjet.

L'anneau 20 est réalisé en une seule pièce en matériau composite réfractaire poreux. La porosité du matériau constitutif de l'anneau 20 confère à ce dernier la perméabilité nécessaire pour permettre l'injection du flux gazeux d'hydrogène par transpiration à travers l'anneau d'injection. Le flux gazeux d'hydrogène pénètre ainsi dans la chambre avec une composante de vitesse radiale faible. Le débit d'hydrogène injecté dans la chambre de combustion est défini par la porosité de l'anneau d'injection, la longueur de celui-ci, et la différence de pression entre les surfaces extérieure et intérieure de l'anneau.The ring 20 is made in a single piece of porous refractory composite material. The porosity of the material constituting the ring 20 gives the latter the permeability necessary to allow the injection of the gaseous flow of hydrogen by transpiration through the injection ring. The hydrogen gas flow thus enters the chamber with a low radial velocity component. The flow of hydrogen injected into the combustion chamber is defined by the porosity of the injection ring, the length of the latter, and the pressure difference between the outer and inner surfaces of the ring.

Le matériau constitutif de l'anneau 20 est un matériau composite constitué d'un renfort fibreux réfractaire partiellement densifié par une matière céramique, ou d'un renfort fibreux en carbone partiellement densifié par une matrice de carbone et protégé contre l'oxydation. Pour la fabrication de l'anneau, on réalise une préforme annulaire qui constitue le renfort fibreux. La préforme est réalisée en fibres de carbone ou en fibres céramique, par exemple en fibres essentiellement en carbure de silicium. A titre d'exemple, la préforme fibreuse est réalisée par bobinage sur un mandrin d'une bande de tissu jusqu'à obtention de l'épaisseur désirée. Les couches de tissu superposées peuvent être liées entre elles par aiguilletage ou implantation de fils.The constituent material of the ring 20 is a composite material consisting of a refractory fibrous reinforcement partially densified by a ceramic material, or of a fibrous carbon reinforcement partially densified by a carbon matrix and protected against oxidation. For the manufacture of the ring, we produces an annular preform which constitutes the fibrous reinforcement. The preform is made of carbon fibers or ceramic fibers, for example fibers essentially of silicon carbide. By way of example, the fiber preform is produced by winding on a mandrel of a strip of fabric until the desired thickness is obtained. The superimposed layers of fabric can be linked together by needling or implantation of threads.

La densification de la préforme est réalisée par voie gazeuse ou par voie liquide. Dans le premier cas, on réalise une matrice par infiltration chimique en phase vapeur de matériau céramique, par exemple du carbure de silicium, ou de carbone (pour un matériau de type C/C protégé). Dans le deuxième cas, la préforme est imprégnée par un précurseur du matériau de la matrice, celle-ci étant obtenue ensuite par traitement thermique.The preform is densified by gas or by liquid. In the first case, a matrix is produced by chemical vapor infiltration of ceramic material, for example silicon carbide, or carbon (for a protected C / C type material). In the second case, the preform is impregnated with a precursor of the matrix material, which is then obtained by heat treatment.

La durée d'infiltration chimique en phase vapeur ou le nombre de cycles imprégnation liquide-thermolyse sont choisis afin d'obtenir la porosité finale désirée compte-tenu de la porosité initiale de la préforme. A titre indicatif, on pourra réaliser un anneau d'injection en matériau céramique C/SiC en fabriquant une préforme en fibres de carbone ayant un taux volumique de fibres d'environ 35 % et en densifiant celle-ci par infiltration chimique en phase vapeur de carbure de silicium jusqu'à atteindre une porosité résiduelle d'environ 40The duration of chemical vapor infiltration or the number of liquid-thermolysis impregnation cycles are chosen in order to obtain the desired final porosity taking into account the initial porosity of the preform. As an indication, an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume ratio of approximately 35% and densifying it by chemical vapor infiltration of silicon carbide until reaching a residual porosity of about 40

Dans le cas d'un matériau de type C/C, un traitement spécifique sera effectué pour protéger le matériau contre l'oxydation. Différents traitements de protection anti-oxydation des composites C/C sont bien connus.In the case of a C / C type material, a specific treatment will be carried out to protect the material against oxidation. Various anti-oxidation protection treatments for C / C composites are well known.

