EP0393875B1 - Mehrfach polarisierte kompakte Breitbandantenne - Google Patents

Mehrfach polarisierte kompakte Breitbandantenne Download PDF

Info

Publication number
EP0393875B1
EP0393875B1 EP90303585A EP90303585A EP0393875B1 EP 0393875 B1 EP0393875 B1 EP 0393875B1 EP 90303585 A EP90303585 A EP 90303585A EP 90303585 A EP90303585 A EP 90303585A EP 0393875 B1 EP0393875 B1 EP 0393875B1
Authority
EP
European Patent Office
Prior art keywords
dipole
elements
antenna
centre
substrate means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90303585A
Other languages
English (en)
French (fr)
Other versions
EP0393875A1 (de
Inventor
Dean A. Hofer
Oren B. Kesler
Lowell L. Loyet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of EP0393875A1 publication Critical patent/EP0393875A1/de
Application granted granted Critical
Publication of EP0393875B1 publication Critical patent/EP0393875B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • H01Q11/105Logperiodic antennas using a dielectric support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • This invention relates to broadband antennas and, more specifically, to broadband antennas of compact size which are capable of receiving or transmitting multi-polarized electromagnetic radiation.
  • Antennas are often required to receive or transmit electromagnetic radiation over several octaves of bandwidth while maintaining uniform radiation pattern and impedance characteristics within the operating band.
  • Antennas of this type have been well known in the art for many years and include log periodic and spiral radiating structures. Often however, the polarization of the received electromagnetic signal is unknown and a conventional log periodic or spiral antenna may not respond to the sense of polarization being transmitted. The problem of responding to transmitted signals over a broad band for any sense of polarization (i.e. vertical, horizontal, left hand circular or right hand circular) is difficult and has not been completely solved in the prior art.
  • DE-A-2 400 752 there is disclosed a dipole antenna having two log-periodic elements, each element having a central spine and side members disposed alternately on opposite sides of the spine at 45° thereto.
  • the central spines extend in opposite directions away from a centre where the signal feed is connected and the side members lie along the sides of squares concentric about the centre and meet along a line of symmetry through the centre.
  • Modified forms of the antenna are mentioned in which the angle between the side members and the central spine departs from 45° by up to ⁇ 30°.
  • a single pole antenna using a ground plane is also described.
  • a common failure mode of cavity backed antennas which are fed at the central feedpoint with a transmission line positioned on the antenna axis is that of mechanical separation between the antenna and transmission line.
  • the failure usually occurs when the antenna is subjected to environmental stress such as thermal cycling or vibration.
  • environmental stress such as thermal cycling or vibration.
  • the thin circular antenna substrate which is permanently attached to the cavity at its perimeter, acts as a diaphragm and moves up and down at the center (feed point region) due to thermal cycling and vibration. When this movement occurs, the antenna pulls loose from the transmission line attached to the central feedpoint, resulting in complete electrical failure.
  • the present invention eliminates this problem because the antenna transmission line is attached at the perimeter of the antenna (diaphragm) where there is no movement between the antenna and the feeding transmission line and, thus, there is far less stress at the antenna/feed connection interface.
  • a broadband antenna comprising substrate means having a centre and a perimeter, a log-periodic dipole on said substrate means having two elements each extending from the centre to the perimeter of said substrate means and having a radially disposed central spine with a plurality of arcuate members extending circumferentially therefrom alternately on opposite sides of said spine so as to subtend substantially equal angles about said centre, an infinite balun connected at the centre to said elements, and a signal injection/extraction connection for a transmission line near said perimeter and joined to said balun.
  • a broadband antenna comprising substrate means having a centre and a perimeter, a plurality of log-periodic dipoles on said substrate means, each having two elements, each element extending from the centre to the perimeter of said substrate means and having a radially disposed central spine with a plurality of arcuate members extending circumferentially therefrom alternately on opposite sides of said spine so as to subtend substantially equal angles about said centre, said dipoles being substantially equiangularly spaced around said centre with the arcuate members of the different dipoles interleaved, a plurality of infinite baluns respective to the dipoles, each balun comprising a conductor on a different face of said substrate means from a first element of the particular dipole, extending parallel to and along the length of the central spine of said first element and connected at the centre to the central spine of the second element of the particular dipole, and a plurality of signal injection/extraction connections respective to the dipoles, each connection being for
