EP0394411A1 - An electrochemical sensor - Google Patents

An electrochemical sensor

Info

Publication number
EP0394411A1
EP0394411A1 EP19890911745 EP89911745A EP0394411A1 EP 0394411 A1 EP0394411 A1 EP 0394411A1 EP 19890911745 EP19890911745 EP 19890911745 EP 89911745 A EP89911745 A EP 89911745A EP 0394411 A1 EP0394411 A1 EP 0394411A1
Authority
EP
European Patent Office
Prior art keywords
measuring element
electrode
polymer layer
sample
covered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19890911745
Other languages
German (de)
French (fr)
Inventor
Karl Harnoncourt
Gerald BRANDSTÄTTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0394411A1 publication Critical patent/EP0394411A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen

Definitions

  • the invention relates to an electrochemical sensor for detecting chemical and physicochemical parameters of an aqueous sample with a measuring element which has an inert carrier electrode, the parts of which are free from an electrically insulating coating and are covered by an electron conductor from a polymer layer which is stable in aqueous media .
  • the signal acquisition in conventional electrochemical sensors takes place, for example, with metal / metal salt derivatives (for example calomel electrodes, Ag / AgCl electrodes, etc.) which are immersed in ion-stable aqueous solutions which, together with the selective element (pH-selective glass membrane, ion-selective membranes of all kinds, etc.) form the actual measuring element or establish a connection to the sample or measurement solution that is as electrically neutral as possible when they are used as part of a reference electrode.
  • metal / metal salt derivatives for example calomel electrodes, Ag / AgCl electrodes, etc.
  • the selective element pH-selective glass membrane, ion-selective membranes of all kinds, etc.
  • the H ⁇ -selective membrane in conventional pH glass electrodes consists of a special glass. Swelling in the aqueous sample medium leads to the incorporation of H ⁇ or OH _ ions into the glass framework.
  • plastics are used as carrier elements on or in which the substances responsible for the selectivity are fixed.
  • REPLACEMENT LEAF Position by the need for their conditioning in aqueous solutions on the surface provided for the measurement, and by the production costs.
  • problems such as high impedance, fragility, chemical resistance, etc. arise.
  • an electrical signal derivative e.g. a calomel electrode
  • the aqueous connection solution preferably saturated KCl solution.
  • the filling electrolyte is connected to the sample to be measured via an opening or a diaphragm, for example a glass frit.
  • This electrode must also be protected from drying out and takes several days until a stable potential is set again after it has been filled again.
  • coagulation denaturation of protein
  • these reference electrodes are not sufficiently stable in blood isotonic solutions.
  • a further disadvantage of these reference electrodes is the contamination, which arises from the open electrolyte bridge, especially in stand-by mode, with drying-out KCl solution escaping.
  • An electrochemical sensor of the type mentioned at the outset has become known, for example, from EP-A 0 056 283.
  • the pH sensor described there has an electrically conductive element, preferably made of platinum, as the carrier electrode, which is insulated with a Teflon layer and the free part of which is covered by an electrically conductive polymer layer.
  • the polymer layer, which is immobilized directly on the carrier electrode, consists of at least one aromatic compound in the form of nitrogen-containing aromatic compounds, such as, for example, aniline and pyrrole, or aromatic hydroxy compounds, such as e.g. Phenol.
  • the polymer layer is designed for low impedance and can be polymerized by electrochemical oxidation on the surface of the carrier electrode. Furthermore, it is known from EP-A 0 228 969, by attaching an ion-selective layer which covers the polymer layer, to produce ion sensors which, depending on the ion-selective substance incorporated, can be used to determine the concentration of different ions i nen.
  • the conductive polymers mentioned can be regarded as solid redox systems which form a constant electrochemical potential in a corresponding charge state. This can be used as a reference potential for electrochemical potential measurements.
  • Conductive polymers with basic or acidic groups have a characteristic potential / pH dependence in certain pH ranges, which largely corresponds to that of the classic glass electrode.
  • the polymer layer of the measuring element which is present as a solid is an electron conductor.
  • the polymer layer can be applied directly to an inert electrode.
  • the measuring element has a stable potential in relation to many, especially biological electrolyte solutions.
  • the measuring element is not damaged by drying out.
  • the low layer thickness of the polymer layer of only 0.1 to 500 / um ensures that the sensor responds quickly to changing parameters in the sample.
  • the object of the present invention is also others with the disadvantages described at the outset Affected electrochemical sensors, in particular reference electrodes and electrodes for measuring C0 2, are easier, more robust and cheaper to manufacture.
  • this object is achieved in that the measuring element for realizing a C0 2 electrode is arranged in a housing filled with an H 2 C0 3 / HC0 3 _ buffer, the sample-side opening of which is connected to a C0 2 - resting on the polymer layer of the measuring element. permeable membrane is closed.
  • the measurement of the CO 2 concentration is carried out as follows.
  • C0 2 passes through a gas-permeable membrane into an electrolyte space which is filled with bicarbonate buffer solution.
  • the shift in the equilibrium leads to a change in pH, which can be measured with the aid of the measuring element according to the invention.
  • a major advantage of this CO 2 electrode is that the polymer layer itself can be designed so that the CO 2 permeable membrane lies directly above it.
  • the polymer layer not only serves as a sensor layer, but also as a spacer, since its interior is electrolyte-swollen.
  • the advantageous construction also achieves better geometric stability of the measuring layer.
  • a further measuring element essentially designed like the first measuring element and in contact with the H 2 C0 3 / HC0 3 _ buffer, is provided in the housing, the second of the C0 2 permeable membrane being provided uncovered measuring element acts as a reference electrode.
  • An embodiment variant of the C0 2 electrode with internal reference electrode provides that the carrier electrode of the reference electrode is sleeve-shaped and includes the insulation of a signal lead leading away from the measuring element, and that the outer surface of the sleeve-shaped carrier electrode is covered with the polymer layer .
  • the C0 2 permeable membrane can consist of a Teflon film.
  • the polymer layer of the measuring element consists of medium-oxidized polyaniline.
  • acidic electrolytes the existence of three different oxidation levels of the polymer is observed (reduced I, medium oxidized II and fully oxidized III).
  • neutral pH range however, only two different oxidation states should be possible (reduced IV and oxidized V).
  • Form II By producing Form II in the acidic medium, a defined mixture of Forms IV and V can be achieved in neutral solution.
  • the polymer shows three states in acid; above pH 5-6, only two oxidation states can be distinguished.
  • the potential of the polyaniline layer is essentially determined by the degree of oxidation caused by the production and by the pH of the electrolyte.
  • a further advantageous embodiment of the invention is given in that the measuring element for realizing a reference electrode is arranged in a housing filled with an electrolyte, the sample-side opening of which has a diaphragm.
  • Conductive polymers require a constant electrochemical environment in order to provide a stable potential, but different ions have little influence on the potential. It is therefore also possible according to the invention to use a physiological saline solution (Ringer's solution) as a filling electrolyte for the reference electrode. The denaturing problems mentioned at the beginning are thus solved.
  • an enzyme is immobilized on or in the polymer layer of the measuring element in order to implement a biochemical electrode.
  • the polymerization takes place, for example, on a gold electrode in a potentiodynamically controlled manner. This means that the potential of the working electrode is checked against a non-polarizable reference electrode via a three-electrode circuit. The current flows through a polarizable electrode (counter-electrode).
  • the electrode potential is varied in the form of a triangular voltage over 25 cycles between -200 and +800 mV (voltage feed lOmV / sec.). At the end of the polymerization, a constant potential of +400 mV is kept constant for a long time in order to produce the medium-oxidized polyaniline form.
  • FIG. 1 shows a measuring element according to the prior art
  • FIG. 2 shows a reference electrode according to the invention with a measuring element according to FIG. 1,
  • FIG. 3 shows a measuring arrangement with a pH and a reference electrode according to the invention
  • FIG. 4 shows a C0 3 electrode according to the invention
  • FIG. 5 shows a detail from FIG. 4
  • FIG. 6 shows an embodiment variant according to FIG. 4.
  • the measuring element 1 consists of an inert carrier electrode 2 to which the conductive polymer layer 3 made of polyaniline, poly-naphthylamine or one of its substituted derivatives is applied by electrochemical polymerization.
  • the detection of the measurement signals takes place via the signal lead 4, which is electrically conductively connected to the carrier electrode 2.
  • the parts of the carrier electrode 2 not covered by the polymer layer 3, and the signal lead 4, have an electrically insulating sheath 5.
  • the layer thickness d of the polymer layer 2 is approximately 0.1 to 500 ⁇ m .
  • the electrode potential is determined, for example, by the equilibrium between two solid phases, an oxidized (P 0 ) and a reduced P R. If:
  • the measuring element 1 is arranged in a housing 13 filled with an electrolyte, which has an opening 14 with a diaphragm 15 on the sample side.
  • Both the housing 13 and the U-cladding 5 of the measuring element 1 can be made of plexiglass, glass or the like, for example.
  • the diaphragm 15 separating the electrolyte, for example a Ringer's solution, from the sample can be a membrane provided with pores or a glass frit.
  • FIG. 3 shows a measuring arrangement for pH measurement in biological media, a known pH electrode and a reference electrode according to FIG. 2 being used.
  • the measuring circuit is closed by a high-resistance voltmeter 16.
  • the measuring element 1 With a C0 2 electrode shown in FIG. 4, the measuring element 1 is arranged ange ⁇ in a container filled with a buffer solution housing 17. As shown in detail in FIG. 5, the sample-side opening 18 of the housing 17 is closed with a C0 2 -permeable membrane 19 lying against the polymer layer 3 of the measuring element 1. At a distance from the membrane 19, a further measuring element 1, which is in contact with the buffer solution, is arranged in the housing 17 as a reference electrode 20. The signal leads 4, 4 'lead to a voltmeter 16. In measuring operation, CO 2 dissolved in the sample diffuses through the CO 2 permeable membrane 19 into the electrolyte film of the swollen polymer layer 3 and shifts the equilibrium
  • the changing potential on the measuring element leads together with the signal of the reference electrode 20 to the measuring signal.
  • the carrier electrode 2 of the reference electrode 20 can be sleeve-shaped and comprise the insulation 21 of the signal lead 4 leading away from the measuring element 1, thereby shielding it.
  • the outer surface 22 of the sleeve-shaped carrier electrode 2 is covered with the polymer layer 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

