EP0393128A1 - Dispositifs optiques a cristaux liquides presentant un gradient controle d'ordre en surface - Google Patents
Dispositifs optiques a cristaux liquides presentant un gradient controle d'ordre en surfaceInfo
- Publication number
- EP0393128A1 EP0393128A1 EP19890900833 EP89900833A EP0393128A1 EP 0393128 A1 EP0393128 A1 EP 0393128A1 EP 19890900833 EP19890900833 EP 19890900833 EP 89900833 A EP89900833 A EP 89900833A EP 0393128 A1 EP0393128 A1 EP 0393128A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid crystal
- plates
- roughness
- orientation
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133734—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by obliquely evaporated films, e.g. Si or SiO2 films
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1396—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
- G02F1/1397—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/141—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
Definitions
- the present invention relates to optical devices using liquid crystals. 5.
- the present invention was made in the Laboratory of
- the present * invention now aims to propose new means for defining, simply, reliably and economically, an oblique inclination of the liquid crystal molecules relative to a plate of the device.
- the present invention which is based on numerous theoretical studies and experimental observations, proposes for this purpose to define on a plate " of the device, a roughness of the order of molecular magnitude of the liquid crystal considered.
- the roughness thus defined on the plate of the device will be of the order of magnitude from 20 to 40 A.
- the inventors have determined that such roughness results in an order parameter gradient which induces an ordoelectric polarization, associated with a depolarizing field which tends to force the molecules of the crystal in an oblique orientation relative to the plate. More precisely still, by extending their research, the inventors have determined that, by defining a preferential direction of roughness, for example by depositing on the plate a rough coating by evaporation in a determined direction, it was possible to obtain both. controlled oblique orientation and azimuthal orientation of the liquid crystal, relative to the plates.
- the oblique orientation and the azimuthal orientation of the liquid crystal evolve continuously, in an obi plane relative to the plates as a function of the thickness of the roughness and of its preferential direction, that is to say in the case of an evaporation as a function of the direction of incidence.
- a bistable display with very low energy consumption can be obtained using a device comprising two parallel transparent plates, and a material comprising liquid crystal molecules placed between the two plates, at least one plates having on its surface adjacent to the liquid crystal a roughness of the order of molecular magnitude of the liquid crystal, the thickness and the orientation of the roughness being adapted to define two possible azimuthal orientations of the molecules of the liquid crystal, symmetrical with respect to to the preferred direction of roughness and of the order of 45 ° relative to this direction, and means making it possible to apply an electric field external to the device to cause the controlled tilting of the molecules from one azimuth orientation to the other.
- Document US-A-4 601 544 relates to a liquid crystal device having a bistable volume effect.
- Document FR-A-2 308 675 relates to micromachining, by means of an ion beam, of a coating deposited on the substrate of a liquid crystal cell.
- FIGS. 1 to 4 show, for four experiments, the azimuthal orientation Y and the oblique bearing ⁇ of the liquid crystal as a function of the angle of evaporation and the thickness of a deposit made on a plate,
- FIGS. 7, 8 and 9A, 9B schematically illustrate three applications of the invention , to nematic liquid crystal devices, and
- FIG. 10 shows curves illustrating the evolution of the oblique or ⁇ tion of a smectic liquid crystal, on each of the two faces of the device, depending on a thickness of SiO deposited.
- the present invention is based on the following theoretical analysis.
- Nematic liquid crystals can be considered as liquids of oriented electric quadrupoles for which one can write: relationship in which:
- - S represents the order parameter of the liquid crystal (S is between O and 1)
- - n is the unit vector representing the orientation of the molecules.
- the inventors proposed the idea of controlling the order parameter S, on the surface of a liquid crystal device, by depositing on a plate of the device small grains whose size is of the order of magnitude of the molecular size of the liquid crystal considered, that is to say of l '' from 20 to 40 A.
- the inventors have controlled the orientation of the liquid crystal for different pairs of evaporation angle and thickness of the deposited grains.
- the inventors have found that achieving a rough surface state by evaporation in a determined direction makes it possible to obtain not only an oblique orientation of the liquid crystal molecules relative to the plates, but also an azimuthal orientation which is controlled and variable with respect to to the direction of evaporation.
- the first results obtained are recorded in Figures 1 to 4 and 6 attached. These results are illustrated with reference to the geometric model represented in FIG. 5.