  • One embodiment of the invention includes two printed circuit interleaved log periodic dipole elements disposed orthogonal to each other.
  • the interleaved log periodic elements are etched on a dielectric substrate and placed over an absorber loaded cavity backing to provide unidirectional broadband performance similar to that of a cavity backed planar spiral antenna.
  • the log periodic elements are preferably, but not limited to, a copper etched circuit and the dielectric (electrically insulating) substrate is preferably, but not limited to Fiberglas or teflon glass (e.g. Duroid type 5880).
  • the interleaved log periodic elements are in the form of circular arcs to efficiently utilize the available space in the circular aperture.
  • tau R (n+1) /R n as shown in Figure 1.
  • the degree of interleaving is controlled by an angle alpha wherein, as alpha increases, interleaving becomes greater.
  • the sigma symbol in FIGURE 1 controls individual element width.
  • the term w is the width of the transmission line transporting RF energy to and from each of the radiating elements of the antenna wherein change in w will change the impedance of the transmission line.
  • the antenna in accordance with the present invention is connected to the feeding transmission line at the antenna perimeter rather than at the central antenna feedpoint as is common for other cavity backed broadband antennas, including that of the nearest known prior art described in DuHamels patent No. 4,658,262. This offers a distinct reliability advantage.
  • baluns are an integral part of the etched antenna substrate and replace the need for two separate Marchand baluns as described in DuHamel's patent 4,658,262.
  • baluns are connected to a coaxial line which transports the received signal to the printed circuit 90 degree hybrid located at the base region of the antenna. The outputs of the 90 degree hybrid provide left hand circular and right hand circular polarized ports.
  • the outputs may be taken directly off of the balun ports without need for the 90 degree hybrid.
  • the antenna has multiple polarized capability for a single radiating aperture.
  • the switch in the described embodiment consists of a PIN diode type commonly available from a microwave component supplier such as M/A-COM Semiconductor Products of Burlington, Massachusetts 01803.
  • antenna radiating aperture interleaved log periodic dipole elements
  • polarization processor printed circuit infinite baluns, 90 degree hybrid with coaxial interface
  • absorber loaded antenna cavity and polarization selection switch are housed in a single housing.
  • the basic functional components of the antenna assembly are shown in Figure 5 and consist of: (1) the interleaved log periodic radiating aperture with integral printed circuit infinite baluns which are part of the polarization processor, (2) absorber loading consisting of: (a) the absorber loaded antenna cavity for broadband unidirectional pattern performance, and (b) the termination absorber around the antenna perimeter for enhanced low frequency performance, (3) the polarization processor consisting of: (a) the printed circuit infinite baluns (integral to the radiating structure) and (b) the 90 degree hybrid and (4) the antenna housing and radome cover.
  • the polarization processor provides appropriate antenna feedpoint excitations, see Figures 3(a) and 3(b), at the four antenna feedpoints located at the center of the radiating aperture. These excitations require equal amplitude at all four antenna feedpoints and sequential phase progressions in increments of 90 degrees for both clockwise and counter clockwise rotations. This excitation provides both left hand and right hand circular polarized antenna outputs from the 90 degree hybrid.
  • the antenna assembly is housed in a metallic cup shaped housing and covered with a dielectric (Fiberglas) radome for environmental protection.
  • FIG. 1 there is shown the geometry which describes a printed circuit log periodic structure.
  • Log periodic antennas are discussed in greater detail in the literature, e.g. Antenna Handbook by Y.T. Lo and S.W. Lee, Chapter 9, Frequency Independent Antennas, 1988 Van Nostrand Reinhold Co. Inc.
  • the log periodic geometry is used to lay out an antenna by first defining an antenna element within a single cell, (e.g., between R1 and r1 and between alpha equal to zero and alpha).
  • the same configuration of conductor, properly scaled by the constant scale factor tau is then reproduced in the other cells. If this process is repeated infinitely many times for smaller cells, the resulting geometry will converge to a point. Likewise, infinite repetition of the larger cells will cause the structure to become infinitely large.
  • Figure 2 shows a top view of the unique interleaved log periodic dipole geometry employed in this invention.