L'élément de mesure d'un détecteur électrochimique présente une électrode-support inerte, dont les parties exemptes d'une gaine électriquement isolante, sont recouvertes d'un conducteur électronique formé d'une couche polymère stable en milieu aqueux. L'élément de mesure peut dès lors, en vue de réaliser une électrode au CO2, être disposé à l'intérieur d'une enveloppe (17) remplie d'un tampon H2CO3/HCO3-, dont l'ouverture (18) située du côté de l'échantillon est obturée par une membrane (19) perméable au CO2, appliquée sur la couche polymère (3) de l'élément de mesure (1), ou encore, le cas échéant, en vue de réaliser une électrode de référence, être disposé à l'intérieur d'une enveloppe (13) remplie d'un électrolyte et dont l'ouverture (14) située du côté de l'échantillon présente un diaphragme (15).The measuring element of an electrochemical detector has an inert support electrode, the parts of which are free from an electrically insulating sheath, are covered with an electronic conductor formed by a polymer layer stable in an aqueous medium. The measuring element can therefore, in order to produce a CO2 electrode, be placed inside an envelope (17) filled with an H2CO3 / HCO3- buffer, the opening (18) of which is located side of the sample is closed by a membrane (19) permeable to CO2, applied to the polymer layer (3) of the measuring element (1), or alternatively, if necessary, in order to produce a reference electrode , be placed inside an envelope (13) filled with an electrolyte and whose opening (14) located on the side of the sample has a diaphragm (15).