- This geometric model includes a coordinate system with three axes x, y and z, orthogonal to each other.
- the axes x, y extend parallel to the plate P considered.
- the z axis extends perpendicular to this plate P, in the direction of the volume of the liquid crystal.
- the direction of evaporation arbitrarily coincides with the plane defined by the x and z axes.
- the incidence of the direction of evaporation, which corresponds to the inclination between the direction of evaporation and the z axis is defined by the angle.
- the oblique orientation of the liquid crystal which corresponds to the inclination between the z axis and the longitudinal axis of the liquid crystal molecules is illustrated by the angle ⁇ in FIG. 5.
- the complement of this angle ⁇ is referenced ⁇ .
- the azimuthal orientation of the liquid crystal which corresponds to the inclination between the x axis and the projection on the xy plane of the longitudinal axis of the molecules is illustrated by the angle referenced ⁇ in FIG. 5.
- the evaporation angle c a gradual azimuthal rotation of the molecules in an oblique plane with respect to the plate P.
- the liquid crystal then passes from a domain for which the azimuthal orientation ⁇ equals 90 ° to an azimuthal domain for which can reach 0 °, that is to say a domain for which the molecules are oriented substantially parallel to the xz plane containing the direction of evaporation.
- azimuthal is accompanied by an increase in molecules; when T gradually goes from 90 ° to 0 °, ⁇ goes from 0 to about 20-30 °.
- the hatched range in FIG. 1 corresponds to the range of values of the evaporation angle c. and of the thickness of evaporation for which the azimuthal orientation varies progressively between 90 ° and 0 ° and the oblique orientation ⁇ varies progressively between 0 and approximately 20-30 °.
- FIG. 2 relates to tests carried out under the same operating conditions, that is to say deposition by evaporation of SiO on ordinary glass, for different values of evaporation angle and thickness of deposition, but with the difference of Figure 1, using liquid crystal 5 CB instead of MBBA.
- Figures 3 and 4 similarly represent the value of the azimuthal orientation as a function of the angle of evaporation o (and the thickness of deposition of SiO, on an ITO plate, respectively for liquid crystal MBBA d ' on the one hand, and 5CB on the other.
- Figures 2, 3 and 4 like Figure 1 above, reveal a range (hatched in the figures) of pairs of values, evaporation angle ⁇ (/ thickness of deposit, for which the orientation azimuthal ⁇ ? gradually goes from 90 ° to 0 °.
- FIG. 6 represents the simultaneous evolution of the azimuthal orientation T and of the oblique orientation ⁇ as a function of the thickness of a deposit of SiO evaporated on an ITO plate with an incidence p. 74 °, using a 5CB liquid crystal.
- the azimuthal orientation ⁇ passes progressively from 90 ° to 0 ° for a thickness of deposit substantially between 30 and 40 A.
- the oblique orientation ⁇ gradually rises from 0 to 20 ° for an evaporation thickness ranging from 30 to 40 A.
- the tests carried out by the inventors have made it possible to observe that the bare substrate, before evaporation, promotes a planar orientation, that is to say parallel to the surface, but degenerate.
- the average evaporated amount (of SiO) reaches 5 A, the azimuthal degeneration is lifted, but the anchoring remains planar.
- the nematic which turns in a oblique plane from its initial planar position, perpendicular to the direction of evaporation, to an oblique position towards the direction of evaporation.
- achieving a rough state on the plates capable of generating an order gradient, and from there thanks to the induced ordoelectric polarization, to request a raising of the liquid crystal in an oblique orientation orientation relative to the plates, can be operated by means other than evaporation, such as for example, by chemical attack, spraying, or even ion bombardment.
- the inventors have moreover determined that the molecules of the liquid crystal are capable of taking two symmetrical azimuthal orientations with respect to the plane xz containing the direction of evaporation.
- FIG. 8 We have thus schematically illustrated in FIG. 8 two azimuthal orientations symmetrical with respect to the plane xz defined by the direction of evaporation.
- the evaporation angle ⁇ and thickness evaporation on a plate so that the azimuthal orientation with respect to the xz plane is in the range of 45 ° T, it is easy, by applying an external electric field provoke the controlled tilting of the molecules from an azimuthal orientation to the other on said plate.
- both electrodes or plates have a state of
- a planar and parallel anchoring is defined on the two plates of the device, as illustrated in FIG. 9A.