  • log periodic dipole sets 1 and 2 are fed with equal amplitude and phase of 0 degrees and 180 degrees respectively at the center feedpoint by microstrip baluns 5 and 7.
  • log periodic dipole sets 3 and 4 are fed with equal amplitude and a phase of 90 degrees and 270 degrees respectively at the center feedpoint by microstrip baluns 6 and 8.
  • Figure 3 shows the required antenna feedpoint excitations at the center of the antenna to obtain right hand circular LHCP and left hand circular RHCP polarizations.
  • Figure 4 shows the conventional manner in which the appropriate excitation is obtained for dual sense circular polarization. This consists of two separate 180 degree hybrids or baluns plus a separate 90 degree hybrid. The described embodiment herein eliminates the two separate 180 degree hybrids or baluns by incorporating them as an integral part of the antenna etched circuit for improved reliability, producibility and lower cost.
  • FIG. 5 is shown an exploded view of the antenna assembly of a preferred embodiment in accordance with the present invention.
  • log periodic antenna elements 31 and 33 are etched on opposite sides of antenna substrate 32.
  • the etched log periodic antenna circuit accommodates orthogonal printed circuit microstrip baluns which lie radially along the center of each set of log periodic elements. These printed circuit baluns are an integral part of the etched log periodic geometry.
  • Coaxial lines 36 and 37 transport RF energy received by the antenna downward to the 90 degree hybrid consisting of layers 11, 12 and 13.
  • Mode suppressing collars 34, 35, 38 and 39 are used to suppress unwanted higher order modes and launch the received RF signal from the printed circuit antenna balun onto the coaxial line and from the coaxial line onto the stripline 90 degree hybrid.
  • the 90 degree hybrid consists of a dielectric substrate (0.010 inch thick Duroid 5880) 12 and RF coupler circuits 11 and 13 etched on opposite sides of the substrate 12.
  • the 90 degree coupler stripline circuit is completed by the dielectric layers 10 and 14 which are (0.031 inch thick layers of Duroid 5880) metallized on the outside surfaces to form a 90 degree hybrid stripline circuit.
  • the metallized surface of the upper dielectric layer 10 serves as the metallic base for the absorber loaded cavity 17.
  • Design of the 90 degree coupler follows standard methods commonly used by those skilled in the art.
  • the load ring 24 acts as a termination at the outer perimeter of the antenna structure to reduce reflections at the lower operating frequencies. This load ring is made of a carbon loaded epoxy resin and is painted on to the antenna substrate.
  • the structure 15 is the baseplate for the internal antenna/processor/switch subassembly.
  • the subassembly is attached to this base plate 15 to assist in holding it together prior to dropping into the cavity 17.
  • the subassembly is dropped into cavity 17 to make the final assembly.
  • the device 22 is the RF output connector.
  • the antenna herein described operates over a bandwidth limited at the high frequencies by physical detail at the central feed region and at the low frequencies by the physical size of the structure.
  • the antenna by itself is a bidirectional radiating element. Because unidirectional radiation is preferred, the antenna is backed by an absorber loaded cavity.
  • the absorber used is graded to allow a gradual transition from a relatively low dielectric constant and low electrical loss material 19, to a medium dielectric constant and medium loss material 20, to a higher dielectric constant and high loss material 21. This allows the back radiation of the antenna to be absorbed with a minimum of reflection from the absorber surface, resulting in uniform pattern and gain performance over the operating band.
  • Typical of the absorbers which can be used for materials 19, 20 and 21 are Emerson and Cumming Co.
  • a carbon loaded honeycomb absorber also available from Emerson and Cumming, will work and provide a structural support for the antenna.
  • the antenna performance can be improved by having a 0.125 inch air space between the antenna and the absorber layer 19. In practice, this space can be a structural foam spacer, such as styrafoam, which electrically is similar to air, but yet provides structural support for the antenna.
  • the antenna is dropped into an aluminum cup shaped housing 17 and covered with a dielectric radome 23 for environmental protection.
  • Figure 6 shows a top view of the 90 degree hybrid coupler assembly 11, 12, and 13 plus the polarization selection switch 16 and the polarization switch which provides either RHCP or LHCP to a single output port at the base of the antenna.
  • One method is to have the log periodic elements all on one side of the antenna substrate and fed with a printed circuit microstrip or stripline balun as illustrated in Figure 7a.
  • the microstrip balun conductor on the underside of the substrate must bridge the center feed point gap and connect to the log periodic elements on the left side of the structure by means of a shorting pin or a plated through hole.