L'anneau 30 délimite par sa surface extérieure une chambre 32 d'injection de comburant gazeux. Celui-ci peut être constitué par de l'air prélevé dans le milieu environnant ou de l'oxygène provenant d'une source (non représentée).The ring 30 delimits by its outer surface a chamber 32 for injecting gaseous oxidant. This can consist of air taken from the surrounding medium or oxygen from a source (not shown).

L'anneau 30 est réalisé en une seule pièce en matériau composite poreux soit à matrice céramique, par exemple en matériau C/SiC, soit de type C/C protégé contre l'oxydation, de la même manière que l'anneau 20. La porosité du matériau constitutif de l'anneau 30 confère à ce dernier la perméabilité nécessaire pour permettre l'injection d'un flux de comburant gazeux par transpiration à travers l'anneau 30, la pression dans la chambre d'injection 32 étant supérieure à celle régnant dans la chambre du statoréacteur. L'entrée du flux de comburant gazeux dans la chambre est donc aussi réalisée avec une composante de vitesse radiale faible.The ring 30 is made in a single piece of porous composite material either with a ceramic matrix, for example in C / SiC material, or of C / C type protected against oxidation, in the same way as the ring 20. The porosity of the material of the ring 30 gives the latter the permeability necessary to allow the injection of a flow of gaseous oxidizer by transpiration through the ring 30, the pressure in the injection chamber 32 being greater than that prevailing in the chamber ramjet. The flow of gaseous oxidizer into the chamber is therefore also carried out with a low radial velocity component.

Les tronçons 12, 14, 16 de la chambre de statoréacteur sont de préférence également en un matériau composite à matrice céramique ou carbone. Avantageusement, on choisira un matériau ayant un renfort et une matrice de même nature que ceux des anneaux d'injection 20 et 30. Toutefois, contrairement aux anneaux 20 et 30, les tronçons 12, 14 et 16 sont étanches, l'étanchéité étant obtenue par une densification suffisamment poussée pour combler la porosité du renfort fibreux jusqu'à rendre le matériau imperméable.The sections 12, 14, 16 of the ramjet chamber are preferably also made of a composite material with a ceramic or carbon matrix. Advantageously, a material having a reinforcement and a matrix of the same type as those of the injection rings 20 and 30 will be chosen. However, unlike the rings 20 and 30, the sections 12, 14 and 16 are sealed, the seal being obtained by densification sufficiently advanced to fill the porosity of the fibrous reinforcement until the material is impermeable.

De façon avantageuse, la liaison entre les tronçons 12, 14, 16 de la paroi de la chambre 10 et les anneaux d'injection 20, 30 est réalisé par co-densification. A cet effet, les tronçons 12, 14, 16 et les anneaux 20, 30 sont réalisés séparément en étant incomplètement densifiés par rapport au degré de densification finale désiré. Les éléments sont ensuite assemblés bout à bout et disposés dans un four d'infiltration pour subir une co-densification finale par infiltration chimique en phase vapeur. Au cours de la co-densification finale, la continuité du matériau de la matrice aux interfaces entre les tronçons 12, 14, 16 et les anneaux 20, 30 assure la liaison entre ces éléments. Cette co-densification finale est poursuivie jusqu'à obtenir le degré de porosité voulu pour les anneaux d'injection 20 et 30, les tronçons 12, 14, 16 ayant été précédemment suffisamment pré-densifiés pour obtenir finalement l'étanchéité désirée.Advantageously, the connection between the sections 12, 14, 16 of the wall of the chamber 10 and the injection rings 20, 30 is produced by co-densification. To this end, the sections 12, 14, 16 and the rings 20, 30 are produced separately while being incompletely densified with respect to the desired degree of final densification. The elements are then assembled end to end and placed in an infiltration oven to undergo a final co-densification by chemical vapor infiltration. During the final co-densification, the continuity of the matrix material at the interfaces between the sections 12, 14, 16 and the rings 20, 30 ensures the connection between these elements. This final co-densification is continued until the desired degree of porosity is obtained for the injection rings 20 and 30, the sections 12, 14, 16 having previously been sufficiently pre-densified to finally obtain the desired seal.