- the angle of evaporation ⁇ (and the thickness of evaporation of a deposit are checked to place the liquid crystal in the vicinity of the hatched transition range in FIGS. 1 to 4.
- the liquid crystal is thus placed in the vicinity of an instability threshold, that is to say in the vicinity of an azimuthal tilting threshold.
- This arrangement facilitates the tilting of the liquid crystal towards a helical formation, by application of an external electric field, as is known per se and as illustrated diagrammatically in FIG. 9B
- Ferroelectric smectic C displays when they have a degenerate surface anchoring, theoretically allow two positions of symmetrical molecules with respect to the smectic layers. In one of these positions, the electric dipole of the molecules is oriented towards the electrode, in the other position, it is oriented towards the volume, by an external applied field. In theory, these two positions should be equivalent and allow the realization of bistable displays.
- the present invention makes it possible to cancel the chemical polarization by virtue of an ordoelectric polarization induced by the creation of a gradient of nematic order, in the smectic phase, of suitable sign and amplitude.
- FIG. 10 illustrates the orientation 0, - of the liquid crystal thus obtained on the lower and upper device plates for different thickness values of a deposit of SiO operated by evaporation at an incidence ⁇ of 81 ° on ITO plates separated by 3 ⁇ m, respectively for temperatures of 55 ° C and 48.0 ° C.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
Abstract
La présente invention concerne le domaine des dispositifs à cristaux liquides. Selon l'invention une rugosité de l'ordre de grandeur moléculaire du cristal liquide est définie sur l'une au moins des plaques. Cette rugosité entraîne un gradient d'ordre qui induit une polarisation ordoélectrique associée à un champ dépolarisant qui tend à forcer les molécules de cristal liquide selon une orientation oblique par rapport à la plaque. Le contrôle de l'épaisseur et de la direction préférentielle de rugosité permet de plus de contrôler l'orientation oblique psi et l'orientation azimutale phi des molécules dans une plage continue de variation. La présente invention permet également de réaliser des interfaces non polaires pour les afficheurs à smectique C* ferroélectrique.
Description
DISPOSITIFS OPTIQUES A CRISTAUX LIQUIDES PRESENTANT UN GRADIENT CONTROLE D'ORDRE EN SURFACE.
La présente invention concerne les dispositifs optiques utilisant des cristaux liquides. 5 . La présente invention a été faite au Laboratoire de
Physique des Solides de l'Université de Paris Sud, laboratoire associé au CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE numéro 04 0002. De nombreux travaux de recherche ont été conduits depuis au moins une quinzaine d'années sur les cristaux liquides.
10 Différents résultats des travaux de recherche effectués au
Laboratoire de Physique des Solides de l'Université de Paris Sud sont décrits dans la demande de brevet français déposée le 28 avril 1982 sous le numéro 82 07309 et publiée sous le numéro 2 526 177, la demande de brevet français déposée le 23 octobre 1984 sous le numéro 84 16192 et
*-• publiée sous le numéro 2 572 210, la demande de brevet français déposée le 18 juin 1985 sous le numéro 85 09224 et publiée sous le numéro 2 587 506, ou encore la demande de brevet français déposée le 14 mai 1986 sous le numéro 86 06916 et publiée sous le numéro 2 598 827. Par ailleurs, les travaux relatifs aux cristaux liquides ont
-- donné lieu à de nombreuses publications.
On citera par exemple les documents : 1) Appiied Physics Letters volume 25, N. 9, novembre 1974, Urbach et Al : "Alignment of nematics and smectics on evaporated films", pages 479 à 481, 2) Letters in Applied and Engineering Sciences, volume 1, 1973, pages 19-24, Guyon
25 et Al : "On différent boundary conditions of nematic films deposited on obliquely evaporated plates", et 3) Physical Review Letters, volume 56, N. 19, Mai 1986, Durand et al : "Order electricity and surface orientation in nematic liquid crystal, pages 2056 à 2059".