  • the shorting pin or plated through hole can be eliminated by placing the log periodic elements on the left side of the structure under the substrate as is illustrated in Figure 7b by dashed lines.
  • the microstrip balun conductor which is on the under side of the substrate, bridges the feed point gap and connects directly to the log periodic elements on the left side of the structure.
  • FIGs 7(a) and 7(b) can be physically realized for crossed orthogonal log periodic elements as shown in Figure 8.
  • the orthogonal microstrip baluns are etched on opposite sides of the antenna substrate.
  • the orthogonal geometry keeps the coupling between the baluns to a minimum.
  • a solderless feedpoint or a feedpoint using the shorting pins can be realized.
  • the key point is that for either case, the feed region at the center of the antenna is not attached to a transmission line running through the antenna cavity to the 90 degree coupler in the antenna base. This is important because the embodiment of this invention is far more reliable than that of conventional cavity backed designs of prior art.
  • Figure 9 shows typical radiation patterns for right hand and left hand circular outputs.
  • FIG. 5 and 7 describe a configuration where the antenna is fed by means of two orthogonal microstrip infinite baluns.
  • An alternate feeding method is to employ two orthogonal infinite baluns in the form of a stripline circuit in lieu of the microstrip balun circuit.
  • a conventional stripline circuit is shown in Figure 11 where the center conductor 41 of the stripline circuit is suspended between ground planes 42 and 43 by means of dielectric substrates 44, 45, and 46.
  • the stripline circuit shown in Figure 11 is extended to the integrated infinite balun of the interleaved log periodic antenna as shown in Figures 12(a) to 12(e).
  • two orthogonal and radial stripline feeds 53 and 57 are contained on opposite sides of a very thin (approximately 0.006 inch) dielectric substrate 52.
  • Radial stripline feeds 53 and 57 are contained between conductors 51 and 54 plus 55 and 58 respectively.
  • the center stripline conductors 53 and 57 bridge a small gap 60 at the center feed point (see exploded view in Figure 12(a)) and connect to radial feed lines 59 and 62 plus 61 and 63 respectively via a shorting pin or plated through hole.
  • the log periodic pattern is etched and registered on upper and under sides of the substrate 63 and 64.
  • the stripline fed antenna is connected to the coaxial feeding transmission line at the outer perimeter of the structure in a similar manner to that shown in Figure 5.
  • the coaxial transmission line center conductor connects to the microstrip (stripline) center conductor and the coaxial transmission line shield connects to the log periodic elements at the outer perimeter.
  • the key reliability feature is retained because no transmission line passing along the antenna axis, perpendicular to the plane of the antenna, is connected to the central antenna feed point.
  • the antenna is free to move up and down (diaphragm action) due to environmental conditions without causing feedpoint failure.
  • balun forms a flex circuit which may connect to the 90 degree hybrid, polarization selection switch or two dual output ports for dual linear operation.
  • the four orthogonal log periodic structures described in the previous paragraph are capable of providing a SUM pattern performance only, e.g. (peak of beam on the antenna axis) independent of frequency and polarization.
  • SUM pattern performance e.g. (peak of beam on the antenna axis) independent of frequency and polarization.
  • the DIFFERENCE pattern has a null on the axis of the antenna. It is not possible to obtain a circular polarized DIFFERENCE pattern with four orthogonal linear polarized elements as shown in Figure 2. In order to obtain a circular polarized difference pattern with linear polarized elements, one must employ a minimum of six linear polarized elements arranged in a hexagonal geometry.
  • Shown in Figure 10 is the new design of log periodic elements which are foreshortened by means of capacitive loading.
  • the capacitive loading tabs 74 foreshorten the log periodic dipole elements and allow six radial feeds to converge at a central feed point region 75.
  • the capacitive loading tabs allow size reduction of the log periodic dipole elements by as much as 60 percent.
  • the six ports must be feed with a six port RF processor capable of exciting both SUM and DIFFERENCE modes.
  • the processor For one sense of polarization of the SUM mode, the processor must feed each of the six feed ports with equal amplitude and a sixty degree phase progression around the feed region, e.g., 0, 60, 120, 180, 240, and 300 degrees.
  • the phase sequence is reversed, e.g., 0, 300, 240, 180, 120, and 60 degrees.
  • the processor must feed each of the six ports with equal amplitude and a one hundred twenty degree phase progression (twice that for the SUM mode) around the feed regions e.g., 0, 120, 240, 360, 480, and 600 degrees.
  • the phase sequence is reversed, e.g., 0, 600, 480, 360, 240, and 120 degrees.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Claims (13)