Comme le montre schématiquement la figure, le flux gazeux 34 de comburant transpirant à travers l'anneau d'injection 30 oblige le flux gazeux 24 de combustible à s'écarter de la paroi de la chambre 10 en dépit du courant d'air supersonique ayant tendance à le plaquer contre cette paroi. On obtient ainsi un mélange satisfaisant entre le gaz combustible et le comburant constitué par l'air supersonique et le flux 34. Une combustion complète du gaz combustible peut ainsi être réalisée en un temps très court, sans créer d'interactions violentes entre le courant d'air supersonique et les flux gazeux transpirant à travers lesanneaux d'injection. Il en résulte une augmentation de performance de la chambre de statoréacteur, donc de meilleures poussée et impulsion spécifique du système propulsif.As shown schematically in the figure, the gas flow 34 of oxidant transpiring through the injection ring 30 forces the gas flow 24 of fuel to move away from the wall of the chamber 10 despite the supersonic air flow having tendency to press it against this wall. A satisfactory mixture is thus obtained between the combustible gas and the oxidizer constituted by the supersonic air and the flow 34. Complete combustion of the combustible gas can thus be carried out in a very short time, without creating violent interactions between the current d supersonic air and gas flows transpiring through the injection rings. This results in an increase in performance of the ramjet chamber, therefore better thrust and specific impulse of the propulsion system.

L'on a envisagé ci-avant la réalisation de l'injection des flux gazeux dans la chambre par transpiration à travers un anneau d'injection en matériau composite poreux à matrice céramique.It has been envisaged above carrying out the injection of the gas flows into the chamber by transpiration through an injection ring of porous composite material with ceramic matrix.

D'autres types de matériaux poreux, par exemple des structures métalliques poreuses, peuvent être utilisées dans le cas d'une chambre métallique.Other types of porous materials, for example porous metallic structures, can be used in the case of a metallic chamber.

Claims (9)