Description

Elektrochemischer Sensor Electrochemical sensor
Die Erfindung bezieht sich auf einen elektrochemischen Sensor zur Erfassung chemischer und physikalisch chemischer Parameter einer wäßrigen Probe mit einem Meßelement welches eine inerte Trägerelektrode aufweist, deren von einer elektrisch isolie¬ renden Um antelung freien Teile von einem Elektronenleiter aus einer in wäßrigen Medien stabilen Polymerschicht bedeckt sind.The invention relates to an electrochemical sensor for detecting chemical and physicochemical parameters of an aqueous sample with a measuring element which has an inert carrier electrode, the parts of which are free from an electrically insulating coating and are covered by an electron conductor from a polymer layer which is stable in aqueous media .
Die Signalgewinnung bei herkömmlichen elektrochemischen Senso¬ ren erfolgt beispielsweise mit Metall/Metallsalz Ableitungen (z.B. Kalomel-Elektroden, Ag/AgCl-Elektroden u.a.), die in io¬ nenstabile wäßrige Lösungen eintauchen, welche zusammen mit dem selektiven Element (pH-selektive Glasmembran, ionenselek¬ tive Membranen verschiedenster Art usw.) das eigentliche Me߬ element bilden oder eine möglichst elektrisch neutrale Verbin¬ dung zur Probe oder Meßlösung herstellen, wenn sie als Teil einer Referenzelektrode eingesetzt sind.The signal acquisition in conventional electrochemical sensors takes place, for example, with metal / metal salt derivatives (for example calomel electrodes, Ag / AgCl electrodes, etc.) which are immersed in ion-stable aqueous solutions which, together with the selective element (pH-selective glass membrane, ion-selective membranes of all kinds, etc.) form the actual measuring element or establish a connection to the sample or measurement solution that is as electrically neutral as possible when they are used as part of a reference electrode.
Beispielsweise besteht die H~-selektive Membran bei her¬ kömmlichen pH-Glaselektroden aus einem speziellen Glas. Durch Quellung im wäßrigen Probenmedium kommt es zum Einbau von H~- oder OH_-Ionen in das Glasgerüst.For example, the H ~ -selective membrane in conventional pH glass electrodes consists of a special glass. Swelling in the aqueous sample medium leads to the incorporation of H ~ or OH _ ions into the glass framework.
Bei den ionenselektiven Membranen sind Kunststoffe als Träger¬ elemente in Verwendung, auf oder in welchen die für die Selek¬ tivität verantwortlichen Substanzen fixiert sind.In the case of the ion-selective membranes, plastics are used as carrier elements on or in which the substances responsible for the selectivity are fixed.
Einschränkende Randbedingungen für diese selektiven Sensoren sind gegeben durch die Notwendigkeit, die wäßrige Verbindungs¬ lösung zur Ableitung absolut stabil zu halten (sie muß vor Austrocknung geschützt werden), durch die zeitliche Begrenzt¬ heit der selektiven Eigenschaften der Membranen ab deren Her-Limiting boundary conditions for these selective sensors are given by the need to keep the aqueous connection solution for discharge absolutely stable (it must be protected from drying out), by the time limitation of the selective properties of the membranes from their manufacture.
ERSATZBLATT Stellung, durch die Notwendigkeit von deren Konditionierung in wäßrigen Lösungen auf der für die Messung vorgesehenen Ober¬ fläche, sowie durch die Herstellungskosten. Dabei kommen je nach Sensor unterschiedlich noch Probleme wie Hochohmigkeit, Fragilität, chemische Widerstandsfähigkeit usw.REPLACEMENT LEAF Position, by the need for their conditioning in aqueous solutions on the surface provided for the measurement, and by the production costs. Depending on the sensor, problems such as high impedance, fragility, chemical resistance, etc. arise.
Bei herkömmlichen Referenzelektroden taucht eine elektrische Signalableitung, z.B eine Kalomel-Elektrode in die wäßrige Verbindungslösung, vorzugsweise gesättigte KCl-Lösung, ein. Der Füllelektrolyt steht über eine Öffnung oder ein Dia¬ phragma, beispielsweise eine Glasfritte, mit der zu messenden Probe in Verbindung. Auch diese Elektrode ist vor Austrocknung zu schützen und braucht mehrere Tage, bis nach neuerlicher Füllung wieder ein stabiles Potential eingestellt ist. An der Berührungsfläche von Füllelektrode und Meßlösung kommt es - wenn biologische Flüssigkeiten gemessen werden - zu einer Denaturierung (Koagulation) von Eiweiß, das die Kanäle der Membran verschließt und damit zu störenden Membranpotentialen in der Meßstrecke führt. In blutisotonen Lösungen sind diese Referenzelektroden jedoch nicht ausreichend stabil. Ein wei¬ terer Nachteil dieser Referenzelektroden besteht in der Verun¬ reinigung, die durch die offene Elektrolytbrücke speziell in stand-by-Betrieb entsteht, wobei austrocknende KCl-Lösung aus¬ tritt.With conventional reference electrodes, an electrical signal derivative, e.g. a calomel electrode, is immersed in the aqueous connection solution, preferably saturated KCl solution. The filling electrolyte is connected to the sample to be measured via an opening or a diaphragm, for example a glass frit. This electrode must also be protected from drying out and takes several days until a stable potential is set again after it has been filled again. When biological liquids are measured, there is a denaturation (coagulation) of protein on the contact surface of the filling electrode and the measuring solution, which closes the channels of the membrane and thus leads to disturbing membrane potentials in the measuring section. However, these reference electrodes are not sufficiently stable in blood isotonic solutions. A further disadvantage of these reference electrodes is the contamination, which arises from the open electrolyte bridge, especially in stand-by mode, with drying-out KCl solution escaping.
Ein elektrochemischer Sensor der eingangs genannten Art ist beispielsweise aus der EP-A 0 056 283 bekannt geworden. Der dort beschriebene pH-Sensor weist ein elektrisch leitendes Element, vorzugsweise aus Platin, als Trägerelektrode auf, welche mit einer Teflonschicht isoliert ist und deren freier Teil von einer elektrisch leitenden Polymerschicht bedeckt ist. Die Polymerschicht, welche direkt auf der Trägerelektrode immobilisiert ist, besteht aus mindestens einer aromatischen Verbindung in Form stickstoffhaltiger aromatischer Verbindun¬ gen, wie zum Beispiel Anilin und Pyrrol, oder aromatischer Hy- droxyverbindungen, wie z.B. Phenol.An electrochemical sensor of the type mentioned at the outset has become known, for example, from EP-A 0 056 283. The pH sensor described there has an electrically conductive element, preferably made of platinum, as the carrier electrode, which is insulated with a Teflon layer and the free part of which is covered by an electrically conductive polymer layer. The polymer layer, which is immobilized directly on the carrier electrode, consists of at least one aromatic compound in the form of nitrogen-containing aromatic compounds, such as, for example, aniline and pyrrole, or aromatic hydroxy compounds, such as e.g. Phenol.
Die Polymerschicht ist für eine niedrige Impedanz ausgelegt und kann durch elektrochemische Oxidation auf die Oberfläche der Trägerelektrode polymerisiert werden. Weiters ist es aus der EP-A 0 228 969 bekannt, durch die An¬ bringung einer ionenselektiven Schicht, welche die Polymer¬ schicht bedeckt, Ionensensoren herzus ellen, welche je nach der eingelagerten ionenselektiven Substanz zur Bestimmung der Konzentration unterschiedlicher Ionen herangezogen werden kön¬ i nen.The polymer layer is designed for low impedance and can be polymerized by electrochemical oxidation on the surface of the carrier electrode. Furthermore, it is known from EP-A 0 228 969, by attaching an ion-selective layer which covers the polymer layer, to produce ion sensors which, depending on the ion-selective substance incorporated, can be used to determine the concentration of different ions i nen.