  1. Breitbandantenne mit einem Substratmittel mit einer Mitte und einem Umfangsbereich, einem logarithmisch-periodischen Dipol auf dem Substratmittel mit zwei Elementen, von denen sich jedes von der Mitte aus zu dem Umfangsbereich des Substratmittels erstreckt und einen radial angeordneten zentralen Stab aufweist, gekennzeichnet durch mehrere bogenförmige Glieder, die sich in Umfangsrichtung und abwechselnd auf beiden Seiten des Stabes so erstrecken, daß sie im wesentlichen gleiche Winkel um die Mitte überspannen, einen unbegrenzten Symmetrieübertrager, der bei der Mitte mit den Elementen verbunden ist, und einen Signaleinführungs/ableitungs-Anschluß für eine Übertragungsleitung nahe des Umfangsbereichs in Verbindung mit dem Symmetrieübertrager.
  2. Antenne nach Anspruch 1, bei welcher der unbegrenzte Symmetrieübertrager einen Leiter auf einer anderen Fläche des Substratmittels als das erste der Elemente enthält, der parallel und in Längsrichtung zur Längenerstreckung des zentralen Stabes des ersten Elementes verläuft und bei der Mitte an den zentralen Stab des zweiten der Elemente angeschlossen ist, wobei der Signaleinführungs/ableitungs-Anschluß mit dem Leiter und dem zentralen Stab des ersten Elementes verbunden ist.
  3. Antenne nach Anspruch 1, bei welchem der unbegrenzte Symmetrieübertrager eine Streifenleitungs- oder eine koaxiale Übertragungsleitungsstruktur hat.
  4. Antenne nach Anspruch 2, bei welcher sich die zwei Elemente auf der gleichen Seite des Substratmittels befinden und der Leiter mittels eines leitenden Stifts durch das Substratmittel mit dem Stab des zweiten Elementes verbunden ist.
  5. Antenne nach Anspruch 2, bei welcher sich die zwei Elemente auf verschiedenen Flächen des Substratmittels befinden und der Leiter direkt mit dem Stab des zweiten Elementes verbunden ist.
  6. Antenne nach einem der vorhergehenden Ansprüche, ferner enthaltend einen zweiten logarithmisch-periodischen Dipol auf dem Substratmittel, wobei der zweite Dipol zwei Elemente hat, die sich von der Mitte aus zum Umfangsbereich des Substratmittels erstrecken, wobei jedes Element einen radial angeordneten zentralen Stab mit mehreren bogenförmigen Gliedern aufweist, die sich abwechselnd auf beiden Seiten des Stabes so erstrecken, daß sie im wesentlichen gleiche Winkel um die Mitte überspannen, wobei die Elemente des zweiten Dipols orthogonal zu den Elementen des ersten Dipols verlaufen und die bogenförmigen Glieder der Elemente der zwei Dipole ineinander verschachtelt sind, einen zweiten unbegrenzten Symmetrieübertrager, der bei der Mitte an die Elemente des zweiten Dipols angeschlossen ist, und einen zweiten Signaleinführungs/ableitungs-Anschluß für eine Übertragungsleitung nahe des Umfangsbereichs in Verbindung mit dem zweiten Symmetrieübertrager.
  7. Antenne nach Anspruch 6, bei welcher der zweite unbegrenzte Symmetrieübertrager einen Leiter auf einer anderen Fläche des Substratmittels als das erste der Elemente des zweiten Dipols aufweist, der parallel und längs zur Längserstreckung des mittleren Stabs des ersten Elements des zweiten Dipols verläuft und bei der Mitte an den zentralen Stab des zweiten Elements des zweiten Dipols angeschlossen ist, wobei der zweite Signaleinführungs/ableitungs-Anschluß mit dem Leiter des zweiten Symmetrieübertragers und mit dem zentralen Stab des ersten Elements des zweiten Dipols verbunden ist.