Le document 1) Applied Physics Letters, volume 25, N. 9, 0 novembre 1974, rapporte des essais expérimentaux opérés sur un dispositif à cristaux liquides comprenant une plaque sur laquelle un dépôt d'or ou de SiO, d'une épaisseur de d'ordre de 50 à 1000 A, a été
précédemment effectué par évaporation sous incidence oblique. Selon les résultats consignés dans ce document, on peut obtenir soit une orientation planaire du cristal liquide, c'est-à-dire des molécules de cristal liquide orientées parallèlement aux plaques du dispositif, soit une orientation oblique du cristal liquide, c'est-à-dire des molécules de cristal liquide inclinées par rapport aux plaques. Selon ce document 1) page 480, lignes 43 à 46, l'inclinaison oblique des molécules par rapport aux plaques est pratiquement indépendante de l'épaisseur du revêtement déposé par évaporation. Le document 2) Letters in Applied and Engineering
Sciences, volume 1, pages 19-24, 1973, propose une modélisation des résultats consignés dans le document 1). Cette modélisation concerne le cas théorique d'un dépôt par évaporation présentant une épaisseur de 100 à 6000 A. Le document 3) Physical Review Letters, volume 56, N. 19,
Mai 1986, relate une analyse théorique concernant l'influence de la perturbation de l'ordre nematique, au niveau d'une interface nematique/ liquide isotrope. Il ressort de cette analyse que la perturbation d'ordre à l'interface s'accompagne d'une énergie qui force les molécules à un angle dit "angle magique" défini par cos2 θ = 1/3.
La présente* invention a maintenant pour but de proposer de nouveaux moyens permettant de définir, de façon simple, fiable et économique, une inclinaison oblique des molécules de cristaux liquides par rapport à une plaque du dispositif. La présente invention, qui repose sur de nombreuses études théoriques et constatations expérimentales propose à cet effet de définir sur une plaque" du dispositif, une rugosité de l'ordre de grandeur moléculaire du cristal liquide considéré.
De préférence, la rugosité ainsi définie sur la plaque du e dispositif sera de l'ordre de grandeur de 20 à 40 A.
Les inventeurs ont déterminé qu'une telle rugosité entraîne un gradient de paramètre d'ordre qui induit une polarisation ordoélec- trique, associée à un champ dépolarisant qui tend à forcer les molécules du cristal selon une orientation oblique par rapport à la plaque. Plus précisément encore, en prolongeant leurs recherches, les inventeurs ont déterminé que, en définissant une direction préféren¬ tielle de rugosité, par exemple en déposant sur la plaque un revêtement rugueux par évaporation selon une direction déterminée, on pouvait obtenir à la fois .une orientation oblique et une orientation azimutale contrôlées du cristal liquide, par rapport aux plaques. Plus précisément encore, l'orientation oblique et l'orientation azimutale du cristal liquide évoluent continuellement, dans un plan obiique par rapport aux plaques en fonction de l'épaisseur de la rugosité et de sa direction préférentielle, c'est-à-dire dans le cas d'une évaporation en fonction de la direction d'incidence.
Cette disposition est susceptible de donner lieu à de nombreuses applications. En effet, il suffit de contrôler l'épaisseur de rugosité et sa direction préférentielle pour imposer à la fois l'orientation oblique et l'orientation azimutale du cristal liquide. Ainsi par exemple on peut obtenir un affichage bistable à très faible consommation d'énergie à l'aide d'un dispositif comprenant deux plaques transparentes parallèles, et une matière comprenant des molécules de cristal liquide placées entre les deux plaques, l'une au moins des plaques présentant sur sa surface adjacente au cristal liquide une rugosité de l'ordre de grandeur moléculaire du cristal liquide, l'épaisseur et l'orientation de la rugosité étant adaptées pour définir deux orientations azimutales possibles des molécules du cristal liquide, symétriques par rapport à la direction préférentielle de rugosité et de l'ordre de 45° par rapport à cette direction, et des moyens permettant d'appliquer un champ électrique externe au dispositif pour provoquer le basculement contrôlé des molécules d'une orientation azimutaie à l'autre.
Le document US-A-4 601 544 concerne un dispositif à cristal liquide présentant un effet bistable de volume.
Les documents "Conférence Accord of 1978 Biennal Display Research Conférence - Cherry Hill, NJ, 24-26 oct 1978 pages 56-58 ; "Japanese Journal of Applied Physics vol 19 n. 3 mars 1980" ; "J. Appl. Phys. vol 50 n. 6 juin 1979 - pages 3975-3977" concernent l'observation d'inclinaison de molécules de cristal liquide par rapport aux plaques sous l'effet de revêtements déposés par celles-ci. Les documents précités analysent succinctement, entre autre, l'influence de l'épaisseur du revêtement, mais n'analysent par l'influence de l'épaisseur de la rugosité. De plus, ils ne mettent pas en évidence l'effet bistable précité.