1. Statoréacteur à combustion supersonique comprenant une chambre de combustion destinée à être parcourue longitudinalement par un flux d'air à vitesse supersonique, et un premier dispositif d'injection (20) pour injecter dans la chambre un flux de combustible gazeux (24) avec une vitesse d'entrée dans la chambre ayant une composante transversale de faible amplitude, caractérisé en ce qu'un deuxième dispositif d'injection (30) est situé en aval du premier, dans le sens de l'écoulement de l'air à vitesse supersonique, pour injecter dans la chambre un flux de comburant gazeux (34) qui contribue à décoller de la paroi de la chambre le flux de combustible gazeux (24) injecté par le premier dispositif d'injection.1. Supersonic combustion statoreactor comprising a combustion chamber intended to be traversed longitudinally by an air flow at supersonic speed, and a first injection device (20) for injecting into the chamber a flow of gaseous fuel (24) with an entry speed into the chamber having a transverse component of low amplitude, characterized in that a second injection device (30) is located downstream of the first, in the direction of the flow of air at speed supersonic, for injecting into the chamber a flow of gaseous oxidant (34) which contributes to detaching from the wall of the chamber the flow of gaseous fuel (24) injected by the first injection device. 2. Statoréacteur selon la revendication 1, caractérisé en ce que le premier dispositif d'injection comprend une première partie de paroi de la chambre de combustion qui est réalisée en un matériau perméable au flux de combustible gazeux à injecter dans la chambre et qui a une surface constituant une partie de la surface intérieure de la chambre et une surface opposée en communication avec une source du combustible gazeux à injecter, de sorte que l'injection du flux de combustible gazeux est réalisée par transpiration à travers la porosité du matériau poreux constitutif du premier dispositif d'injection.2. Statoreactor according to claim 1, characterized in that the first injection device comprises a first wall part of the combustion chamber which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting the first injection device. 3. Statoréacteur selon la revendication 2, caractérisé en ce que la première partie de paroi de la chambre est en forme d'anneau en matériau poreux.3. Statoreactor according to claim 2, characterized in that the first part of the wall of the chamber is in the form of a ring of porous material. 4. Statoréacteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le deuxième dispositif d'injection comprend une deuxième partie de paroi de la chambre de combustion qui est réalisée en un matériau perméable au flux de comburant gazeux à injecter dans la chambre et qui a une surface constituant une partie de la surface intérieure de la chambre et une surface opposée en communication avec une source du comburant gazeux à injecter, de sorte que l'injection du flux de comburant gazeux est réalisée par transpiration à travers la porosité du matériau poreux constitutif du deuxième dispositif d'injection.4. Statoreactor according to any one of claims 1 to 3, characterized in that the second injection device comprises a second wall portion of the combustion chamber which is made of a material permeable to the flow of gaseous oxidant to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous oxidant to be injected, so that the injection of the gaseous oxidant flow is carried out by transpiration through the porosity of the porous material constituting the second injection device. 5. Statoréacteur selon la revendication 4, caractérisé en ce que la deuxième partie de paroi de la chambre est en forme d'anneau en matériau poreux.5. Statoreactor according to claim 4, characterized in that the second part of the wall of the chamber is in the form of a ring of porous material. 6. Statoréacteur selon l'une quelconque des revendications 2 à 5, caractérisé en ce que le matériau poreux est un matériau composite poreux choisi parmi les composites à matrice céramique et les composites de type carbone/carbone.6. Statoreactor according to any one of claims 2 to 5, characterized in that the porous material is a porous composite material chosen from composites with a ceramic matrix and composites of the carbon / carbon type. 7. Statoréacteur selon la revendication 6, caractérisé en ce que le matériau poreux est choisi parmi un composite de type C/SiC et un composite de type SiC/SiC.7. Statoreactor according to claim 6, characterized in that the porous material is chosen from a C / SiC type composite and a SiC / SiC type composite. 8. Statoréacteur selon l'une quelconque des revendications 6 et 7, caractérisé en ce que les parties de paroi de la chambre (12, 14, 16) adjacentes aux dispositifs d'injection (20, 30) sont réalisées en un matériau composite étanche choisi parmi les composites à matrice céramique et les composites de type carbone/carbone.8. Statoreactor according to any one of claims 6 and 7, characterized in that the wall parts of the chamber (12, 14, 16) adjacent to the injection devices (20, 30) are made of a waterproof composite material chosen from ceramic matrix composites and carbon / carbon type composites. 9. Statoréacteur selon la revendication 8, caractérisé en ce que le matériau composite poreux constitutif des dispositifs d'injection (20, 30) et le matériau composite étanche constitutif des parties de paroi (12, 14, 16) adjacentes aux dispositifs d'injection sont de même type avec des degrés de densification différents.9. Statoreactor according to claim 8, characterized in that the porous composite material constituting the injection devices (20, 30) and the waterproof composite material constituting the wall parts (12, 14, 16) adjacent to the injection devices are of the same type with different degrees of densification.
EP19900401425 1989-05-29 1990-05-29 Combustion chamber for ram jet Expired - Lifetime EP0401107B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8907019 1989-05-29
FR8907019A FR2647533B1 (en) 1989-05-29 1989-05-29 SUPERSONIC COMBUSTION STATOREACTOR CHAMBER

Publications (2)

Publication Number Publication Date
EP0401107A1 true EP0401107A1 (en) 1990-12-05
EP0401107B1 EP0401107B1 (en) 1993-07-21

Family

ID=9382105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900401425 Expired - Lifetime EP0401107B1 (en) 1989-05-29 1990-05-29 Combustion chamber for ram jet

Country Status (4)