Die genannten leitenden Polymere können als feste Re- dox-Systeme angesehen werden, die bei einem entsprechenden La¬ dungszustand ein konstantes elektrochemisches Potential aus¬ bilden. Dieses kann als Referenzpotential für elektrochemische Potentialmessungen verwendet werden.The conductive polymers mentioned can be regarded as solid redox systems which form a constant electrochemical potential in a corresponding charge state. This can be used as a reference potential for electrochemical potential measurements.
Leitende Polymere mit basischen oder sauren Gruppen (z. B. ba¬ sischer Stickstoff in Polyanilin) weisen in gewissen pH-Bereichen eine charakteristische Potential/pH-Abhängigkeit auf, die weitgehend jener der klassischen Glaselektrode ent¬ spricht .Conductive polymers with basic or acidic groups (e.g. basic nitrogen in polyaniline) have a characteristic potential / pH dependence in certain pH ranges, which largely corresponds to that of the classic glass electrode.
Die positiven Eigenschaften des oben beschriebenen Me߬ elementes seien kurz zusammengefaßt:The positive properties of the measuring element described above are briefly summarized:
1) Die als Festkörper vorliegende Polymerschicht des Me߬ elementes ist ein Elektronenleiter.1) The polymer layer of the measuring element which is present as a solid is an electron conductor.
2) Die Polymerschicht kann direkt auf eine inerte Elektrode aufgebracht werden.2) The polymer layer can be applied directly to an inert electrode.
3) Das Meßelement weist ein stabiles Potential in Bezug auf viele, vor allem biologische Elektrolytlösungen auf.3) The measuring element has a stable potential in relation to many, especially biological electrolyte solutions.
4) Durch Austrocknen wird das Meßelement nicht geschädigt.4) The measuring element is not damaged by drying out.
5) Die Oberflächen des Meßelementes sind leicht zu reinigen.5) The surfaces of the measuring element are easy to clean.
6) Aufgrund der billigen Massenherstellung können Wegwer¬ felektroden bzw. Sensoren erzeugt werden.6) Because of the cheap mass production, disposable electrodes or sensors can be produced.
Durch die geringe Schichtdicke der Polymerschicht von nur 0,1 bis 500 /um ist ein rasches Ansprechen des Sensors auf sich ändernde Parameter in der Probe gewährleistet.The low layer thickness of the polymer layer of only 0.1 to 500 / um ensures that the sensor responds quickly to changing parameters in the sample.
Davon ausgehend besteht die Aufgabe der vorliegenden Erfindung darin, auch andere mit den eingangs beschriebenen Nachteilen behaftete elektrochemische Sensoren, insbesondere Referenz¬ elektroden und Elektroden zur Messung von C02 einfacher, ro¬ buster und billiger herzustellen.Proceeding from this, the object of the present invention is also others with the disadvantages described at the outset Affected electrochemical sensors, in particular reference electrodes and electrodes for measuring C0 2, are easier, more robust and cheaper to manufacture.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß das Meßelement zur Realisierung einer C02-Elektrode in einem mit einem H2C03/HC03 _-Puffer gefüllten Gehäuse angeordnet ist, dessen probenseitige Öffnung mit einer an der Polymerschicht des Meßelementes anliegenden C02-permeablen Membran verschlos¬ sen ist.According to the invention, this object is achieved in that the measuring element for realizing a C0 2 electrode is arranged in a housing filled with an H 2 C0 3 / HC0 3 _ buffer, the sample-side opening of which is connected to a C0 2 - resting on the polymer layer of the measuring element. permeable membrane is closed.
Die Messung der C02-Konzentration erfolgt dabei folgenderma¬ ßen. Durch eine gaspermeable Membran tritt C02 in einen Elek¬ trolytraum, der mit Bicarbonat-Pufferlösung gefüllt ist. Dort stehen C02/H2C03/HC03 _ im Gleichgewicht, das durch das Ein¬ dringen von Kohlendioxid verschoben wird. Die Verschiebung des Gleichgewichtes führt zu einer pH-Änderung, die mit Hilfe des erfindungsgemäßen Meßelementes gemessen werden kann.The measurement of the CO 2 concentration is carried out as follows. C0 2 passes through a gas-permeable membrane into an electrolyte space which is filled with bicarbonate buffer solution. There are C0 2 / H 2 C0 3 / HC0 3 _ in equilibrium, which is shifted by the penetration of carbon dioxide. The shift in the equilibrium leads to a change in pH, which can be measured with the aid of the measuring element according to the invention.
Ein wesentlicher Vorteil dieser C02-Elektrode besteht darin, daß die Polymerschicht selbst so gestaltet werden kann, daß die C02-durchlässige Membran direkt darüber liegt. Die Po¬ lymerschicht dient dabei nicht nur als Sensorschicht, sondern auch als Distanzhalter, da ja ihr Inneres elektrolytgequollen ist. Durch die vorteilhafte Konstruktion wird auch eine bes¬ sere geometrische Stabilität der Meßschicht erreicht.A major advantage of this CO 2 electrode is that the polymer layer itself can be designed so that the CO 2 permeable membrane lies directly above it. The polymer layer not only serves as a sensor layer, but also as a spacer, since its interior is electrolyte-swollen. The advantageous construction also achieves better geometric stability of the measuring layer.
In einer Weiterbildung der Erfindung ist vorgesehen, daß im Gehäuse ein weiteres im wesentlichen wie das erste Meßelement gestaltetes, mit dem H2C03/HC03 _-Puffer in Kontakt stehendes Meßelement vorgesehen ist, wobei das zweite von der C02-permeablen Membran unbedeckte Meßelement als Refe¬ renzelektrode fungiert. Durch die Anordnung einer inneren Re¬ ferenzelektrode können gewisse Alterungserscheinungen des Me߬ elementes kompensiert werden.In a further development of the invention it is provided that a further measuring element, essentially designed like the first measuring element and in contact with the H 2 C0 3 / HC0 3 _ buffer, is provided in the housing, the second of the C0 2 permeable membrane being provided uncovered measuring element acts as a reference electrode. By arranging an inner reference electrode, certain signs of aging of the measuring element can be compensated for.
Eine erfindungsgemäße Ausführungsvariante der C02-Elektorde mit innerer Referenzelektrode sieht vor, daß die Trägerelek¬ trode der Referenzelektrode hülsenförmig ausgebildet ist und die Isolierung einer vom Meßelement wegführenden Si¬ gnalableitung umfaßt, sowie daß die Außenfläche der hülsenför- migen Trägerelektrode mit der Polymerschicht bedeckt ist. Bei allen Ausführungsvarianten kann dabei die C02-permeable Membran aus einer Teflon-Folie bestehen.An embodiment variant of the C0 2 electrode with internal reference electrode provides that the carrier electrode of the reference electrode is sleeve-shaped and includes the insulation of a signal lead leading away from the measuring element, and that the outer surface of the sleeve-shaped carrier electrode is covered with the polymer layer . In all versions, the C0 2 permeable membrane can consist of a Teflon film.
In einer vorteilhaften Ausgestaltung der Erfindung ist vorge¬ sehen, daß die Polymerschicht des Meßelementes aus mitteloxi- dierte Polyanilin besteht. In sauren Elektrolyten wird die Existenz von drei verschiedenen Oxidationsstufen des Polymers beobachtet (reduziert I, mitteloxidiert II und volloxidiert III) . Im neutralen pH-Bereich dürften jedoch nur zwei verschiedene Oxidationszustände möglich sein (reduziert IV und oxidiert V) . Durch die Herstellung der Form II im sauren Me¬ dium läßt sich so eine definierte Mischung der Formen IV und V in neutraler Lösung erreichen.In an advantageous embodiment of the invention, it is provided that the polymer layer of the measuring element consists of medium-oxidized polyaniline. In acidic electrolytes the existence of three different oxidation levels of the polymer is observed (reduced I, medium oxidized II and fully oxidized III). In the neutral pH range, however, only two different oxidation states should be possible (reduced IV and oxidized V). By producing Form II in the acidic medium, a defined mixture of Forms IV and V can be achieved in neutral solution.