  8. Antenne nach Anspruch 6, bei welcher der zweite unbegrenzte Symmetrieübertrager eine Streifenleitungs- oder koaxiale Übertragungsleitungsstruktur hat.
  9. Antenne nach Anspruch 7, bei welcher die zwei Elemente des zweiten Dipols auf der gleichen Fläche des Substratmittels angebracht sind und der Leiter des zweiten Symmetrieübertragers mittels eines leitenden Stifts durch das Substratmittel mit dem Stab des zweiten Elements verbunden ist.
  10. Antenne nach Anspruch 7, bei welchem die zwei Elemente des zweiten Dipols auf verschiedenen Flächen des Substratmittels angebracht sind und der Leiter des zweiten Symmetrieübertragers direkt mit dem Stab des zweiten Elements verbunden ist.
  11. Antenne nach einem der vorhergehenden Ansprüche, enthaltend eine Koaxialleitung, die mit dem oder jedem Signaleinführungs/ableitungs-Anschluß verbunden ist.
  12. Antenne nach einem der Ansprüche 6 bis 10, enthaltend ein Kopplungsmittel, das mit den erstgenannten und zweiten Signaleinführungs/ableitungs-Anschlüssen verbunden ist, wobei das Kopplungsmittel selektiv so angeordnet ist, daß es nur den erstgenannten Signalanschluß, nur den zweiten Signalanschluß oder sowohl den ersten als auch den zweiten Signalanschluß mit einer Phasenverschiebung von 90° zwischen ihnen in positiver Richtung oder in negativer Richtung koppelt.
  13. Breitbandantenne mit einem Substratmittel mit einer Mitte und einem Umfangsbereich, mehreren logarithmischperiodischen Dipolen mit jeweils zwei Elementen auf dem Substratmittel, wobei jedes Element von der Mitte zum Umfangsbereich des Substratmittels verläuft und gekennzeichnet ist durch einen radial angeordneten zentralen Stab mit mehreren bogenförmigen Gliedern, die sich in Umfangsrichtung abwechselnd auf beiden Seiten des Stabs erstrecken, so daß sie im wesentlichen gleiche Winkel um die Mitte überspannen, wobei die Dipole im wesentlichen gleichwinklig im Abstand um die Mitte mit ineinander verschachtelten bogenförmigen Gliedern der verschiedenen Dipole liegen, mehreren unbegrenzten Symmetrieübertragern bezüglich der Dipole, wobei jeder Symmetrieübertrager einen Leiter auf einer anderen Fläche des Substratmittels als das erste Element des betreffenden Dipols hat, der parallel und in Längsrichtung zur Längserstreckung des zentralen Stabs des ersten Elements verläuft und bei der Mitte mit dem zentralen Stab des zweiten Elements des betreffenden Dipols verbunden ist, und mehreren Signaleinführungs/ableitungs-Anschlüssen für die Dipole, wobei jeder Anschluß für eine Übertragungsleitung dient, nahe des Umfangsbereichs angeordnet ist und mit dem Leiter des betreffenden Dipols und dem zentralen Stab des ersten Elements des betreffenden Dipols verbunden ist.
EP90303585A 1989-04-18 1990-04-04 Mehrfach polarisierte kompakte Breitbandantenne Expired - Lifetime EP0393875B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33977489A 1989-04-18 1989-04-18
US339774 1989-04-18