Le document FR-A-2 308 675 concerne le micro-usinage, au moyen d'un faisceau d'ions, d'un revêtement déposé sur le substrat d'une cellule à cristaux liquides. D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :
- les figures 1 à 4 représentent, pour quatre expériences, l'orientation azimutale Y et le relèvement oblique γ du cristal liquide en fonction de l'angle d'évaporation et de l'épaisseur d'un dépôt opéré sur une plaque,,
- la figure 5 représente géométriquement l'orientation oblique et azimutale d'une molécule de cristal liquide par rapport à la direction d'évaporation, - la figure 6 représente deux courbes illustrant l'orientation azimutale
et l'orientation oblique ψ en fonction d'une épaisseur de dépôt, pour un angle d'évaporation déterminé,
- les figures 7, 8 et 9A, 9B illustrent schématiquement trois applications de' l'invention , à des dispositifsà cristaux liquides nématiques, et
- la figure 10 représente des courbes illustrant l'évolution de l'orien¬ tation oblique d'un cristal liquide smectique, sur chacune des deux faces du dispositif, en fonction d'une épaisseur de SiO déposée.
ANALYSE GENERALE
La présente invention repose sur l'analyse théorique suivante.
Les cristaux liquides nématiques peuvent être considérés comme des liquides de quadrupoles électriques Q orientés pour lesquels on peut écrire :
relation dans laquelle :
_3
- -e représente la densité de quadrupoles (-e t\t 10~ cgs),
- S représente le paramètre d'ordre du cristal liquide (S est compris entre O et 1),
- n est le vecteur unitaire représentant l'orientation des molécules.
En présence de variations spatiales, on obtient la polarisation électrique P = -V.Cj = 3/2 eV.S(hn -1/3).
On sait que si, travaillant à S constant, V agit sur n, on obtient l'effet flexoeiectrique et la polarisation P devient propor¬ tionnelle à la courbure r.(V.rï).
Si par contre on travaille à "n constant et S variable, on obtient la polarisatioon ordoélectrique : P = 3/2 e V S.[r>n - T/3]. Cette polarisation est en général oblique par rapport à 7 S.
A cette polarisation est associé un champ dépolarisant défini p "ar D z = O = 4TÏ P z + ε E z ( où ~Ϋ est la direction de VS).
L'énergie associée a une densité
1/2 ( ε/4rc ) EZ ~ = 1/2 π/e. ) PZ 2.
Cette énergie est minimum pour P = O , c'est-à-dire pour une orientation oblique θ par rapport à z définie par cos2 θ = 1/3.
BASE DE L'INVENTION ET PREMIERS RESULTATS D'ESSAI
Partant de l'analyse générale ci-dessus, selon laquelle un gradient du paramètre d'ordre doit conduire à une sollicitation du cristal liquide selon une orientation oblique par rapport aux plaques, les inventeurs ont proposé l'idée de contrôler le paramètre d'ordre S, en surface d'un dispositif à cristaux liquides, par dépôt sur une plaque du dispositif de petits grains dont la taille est de l'ordre de grandeur de la taille moléculaire du cristal liquide considéré, c'est-à-dire de l'ordre de 20 à 40 A.
Les expériences ont été conduites en utilisant un cristal liquide nematique présentant une orientation parallèle à la surface de la plaque, mais dégénérée en présence d'une plaque polie, c'est-à-dire de direction variable dans un plan parallèle à la surface de la plaque.
Plus précisément les inventeurs ont contrôlé l'orientation du cristal liquide pour différents couples d'angle d'évaporation et d'épaisseur des grains déposés. Les inventeurs ont constaté que la réalisation d'un état de surface rugueux par évaporation selon une direction déterminée, permettait d'obtenir non seulement une orientation oblique des molécules de cristal liquide par rapport aux plaques, mais également une orientation azimutale contrôlée et variable par rapport à la direction d'évaporation. Les premiers résultats obtenus sont consignés sur les figures 1 à 4 et 6 annexées.
Ces résultats sont illustrés en référence au modèle géométrique représentés sur la figure 5.