Untenstehend sind einige leitende Polymere angeführt. Für Polyanilin sind auch Oxidationsstufen, sowie deren protonier- ter Zustand angegeben:Some conductive polymers are listed below. Oxidation levels and their protonated state are also given for polyaniline:
1) POLYANILIN:1) POLYANILINE:
Ausgangsmaterial: Anilin (als Hydroperchlorat) C6H5NH2 bzw" C6H5NH3-C104Starting material: aniline (as hydroperchlorate) C 6 H 5 NH 2 or " C 6 H 5 NH 3 - C10 4
Das Polymer zeigt im Sauren drei Zustände, oberhalb von pH 5-6 können nur mehr zwei Oxidationsstadien unterschie¬ den werden.The polymer shows three states in acid; above pH 5-6, only two oxidation states can be distinguished.
pH < 2 pH > 6pH <2 pH> 6
-H ,©-H, ©
reduziert: m-( )- m)~V] reduced: m- () - m) ~V ]
mitteloxidiert: medium oxidized:
ERSATZBLATT oxidiert [ I I I ] REPLACEMENT LEAF oxidized [III]
2) Andere Ausgansmaterialien:2) Other starting materials:
a ) Methyl-Aniline : CHgC6H4NH2 a) Methyl anilines: CHgC 6 H 4 NH 2
b) *<--Naphtyl-Amin : ClfJH7NH2 b) * <- Naphtyl amine: C lfJ H 7 NH 2
c) Pyrrolc) pyrrole
PolypyrrolPolypyrrole
Das Potential der Polyanilinschicht wird im wesentlichen durch den herstellungsbedingten Oxidationsgrad und durch den pH-Wert des Elektrolyten bestimmt.The potential of the polyaniline layer is essentially determined by the degree of oxidation caused by the production and by the pH of the electrolyte.
Eine weitere vorteilhafte Ausgestaltung der Erfindung ist da¬ durch gegeben, daß das Meßelement zur Realisierumg einer Refe¬ renzelektrode in einem mit einem Elektrolyten gefüllten Ge¬ häuse angeordnet ist, dessen probenseitige Öffnung ein Dia¬ phragma aufweist. Leitende Polymere benötigen zwar ein kon¬ stantes elektrochemisches Milieu, um ein stabiles Potential zu liefern, unterschiedliche Ionen haben jedoch kaum Einfluß auf das Potential. Es ist daher erfindungsgemäß auch möglich, eine physiologische Kochsalzlösung (Ringerlösung) als Füllelektro¬ lyt für die Referenzelektrode zu verwenden. Die eingangs ei— wähnten Denaturierungsprobleme sind damit gelöst.A further advantageous embodiment of the invention is given in that the measuring element for realizing a reference electrode is arranged in a housing filled with an electrolyte, the sample-side opening of which has a diaphragm. Conductive polymers require a constant electrochemical environment in order to provide a stable potential, but different ions have little influence on the potential. It is therefore also possible according to the invention to use a physiological saline solution (Ringer's solution) as a filling electrolyte for the reference electrode. The denaturing problems mentioned at the beginning are thus solved.
Es besteht auch die Möglichkeit, die Polymerschicht solcher Meßelektroden so herzustellen, daß die Ausbildung selektiver Potentiale zu Inhaltsstoffen der Probenlösung vermieden wird. Mit solchen Polymerschichten ausgestattete Meßelemente können dann unmittelbar mit den Meßproben in Kontakt treten und als sogenannte "trockene Referenzelektroden" eingesetzt werden. Damit erübrigt sich der gesamte für den Füllelektrolyten er¬ forderliche Aufwand.There is also the possibility of producing the polymer layer of such measuring electrodes in such a way that the formation of selective potentials for the constituents of the sample solution is avoided. Measuring elements equipped with such polymer layers can then come into direct contact with the test samples and be used as so-called "dry reference electrodes". This eliminates the entire effort required for the filling electrolyte.
Schließlich ist erfindungsgemäß vorgesehen, daß auf oder in der Polymerschicht des Meßelementes zur Realisierung einer biochemischen Elektrode ein Enzym immobilisiert ist. Durch das Immobilisieren von Enzymen, die Redox-Reaktionen katalysieren, bei denen elektrochemisch aktive Spezies umgesetzt oder er¬ zeugt werden, sind biochemische Elektroden herstellbar, die den bisher üblichen Enzymelektroden unter anderem durch ihre kompaktere Bauart überlegen sind. Es ergibt sich damit die Möglichkeit, sehr effiziente stabile Enzymelektroden für die biochemische Analytik zu entwickeln.Finally, according to the invention it is provided that an enzyme is immobilized on or in the polymer layer of the measuring element in order to implement a biochemical electrode. By immobilizing enzymes which catalyze redox reactions in which electrochemically active species are converted or generated, biochemical electrodes can be produced which are superior to the enzyme electrodes which have been customary hitherto, inter alia due to their more compact design. This creates the possibility of developing very efficient, stable enzyme electrodes for biochemical analysis.
Als Beispiel sei die Herstellung eines Meßelementes mit einer Polyanilinschicht angeführt:The production of a measuring element with a polyaniline layer is given as an example:
Die Polymerisation erfolgt beispielsweise an einer Gold-Elektrode potentiodynamisch kontrolliert. Das heißt, daß über eine Drei-Elektroden-Schaltung das Potential der Ai— beits-Elektrode gegen eine nicht polarisierbare Referenzelek¬ trode kontrolliert wird. Der Strom fließt über eine polari¬ sierbare Elektrode (Gegen-Elektrode) ab.The polymerization takes place, for example, on a gold electrode in a potentiodynamically controlled manner. This means that the potential of the working electrode is checked against a non-polarizable reference electrode via a three-electrode circuit. The current flows through a polarizable electrode (counter-electrode).
Beschreibung der Anordnung:Description of the arrangement:
Potentiostat (A. JAISSLE Elektronik-Labor, IMP 83) Elektrolyt: 70 ml Standardelektrolyt (1 M HC104, 0,1 M NaClO^)Potentiostat (A. JAISSLE Electronics Laboratory, IMP 83) Electrolyte: 70 ml standard electrolyte (1 M HC10 4 , 0.1 M NaClO ^)
+ 5 ml Anilin (CeHB-NH2) - Elektrode 1 + 3 ml Anilin <CeHB-NH2) - Elektrode 2 Referenzelektrode: SCE (Hg/Hg2ClE/KCl,β-c) Gegen-Elektrode: Pt-Blech (etwa 5 cm2) Meßelektrode: Gold (0,78 m 2 Oberfläche)+ 5 ml aniline (C e H B -NH 2 ) - electrode 1 + 3 ml aniline <C e H B -NH 2 ) - electrode 2 reference electrode: SCE (Hg / Hg 2 Cl E / KCl, β -c) counter -Electrode: Pt sheet (about 5 cm 2 ) measuring electrode: gold (0.78 m 2 surface)
Das Elektroden-Potential wird in Form einer Dreiecks-Spannung über 25 Zyklen zwischen -200 und +800 mV variiert (Spannungsvorschub lOmV/sec. ) . Am Ende der Polymerisation wird ein konstantes Potential von +400 mV für längere Zeit konstant gehalten, um die mitteloxidierte Polyanilin-Form herzustellen.The electrode potential is varied in the form of a triangular voltage over 25 cycles between -200 and +800 mV (voltage feed lOmV / sec.). At the end of the polymerization, a constant potential of +400 mV is kept constant for a long time in order to produce the medium-oxidized polyaniline form.
ERSATZBLATT Anschließend wird die mit einem dünnen Polyanilin-Film bedeck¬ ten Elektroden mit dreifach destilliertem Wasser abgespült und in einer 1 M KCl-Lösung gelagert, sodaß sich das Milieu im pH ausgleichen konnte. Es wird angenommen, daß in der Polyanilin¬ schicht, die stets auch Anionen enthalten muß, das Perchlorat vollständig durch Chlorid ersetzt wird. Weiters muß ein pH- Ausgleich stattfinden, da die -NH- und -N= Gruppen der Poly¬ merkette im sauren Medium als -NH2~- bzw. -NH~= vorliegen, zwischen pH 3 und 5 jedoch weitgehend deprotoniert werden.REPLACEMENT LEAF The electrodes covered with a thin polyaniline film are then rinsed with triple-distilled water and stored in a 1 M KCl solution, so that the environment was able to balance in pH. It is assumed that in the polyaniline layer, which must always also contain anions, the perchlorate is completely replaced by chloride. Furthermore, a pH balance must take place, since the -NH- and -N = groups of the polymer chain are present in the acidic medium as -NH 2 ~ - or -NH ~ =, but are largely deprotonated between pH 3 and 5.