Country Link
EP (1) EP0401107B1 (en)
JP (1) JPH0396645A (en)
DE (1) DE69002281T2 (en)
FR (1) FR2647533B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004156A1 (en) * 1997-07-17 1999-01-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Combustion chamber and method for producing a combustion chamber
FR2836699A1 (en) * 2002-03-04 2003-09-05 Eads Launch Vehicles ROCKET MOTOR
FR2836698A1 (en) * 2002-03-04 2003-09-05 Eads Launch Vehicles COMBUSTION CHAMBER FOR STATOREACTOR AND STATOREACTOR PROVIDED WITH SUCH A COMBUSTION CHAMBER
CN103343983A (en) * 2013-07-31 2013-10-09 哈尔滨工业大学 Supersonic-speed stable combustion method based on strong magnetic field stable electric arc
GB2518211A (en) * 2013-09-13 2015-03-18 Carolyn Billie Knight Evaporative wick/membrane rocket motor
CN108317541A (en) * 2018-02-26 2018-07-24 中国科学院力学研究所 A kind of punching engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522558B2 (en) * 2000-08-11 2010-08-11 実 屋我 Method and apparatus for promoting fuel mixing for a scramjet engine
CN113530709B (en) * 2021-09-16 2021-12-14 西安空天引擎科技有限公司 Bimodal hydrogen peroxide gas generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658332A (en) * 1951-03-21 1953-11-10 Carborundum Co Fluid cooled, refractory, ceramic lined rocket structure
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
GB1046909A (en) * 1963-08-26 1966-10-26 Gur Charan Saini Rocket thrust chambers
DE1278319B (en) * 1963-11-28 1969-04-17 Bbc Brown Boveri & Cie Process for protecting surface parts of a heat-resistant body that have been swept over by hot media
FR2158572A1 (en) * 1971-11-05 1973-06-15 Penny Robert
US3864907A (en) * 1973-11-05 1975-02-11 Us Air Force Step cylinder combustor design
GB2053873A (en) * 1979-07-19 1981-02-11 Europ Propulsion High temperature thermal insulation material and method for making same
GB2089434A (en) * 1980-12-09 1982-06-23 Rolls Royce Composite Ducts for Jet Pipes
GB2196393A (en) * 1986-10-14 1988-04-27 Gen Electric Propulsion apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE253189C (en) *

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658332A (en) * 1951-03-21 1953-11-10 Carborundum Co Fluid cooled, refractory, ceramic lined rocket structure
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
GB1046909A (en) * 1963-08-26 1966-10-26 Gur Charan Saini Rocket thrust chambers
DE1278319B (en) * 1963-11-28 1969-04-17 Bbc Brown Boveri & Cie Process for protecting surface parts of a heat-resistant body that have been swept over by hot media
FR2158572A1 (en) * 1971-11-05 1973-06-15 Penny Robert
US3864907A (en) * 1973-11-05 1975-02-11 Us Air Force Step cylinder combustor design
GB2053873A (en) * 1979-07-19 1981-02-11 Europ Propulsion High temperature thermal insulation material and method for making same
GB2089434A (en) * 1980-12-09 1982-06-23 Rolls Royce Composite Ducts for Jet Pipes
GB2196393A (en) * 1986-10-14 1988-04-27 Gen Electric Propulsion apparatus and method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004156A1 (en) * 1997-07-17 1999-01-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Combustion chamber and method for producing a combustion chamber
US6151887A (en) * 1997-07-17 2000-11-28 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Combustion chamber for rocket engine
FR2836699A1 (en) * 2002-03-04 2003-09-05 Eads Launch Vehicles ROCKET MOTOR
FR2836698A1 (en) * 2002-03-04 2003-09-05 Eads Launch Vehicles COMBUSTION CHAMBER FOR STATOREACTOR AND STATOREACTOR PROVIDED WITH SUCH A COMBUSTION CHAMBER
EP1342904A1 (en) * 2002-03-04 2003-09-10 Eads Launch Vehicles Combustion chamber for a ram-jet and ram-jet with such a combustion chamber
EP1342905A1 (en) * 2002-03-04 2003-09-10 Eads Launch Vehicles Rocket motor
WO2003074858A2 (en) * 2002-03-04 2003-09-12 Eads Space Transportation Sa Ramjet engine combustion chamber and ramjet engine equipped with same
WO2003074859A1 (en) * 2002-03-04 2003-09-12 Eads Space Transportation Sa Rocket engine
WO2003074858A3 (en) * 2002-03-04 2004-04-01 Eads Space Transportation Sa Ramjet engine combustion chamber and ramjet engine equipped with same
US6915627B2 (en) 2002-03-04 2005-07-12 Eads Space Transportation Sa Rocket engine
US7000398B2 (en) 2002-03-04 2006-02-21 Eads Space Transportation Sa Ramjet engine combustion chamber and ramjet engine equipped with same
CN103343983A (en) * 2013-07-31 2013-10-09 哈尔滨工业大学 Supersonic-speed stable combustion method based on strong magnetic field stable electric arc
CN103343983B (en) * 2013-07-31 2014-12-24 哈尔滨工业大学 Supersonic-speed stable combustion method based on strong magnetic field stable electric arc
GB2518211A (en) * 2013-09-13 2015-03-18 Carolyn Billie Knight Evaporative wick/membrane rocket motor
GB2518211B (en) * 2013-09-13 2015-11-18 Carolyn Billie Knight Rocket motor with combustion chamber having porous membrane
CN108317541A (en) * 2018-02-26 2018-07-24 中国科学院力学研究所 A kind of punching engine
CN108317541B (en) * 2018-02-26 2020-07-07 中国科学院力学研究所 Ramjet engine