Publications (2)

Publication Number Publication Date
EP0393875A1 EP0393875A1 (de) 1990-10-24
EP0393875B1 true EP0393875B1 (de) 1995-01-04

Family

ID=23330520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90303585A Expired - Lifetime EP0393875B1 (de) 1989-04-18 1990-04-04 Mehrfach polarisierte kompakte Breitbandantenne

Country Status (2)

Country Link
EP (1) EP0393875B1 (de)
DE (1) DE69015678T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050048A1 (en) * 2011-08-31 2013-02-28 Space Admi Solderless circularly polarized microwave antenna element

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164738A (en) * 1990-10-24 1992-11-17 Trw Inc. Wideband dual-polarized multi-mode antenna
FR2687852A1 (fr) * 1992-02-26 1993-08-27 Dassault Electronique Dispositif de connexion entre une antenne et un boitier de microelectronique.
FR2756976B1 (fr) * 1996-12-06 1999-03-05 Univ Rennes Antenne a fentes a double polarisation et a tres large bande passante et procede pour sa realisation
US6094176A (en) * 1998-11-24 2000-07-25 Northrop Grumman Corporation Very compact and broadband planar log-periodic dipole array antenna
DE102004004798B4 (de) * 2004-01-30 2006-11-23 Advanced Micro Devices, Inc., Sunnyvale Leistungsfähige, kostengünstige Dipolantenne für Funkanwendungen
CN107611598A (zh) * 2017-07-25 2018-01-19 西安电子科技大学 一种宽波束的超宽带双圆极化对数周期天线
CN112751181B (zh) * 2020-12-24 2023-05-23 吉林医药学院 用于胶囊内窥镜的引入环形容性加载的宽频圆极化天线
CN114421151B (zh) * 2022-03-28 2022-08-02 陕西海积信息科技有限公司 赋形全向圆极化天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039099A (en) * 1959-06-25 1962-06-12 Herman N Chait Linearly polarized spiral antenna system
DE2400752A1 (de) * 1973-01-09 1974-08-15 Marconi Co Ltd Antenneneinrichtung mit geradem speiseleiter und von diesem abwechselnd nach zwei seiten abzweigenden strahlungselementen
GB2160021B (en) * 1984-06-05 1987-12-23 Decca Ltd Antenna
US4636802A (en) * 1984-10-29 1987-01-13 E-Systems, Inc. Electrical connector for spiral antenna and resistive/capacitive contact therefor
US4658262A (en) * 1985-02-19 1987-04-14 Duhamel Raymond H Dual polarized sinuous antennas
US4772891A (en) * 1987-11-10 1988-09-20 The Boeing Company Broadband dual polarized radiator for surface wave transmission line

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol.6,no.160 (E-126)(1038),21 August 1982; *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050048A1 (en) * 2011-08-31 2013-02-28 Space Admi Solderless circularly polarized microwave antenna element
US8912974B2 (en) * 2011-08-31 2014-12-16 The United State of America as represented by the Administrator of the National Aeronautics Space Administration Solderless circularly polarized microwave antenna element

Also Published As

Publication number Publication date
DE69015678T2 (de) 1995-05-18
EP0393875A1 (de) 1990-10-24
DE69015678D1 (de) 1995-02-16

Similar Documents

Publication Publication Date Title
US5212494A (en) Compact multi-polarized broadband antenna
US5818391A (en) Microstrip array antenna
US4924236A (en) Patch radiator element with microstrip balian circuit providing double-tuned impedance matching
US4922263A (en) Plate antenna with double crossed polarizations
US6778144B2 (en) Antenna
US4525720A (en) Integrated spiral antenna and printed circuit balun
US6211840B1 (en) Crossed-drooping bent dipole antenna
US4916457A (en) Printed-circuit crossed-slot antenna
US6424311B1 (en) Dual-fed coupled stripline PCB dipole antenna
US5786793A (en) Compact antenna for circular polarization
US4710775A (en) Parasitically coupled, complementary slot-dipole antenna element
US5165109A (en) Microwave communication antenna
US4965605A (en) Lightweight, low profile phased array antenna with electromagnetically coupled integrated subarrays
US6795021B2 (en) Tunable multi-band antenna array
US3887925A (en) Linearly polarized phased antenna array
EP2248222B1 (de) Zirkular polarisierte gruppenanntenne
US6239764B1 (en) Wideband microstrip dipole antenna array and method for forming such array
US5444452A (en) Dual frequency antenna
US5973644A (en) Planar antenna
US5451973A (en) Multi-mode dual circularly polarized spiral antenna
US4649391A (en) Monopulse cavity-backed multipole antenna system
JP2005505963A (ja) スロット結合偏波放射器
US6466177B1 (en) Controlled radiation pattern array antenna using spiral slot array elements
WO1981003398A1 (en) Circularly polarized hemispheric coverage flush antenna
US20030112200A1 (en) Horizontally polarized printed circuit antenna array

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19910417

17Q First examination report despatched

Effective date: 19930506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REF Corresponds to:

Ref document number: 69015678

Country of ref document: DE

Date of ref document: 19950216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010313

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010319

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010405

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020625

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050404