Die Erfindung wird im folgenden anhand von Zeichnungen näher erläutert. Es zeigen:The invention is explained in more detail below with reference to drawings. Show it:
Fig. 1 ein Meßelement entsprechend dem Stand der Technik, Fig. 2 eine erfindungsgemäße Referenzelektrode mit einem Meßelement nach Fig. 1,1 shows a measuring element according to the prior art, FIG. 2 shows a reference electrode according to the invention with a measuring element according to FIG. 1,
Fig. 3 eine Meßanordnung mit einer pH- und einer Re¬ ferenzelektrode nach der Erfindung, Fig. 4 eine erfindungsgemäße C03-Elektrode, Fig. 5 ein Detail aus Fig. 4, sowie Fig. 6 eine AusführungsVariante nach Fig. 4.3 shows a measuring arrangement with a pH and a reference electrode according to the invention, FIG. 4 shows a C0 3 electrode according to the invention, FIG. 5 shows a detail from FIG. 4, and FIG. 6 shows an embodiment variant according to FIG. 4.
Das Meßelement 1 besteht aus einer inerten Trägerelektrode 2 auf welche die leitende Polymerschicht 3 aus Polyanilin, Po- lynaphtylamin oder einem ihrer substituierten Abkömmlingen durch elektrochemische Polymerisation aufgebracht wird. Die Erfassung der Meßsignale erfolgt über die mit der Träger— elektrode 2 elektrisch leitend verbundene Signalableitung 4. Die von der Polymerschicht 3 nicht bedeckten Teile der Träger¬ elektrode 2, sowie die Signalableitung 4 weisen eine elek¬ trisch isolierende ümmantelung 5 auf. Die Schichtdicke d der Polymerschicht 2 beträgt ca. 0,1 bis 500 κum.The measuring element 1 consists of an inert carrier electrode 2 to which the conductive polymer layer 3 made of polyaniline, poly-naphthylamine or one of its substituted derivatives is applied by electrochemical polymerization. The detection of the measurement signals takes place via the signal lead 4, which is electrically conductively connected to the carrier electrode 2. The parts of the carrier electrode 2 not covered by the polymer layer 3, and the signal lead 4, have an electrically insulating sheath 5. The layer thickness d of the polymer layer 2 is approximately 0.1 to 500 μm .
Es existieren - wie eingangs dargelegt - zwei verschiedene Oxidationsstufen des Polymers, wobei ein Mischzustand dieser beiden Komponenten präpariert und ein elektorchemisches Gleichgewicht hergestellt wird.As stated at the beginning, there are two different oxidation states of the polymer, a mixed state of these two components being prepared and an electoral chemical equilibrium being established.
Das Elektrodenpotential wird beispielsweise durch das Gleich¬ gewicht zwischen zwei festen Phasen, einer oxidierten (P0) und einer reduzierten PR, bestimmt. Wenn gilt:The electrode potential is determined, for example, by the equilibrium between two solid phases, an oxidized (P 0 ) and a reduced P R. If:
ERSATZBLATT n . ec = PF gilt für das Potential EREPLACEMENT LEAF n. e c = P F applies to the potential E
n.Fn.F.
E = E„ In o RT apE = E "In o RT a p
Wobei aPO und aPB die entsprechenden Aktivitäten der oxi¬ dierten und der reduzierten Phase sind. Da es sich dabei um feste Stoffe handelt, sind jedoch die Aktivitäten konstant. So ist das Potential also solange konstant, bis eine der Phasen Po oder PR ganz aufgebraucht ist.Where a PO and a PB are the corresponding activities of the oxidized and the reduced phase. However, since these are solid substances, the activities are constant. So the potential is constant until one of the phases Po or P R is completely used up.
Wird das Meßelement 1 mit der Probe in Kontakt gebracht, wobei die von der Trägerelektrode 2 abgewandte Seite 6 der Po¬ lymerschicht 3 direkt in die zu messende Probe taucht, ist be¬ reits eine äußerst einfache, kompakt aufgebaute pH-Elektrode realisiert .If the measuring element 1 is brought into contact with the sample, the side 6 of the polymer layer 3 facing away from the carrier electrode 2 being immersed directly in the sample to be measured, an extremely simple, compact pH electrode is already implemented.
Bei der in Fig. 2 dargestellten Referenzelektrode ist das Me߬ element 1 in einem mit einem Elektrolyten gefüllten Gehäuse 13 angeordnet, welches probenseitig ein Öffnung 14 mit einem Dia¬ phragma 15 aufweist. Sowohl das Gehäuse 13 als auch die U - mantelung 5 des Meßelementes 1 können beispielsweise aus Ple¬ xiglas, Glas oder ähnlichem hergestellt sein. Das den Elektro¬ lyten, beispielsweise eine Ringerlösung, von der Probe tren¬ nende Diaphragma 15 kann eine mit Poren versehene Membran oder eine Glasfritte sein.In the reference electrode shown in FIG. 2, the measuring element 1 is arranged in a housing 13 filled with an electrolyte, which has an opening 14 with a diaphragm 15 on the sample side. Both the housing 13 and the U-cladding 5 of the measuring element 1 can be made of plexiglass, glass or the like, for example. The diaphragm 15 separating the electrolyte, for example a Ringer's solution, from the sample can be a membrane provided with pores or a glass frit.
Fig. 3 zeigt eine Meßanordnung zur pH-Messung in biologischen Medien, wobei eine bekannte pH-Elektrode und eine Re¬ ferenzelektrode nach Fig. 2 zum Einsatz kommen. Der Meßkreis wird über ein hochohmiges Voltmeter 16 geschlossen.3 shows a measuring arrangement for pH measurement in biological media, a known pH electrode and a reference electrode according to FIG. 2 being used. The measuring circuit is closed by a high-resistance voltmeter 16.
Bei einer C02-Elektrode entsprechend Fig. 4 ist das Meßelement 1 in einem mit einer Pufferlösung gefüllten Gehäuse 17 ange¬ ordnet. Wie im Detail in Fig. 5 dargestellt, ist die pro¬ benseitige Öffnung 18 des Gehäuses 17 mit einer an der Poly¬ merschicht 3 des Meßelementes 1 anliegenden, C02-permeablen Membran 19 verschlossen. In einiger Entfernung von der Membran 19 ist im Gehäuse 17 ein weiteres mit der Pufferlösung in Kon¬ takt stehendes Meßelement 1 als Referenzelektrode 20 angeord¬ net. Die Signalableitungen 4, 4' führen zu einem Voltmeter 16. Im Meßbetrieb diffundiert in der Probe gelöstes C02 durch die C02-permeable Membran 19 in den Elektrolytfilm der gequollenen Polymerschicht 3 und verschiebt das GleichgewichtWith a C0 2 electrode shown in FIG. 4, the measuring element 1 is arranged ange¬ in a container filled with a buffer solution housing 17. As shown in detail in FIG. 5, the sample-side opening 18 of the housing 17 is closed with a C0 2 -permeable membrane 19 lying against the polymer layer 3 of the measuring element 1. At a distance from the membrane 19, a further measuring element 1, which is in contact with the buffer solution, is arranged in the housing 17 as a reference electrode 20. The signal leads 4, 4 'lead to a voltmeter 16. In measuring operation, CO 2 dissolved in the sample diffuses through the CO 2 permeable membrane 19 into the electrolyte film of the swollen polymer layer 3 and shifts the equilibrium
HCO" + H+ £■■? H2C03 HCO " + H + £ ■■? H 2 C0 3
H20 + C02 H 2 0 + C0 2
in der Pufferlösung. Das sich ändernde Potential am Meßelement führt zusammen mit dem Signal der Referenzelektrode 20 zum Meßsignal .in the buffer solution. The changing potential on the measuring element leads together with the signal of the reference electrode 20 to the measuring signal.
Entsprechend der Detailzeichnung Fig. 6 kann die Träger¬ elektrode 2 der Referenzelektrode 20 hülsenförmig ausgeführt sein und die Isolierung 21 der vom Meßelement 1 wegführenden Signalableitung 4 umfassen, wodurch diese abgeschirmt wird. Die Außenfläche 22 der hülsenfÖrmigen Trägerelektrode 2 ist mit der Polymerschicht 3 bedeckt.According to the detailed drawing in FIG. 6, the carrier electrode 2 of the reference electrode 20 can be sleeve-shaped and comprise the insulation 21 of the signal lead 4 leading away from the measuring element 1, thereby shielding it. The outer surface 22 of the sleeve-shaped carrier electrode 2 is covered with the polymer layer 3.
ERSATZBLATT REPLACEMENT LEAF