Ce modèle géométrique comprend un système de coordon¬ nées à trois axes x, y et z, orthogonaux entre eux. Les axes x, y s'étendent parallèlement à la plaque P considérée. L'axe z s'étend perpendiculairement à cette plaque P, en direction du volume du cristal liquide. La direction d'évaporation coïncide arbitrairement avec le plan défini par les axes x et z. L'incidence de la direction d'évaporation, qui correspond à l'inclinaison entre la direction d'évaporation et l'axe z est définie par l'angle .
L'orientation oblique du cristal liquide, qui correspond à l'inclinaison entre l'axe z et l'axe longitudinal des molécules de cristal liquide est illustrée par l'angle θ sur la figure 5. Le complément de cet angle θ est référencé ψ . Enfin, l'orientation azimutale du cristal liquide, qui correspond à l'inclinaison entre l'axe x et la projection sur le plan xy de l'axe longitudinal des molécules est illustrée par l'angle référencé ψ sur la figure 5.
On a illustré sur la figure 1 annexée l'évolution de l'orientation azimutale '-_- pour du cristal liquide MBBA en fonction de l'angle d'évaporation o( et de l'épaisseur d'un dépôt de SiO sur du verre ordinaire.
_• _ β
Pour une épaisseur de dépôt inférieure a 5 A, on constate que les molécules de cristal liquide sont orientées parallèlement aux plaques, mais dans des directions aléatoires. o
Lorsque l'épaisseur du dépôt atteint 5 À, la dégénérescence est levée, c'est-à-dire que les molécules s'orientent parallèlement à elles-mêmes et perpendiculairement au plan xz définissant la direction d'évaporation. A ce stade l'orientation azimutale Ψ des molécules égale 90°, et l'orientation oblique Q' - 90°.
Cette position initiale des molécules est illustrée schématiquement sur la figure 5 sous la référence M'.
Lorsque l'épaisseur du dépôt augmente encore, on obtient en fonction de l'angle d'évaporation c( une rotation azimutale progressive des molécules dans un plan oblique par rapport à la plaque P. Le cristal liquide passe alors d'un domaine pour lequel l'orientation azimutale ψ égale 90° à un domaine azimutal pour lequel peut atteindre 0°, c'est-à-dire un domaine pour lequel les molécules sont orientées sensiblement parallèlement au plan xz contenant la direction d'évapo- ration. La rotation azimutale s'accompagne d'un relèvement des molécules ; lorsque T passe progressivement de 90 ° à 0°, ψ passe de 0 à environ 20-30°.
La plage hachurée sur la figure 1 correspond à la plage de valeurs de l'angle d'évaporation c . et de l'épaisseur d'évaporation pour lesquelles l'orientation azimutale varie progressivement entre 90° et 0° et l'orientation oblique ψ varie progressivement entre 0 et environ 20-30°. Cette variation progressive de l'orientation azimutale et de l'orien¬ tation oblique ψ , contrôlable en fonction de la rugosité, constitue une caractéristique essentielle de l'invention, originale par rapport à l'art antérieur selon lequel seules les bornes y" = 90° ou 0° et ψ = O ou 20-30° étaient connues.
Des résultats comparables sont illustrés sur la figure 2 annexée. Cette figure 2 concerne des essais réalisés dans les mêmes conditions opératoires, c'est-à-dire dépôt par évaporation de SiO sur du verre ordinaire, pour différentes valeurs d'angle d'évaporation et d'épaisseur de dépôt, mais à la différence de la figure 1, en utilisant du cristal liquide 5 CB au lieu de MBBA.
Les figures 3 et 4 représentent de façon similaire la valeur de l'orientation azimutale en fonction de l'angle d'évaporation o( et de l'épaisseur de dépôt de SiO, sur une lame ITO, respectivement pour du cristal liquide MBBA d'une part, et 5CB d'autre part.
Les figures 2, 3 et 4, comme la figure 1 précitée, révèlent une plage (hachurée sur les figures) de couples de valeurs, angle d'évaporation θ( /épaisseur de dépôt, pour lesquelles l'orientation
azimutale ~? passe progressivement de 90° à 0°.
La figuré 6 représente l'évolution simultanée de l'orien¬ tation azimutale T et de l'orientation oblique Ψ en fonction de l'épaisseur d'un dépôt de SiO évaporé sur une lame ITO avec une incidence p. de 74°, avec utilisation d'un cristal liquide 5CB.