Also Published As

Publication number Publication date
DE69002281D1 (en) 1993-08-26
DE69002281T2 (en) 1994-01-27
JPH0396645A (en) 1991-04-22
FR2647533A1 (en) 1990-11-30
EP0401107B1 (en) 1993-07-21
FR2647533B1 (en) 1993-03-19

Similar Documents

Publication Publication Date Title
EP0604279B1 (en) Injector with porous wall for a rocket combustion chamber
EP0817762B1 (en) Composite material protected from oxidation by a self-healing matrix, and method for making same
EP1045971B1 (en) Heat exchanger in composite material and method for making same
FR2869609A1 (en) PROCESS FOR MANUFACTURING A THERMOSTRUCTURAL COMPOSITE MATERIAL PART
EP2132426A1 (en) Cmc mixer with structural outer cowling
EP0401107B1 (en) Combustion chamber for ram jet
FR2852003A1 (en) Production of a multi-perforated component in a composite material with a ceramic base involves the insertion and elimination of pins in a consolidated fibrous preformer, notably for the combustion chamber of a jet engine
WO2002070775A1 (en) Chemical vapour infiltration method for densifying porous substrates having a central passage
EP1342905B1 (en) Rocket motor
FR2944062A1 (en) Tricoaxial structure type injector for injecting e.g. liquid hydrogen in combustion chamber of rocket engine, has aerodynamic bowl fixed at downstream end of injector body and widened toward inner side of combustion body
FR2791589A1 (en) METHOD FOR MANUFACTURING A COOLING ROCKET MOTOR NOZZLE AND NOZZLE OBTAINED
EP0421865B1 (en) Rocket combustion chamber
EP1342904B1 (en) Combustion chamber for a ram-jet and ram-jet with such a combustion chamber
CA2429393A1 (en) Improvements to methods for calefaction densification of a porous structure
EP0517593A1 (en) Composite gun barrel liner and method for producing same
Patterson et al. Advanced HfC-TaC oxidation resistant composite rocket thruster
EP0401106B1 (en) Reactor chamber and method of manufacture
WO1993013636A1 (en) Method for making a sealed passage in a refractory composite part, and application to the production of a refractory composite structure cooled by fluid circulation
CA2971421A1 (en) Tooling and impregnation process for a fibrous revolution preform
FR3113496A1 (en) Process for depositing a coating on a wire under a microwave field
FR3081156A1 (en) PROCESS FOR MANUFACTURING A COATED CMC PART
EP4192690A1 (en) Additive manufacturing process for producing a structure
FR3084445A1 (en) MANUFACTURE OF A COMBUSTION CHAMBER OF COMPOSITE MATERIAL
FR3027959B1 (en) FIRE PROTECTION OF A COMPOSITE MATERIAL PART OF A GAS TURBINE
FR2645071A1 (en) Method of producing holes in a component made of composite material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19901217

17Q First examination report despatched

Effective date: 19920109

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69002281

Country of ref document: DE

Date of ref document: 19930826

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000512

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000523

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301