Claims

P A T E N T A N S P R Ü C H E PATENT CLAIMS
1. Elektrochemischer Sensor zur Erfassung chemischer und phy¬ sikalisch chemischer Parameter einer wäßrigen Probe mit einem Meßelement welches eine inerte Trägerelektrode auf¬ weist, deren von einer elektrisch isolierenden Ummantelung freien Teile von einem Elektronenleiter aus einer in wä߬ rigen Medien stabilen Polymerschicht bedeckt sind, dadurch gekennzeichnet . daß das Meßelement (1) zur Realisierung einer C02-Elektrode in einem mit einem H2C03/HC03--Puffer gefüllten Gehäuse (17) angeordnet ist, dessen probensei¬ tige Öffnung (18) mit einer an der Polymerschicht (3) des Meßelementes (1) anliegenden C02-permeablen Membran (19) verschlossen ist.1. Electrochemical sensor for detecting chemical and physical-chemical parameters of an aqueous sample with a measuring element which has an inert carrier electrode, the parts of which are free from an electrically insulating sheath and are covered by an electron conductor from a polymer layer which is stable in aqueous media, characterized . that the measuring element (1) for realizing a C0 2 electrode is arranged in a housing (17) filled with an H 2 C0 3 / HC0 3 buffer, the sample-side opening (18) of which is connected to the polymer layer (3 ) of the measuring element (1) adjacent C0 2 permeable membrane (19) is closed.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß im Ge¬ häuse (17) ein weiteres, im wesentlichen wie das erste Meßelement (1) gestaltetes, mit dem H2C03/HC03 ~-Puffer in Kontakt stehendes Meßelement vorgesehen ist, wobei das zweite von der COa-permeablen Membran (19) unbedeckte Meßelement als Referenzelektrode (20) fungiert.2. Sensor according to claim 1, characterized in that in the Ge¬ housing (17) another, essentially like the first measuring element (1) designed, with the H 2 C0 3 / HC0 3 ~ buffer in contact measuring element is provided , wherein the second measuring element uncovered by the CO a permeable membrane (19) acts as a reference electrode (20).
3. Sensor nach Anspruch 2, dadurch gekennzeichnet, daß die Trägerelektrode (2) der Referenzelektrode (20) hülsen¬ förmig ausgebildet ist und die Isolierung (21) einer vom Meßelement (1) wegführenden Signalableitung (4) umfaßt, sowie daß die Außenfläche (22) der hülsenförmigen Trägerelektrode (2) mit der Polymerschicht (3) bedeckt ist .3. Sensor according to claim 2, characterized in that the carrier electrode (2) of the reference electrode (20) is sleeve-shaped and the insulation (21) of the measuring element (1) leading signal lead (4), and that the outer surface ( 22) of the sleeve-shaped carrier electrode (2) is covered with the polymer layer (3).
4. Sensor nach einem der Ansprüche 1 bis 3, dadurch ge¬ kennzeichnet, daß die C02-permeable Membran aus einer Tef¬ lon-Folie besteht4. Sensor according to one of claims 1 to 3, characterized ge indicates that the C0 2 permeable membrane consists of a Tef¬ lon film
5. Elektrochemischer Sensor zur Erfassung chemischer und phy¬ sikalisch chemischer Parameter einer wäßrigen Probe mit einem Meßelement welches eine inerte Trägerelektrode auf¬ weist, deren von einer elektrisch isolierenden Ummantelung freien Teile von einem Elektronenleiter aus einer in wä߬ rigen Medien stabilen Polymerschicht bedeckt sind, dadurch gekennzeichnet, daß das Meßelement (1) zur Realisierung einer Referenzelektrode in einem mit einem Elektrolyten5. Electrochemical sensor for detecting chemical and physical-chemical parameters of an aqueous sample with a measuring element which has an inert carrier electrode, the parts of which are free from an electrically insulating sheath and are covered by an electron conductor from a polymer layer which is stable in aqueous media, characterized in that the measuring element (1) for realizing a reference electrode in one with an electrolyte
ERSATZBLATT gefüllten Gehäuse (13) angeordnet ist, dessen pro¬ benseitige Öffnung (14) ein Diaphragma (15) aufweist.REPLACEMENT LEAF Filled housing (13) is arranged, the sample-side opening (14) has a diaphragm (15).
6. Sensor nach Anspruch 5, gekennzeichnet durch eine phy¬ siologische Kochsalzlösung als Elektrolyt.6. Sensor according to claim 5, characterized by a physiological saline solution as an electrolyte.
7. Elektrochemischer Sensor zur Erfassung chemischer und phy¬ sikalisch chemischer Parameter einer wäßrigen Probe mit einem Meßelement welches eine inerte Trägerelektrode auf¬ weist, deren von einer elektrisch isolierenden Ummantelung freien Teile von einem Elektronenleiter aus einer in wä߬ rigen Medien stabilen Polymerschicht bedeckt sind, dadurch gekennzeichnet, daß auf oder in der Polymerschicht (3) des Meßelementes (1) zur Realisierung einer biochemischen Elektrode ein Enzym immobilisiert ist.7. Electrochemical sensor for detecting chemical and physical-chemical parameters of an aqueous sample with a measuring element which has an inert carrier electrode, the parts of which are free from an electrically insulating sheath and are covered by an electron conductor from a polymer layer which is stable in aqueous media, characterized in that an enzyme is immobilized on or in the polymer layer (3) of the measuring element (1) to implement a biochemical electrode.
8. Sensor nach einem der Ansprüche 1 bis 7 , dadurch ge¬ kennzeichnet, daß die Polymerschicht (3) des Meßelementes (1) aus mitteloxidiertem Polyanilin besteht.8. Sensor according to one of claims 1 to 7, characterized ge indicates that the polymer layer (3) of the measuring element (1) consists of medium-oxidized polyaniline.
ERSATZBLATT REPLACEMENT LEAF
EP19890911745 1988-10-25 1989-10-25 An electrochemical sensor Withdrawn EP0394411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT264988A AT392848B (en) 1988-10-25 1988-10-25 ELECTROCHEMICAL SENSOR
AT2649/88 1988-10-25

Publications (1)

Publication Number Publication Date
EP0394411A1 true EP0394411A1 (en) 1990-10-31

Family

ID=3538071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890911745 Withdrawn EP0394411A1 (en) 1988-10-25 1989-10-25 An electrochemical sensor

Country Status (3)

Country Link
EP (1) EP0394411A1 (en)
AT (1) AT392848B (en)
WO (1) WO1990004777A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT398132B (en) * 1991-02-15 1994-09-26 Avl Verbrennungskraft Messtech DEVICE FOR MEASURING THE CONCENTRATION OF A REAGENT
EP1929938A1 (en) * 2006-12-04 2008-06-11 Sentec AG Device for measuring partial pressure of carbon dioxide
DE102008055084A1 (en) 2008-12-22 2010-06-24 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Ion-selective electrode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913386A (en) * 1956-03-21 1959-11-17 Jr Leland C Clark Electrochemical device for chemical analysis
US3730868A (en) * 1970-12-21 1973-05-01 Gen Electric Carbon dioxide sensor
EP0068025B1 (en) * 1980-11-17 1987-11-04 Shimadzu Corporation Reference electrode
EP0056283B1 (en) * 1981-01-14 1985-07-31 Terumo Corporation Ion sensor
GB2097931B (en) * 1981-04-30 1984-11-28 Nat Res Dev Carbon dioxide measurement
US4415666A (en) * 1981-11-05 1983-11-15 Miles Laboratories, Inc. Enzyme electrode membrane
US4729824A (en) * 1982-05-11 1988-03-08 Giner, Inc. Gas sensor and method of using same
US4466878A (en) * 1983-01-12 1984-08-21 Instrumentation Laboratory Inc. Electrochemical electrode assembly
EP0186210B1 (en) * 1984-12-28 1992-04-22 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Ion sensor
DK626986A (en) * 1985-12-25 1987-06-26 Terumo Corp ion sensor
WO1988000700A1 (en) * 1986-07-10 1988-01-28 Terumo Kabushiki Kaisha Reference electrode
JPS63234146A (en) * 1987-03-23 1988-09-29 Hitachi Ltd Production of pco2 electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9004777A1 *

Also Published As

Publication number Publication date
AT392848B (en) 1991-06-25
ATA264988A (en) 1990-11-15
WO1990004777A1 (en) 1990-05-03

Similar Documents

Publication Publication Date Title
DE69220915T2 (en) Ion-selective solid-state electrodes based on graphite with polymer membrane
DE3750302T2 (en) Oxygen sensor.
EP1786927B1 (en) Device and method for the detection of charged macromolecules
Norouzi et al. Fast monitoring of nano‐molar level of gentamycin by fast Fourier transform continuous cyclic voltammetry in flowing solution
DE2911943A1 (en) ELECTROCHEMICAL FLOW SYSTEM
DE19602861A1 (en) Sampling and sensor system and process for its manufacture
Radovan et al. Simultaneous Determination of Acetaminophen and Ascorbic Acid at an Unmodified Boron‐Doped Diamond Electrode by Differential Pulse Voltammetry in Buffered Media
Wang et al. Electrochemical sensor using molecular imprinting polymerization modified electrodes to detect methyl parathion in environmental media
EP1600768B1 (en) Ammonia sensor
Tran et al. Potassium ion selective electrode using polyaniline and matrix-supported ion-selective PVC membrane
Rho et al. Sensitivity-tunable and disposable ion-sensing platform based on reverse electrodialysis
Tatsumi et al. An all-solid-state thin-layer laminated cell for calibration-free coulometric determination of K+
DE102012111811A1 (en) Electrochemical sensor for detecting analyte concentration in measuring medium, has connecting line which is designed as circuit board, where reference electrode is designed as material layer system formed on circuit board
DE102005003910B4 (en) Electrochemical transducer array and its use
EP1480038B1 (en) Potentiometric, ion selective electrode
Adil et al. Self-Calibrated Ion-Selective Electrodes
EP1327879B1 (en) Ion sensor with reactive adhesive
EP2179277A1 (en) Device for determining physical and/or chemical properties
EP0394411A1 (en) An electrochemical sensor
DE4232729C2 (en) Micro reference electrode for generating a constant reference or reference potential
DE19631530C2 (en) Ion selective sensor
Zörner Development and Investigation of a Printed Multi-Ion-Selective Sensor System Towards Healthcare Applications
DE102012111814A1 (en) Reference half-cell, useful in potentiometric sensor, comprises potential-forming element immersed in reference solution for generating signal, where reference solution is contained in chamber, which has area provided for test liquid
WO2003082469A2 (en) Device and method for carrying out and continuously monitoring chemical and/or biological reactions
DE3537915A1 (en) Method for the electrochemical measurement of hydrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920505