En accord avec les résultats illustrés sur la figure 4, on reconnaît que l'orientation azimutale γ passe progressivement de 90° à 0° pour une épaisseur de dépôt comprise sensiblement entre 30 et 40 A. En parallèle, on aperçoit que l'orientation oblique ψ se relève progressivement de 0 à 20° pour une épaisseur d'évaporation allant de 30 à 40 A.
En conclusion, les essais réalisés par les inventeurs ont permis d'observer que le substrat nu, avant évaporation, favorise une orientation planaire, c'est-à-dire parallèle à la surface, mais dégénérée. Quand la quantité moyenne évaporée (de SiO) atteint 5 A, la dégéné¬ rescence azimutale est levée, mais l'ancrage reste planaire.. Au-dessus de 10A d'évaporation moyenne, on observe un relèvement du nematique, qui tourne dans un plan oblique de sa position planaire initiale, perpendi¬ culaire à la direction d'évaporation, jusqu'à une position oblique vers la direction d'évaporation.
Bien entendu la réalisation d'un état rugueux sur les plaques, apte à générer un gradient d'ordre, et de là grâce à la polarisation ordoélectrique induite, à solliciter un relèvement du cristal liquide selon une orientation oblique ψ par rapport aux plaques, peut être opéré par d'autres moyens qu'une évaporation, tel que par exemple, par attaque chimique, pulvérisation, ou encore bombardement ionique.
" On va maintenant évoquer dans la suite de la description différents exemples d'applications de la présente invention, non limitatifs.
APPLICATION A LA REALISATION D'AFFICHEURS NEMATIQUES SUPER TWISTES
On tente de développer de nos jours des afficheurs nématiques présentant des directions d'ancrage sur les deux plaques, inclinées relativement d'un . angle > supérieur à 90°, avec orientation oblique par rapport à au moins l'une des plaques, comme illustré schématiquement sur le figure 7 annexée,pour autoriser un multiplexage du dispositif et obtenir un contraste satisfaisant. L'état de surface rugueux conforme à la présente invention permet d'obtenir aisément une orientation oblique de 10 à 20° par rapport aux plaques, et une orientation azimutale contrôlée.
APPLICATION A LA REALISATION D'ANCRAGES
NEMATIQUES BISTABLES.
Les inventeurs ont par ailleurs déterminé que les molécules du cristal liquide sont susceptibles de prendre deux orientations azimutales symétriques par rapport au plan xz contenant la direction d'évaporation.
On a ainsi illustré schématiquement sur la figure 8 deux orientations azimutales symétriques par rapport au plan xz défini par la direction d'évaporation. En choisissant l'angle d'évaporation ~ et l'épaisseur d'évaporation sur une plaque de telle sorte que l'orientation azimutale par rapport au plan xz soit de l'ordre de T 45°, on peut aisément, par application d'un champ électrique externe provoquer le basculement contrôlé des molécules d'une orientation azimutale à l'autre sur ladite plaque. Pour provoquer le basculement contrôlé des molécules d'une orientation aziumtale à l'autre et inversement, il suffit d'appliquer à la cellule alternativement des champs électriques, par exemple parallèles aux plaques ayant respectivement au moins une composante coïncidant avec une de ces orientations azimutales si le cristal liquide présente une anisotropie diélectrique positive ou orthogonale à l'une de
ces orientations azimutales si le cristal liquide présente une anisotropie diélectrique négative. On obtient ainsi une modification de l'orientation azimutale des molécules de l'ordre de 90°, permettant d'obtenir un contraste maximum, si le dispositif est placé entre des poiarisateurs.
En l'absence de champ électrique les positions obtenues du cristal liquide restent stables.
Si une électrode ou plaque est pourvue d'un état de surface rugueux, on obtient deux domaines : ____. γ.
Si les deux électrodes ou plaques sont pourvues d'un état de
surface rugueux on peut obtenir quatre domaines : + + ^ κ ' + *~a ~^b ' - ψ + ~Çh ; - ψ - . - en considérant que les indices a et b désignent respectivement les plaques supérieure et inférieure.
APPLICATION AUX DISPOSITIFS A CRISTAL
LIQUIDE NEMATIQUE AU SEUIL D'INSTABILITE
Dans le cadre de la troisième application envisagée de l'invention à la conception des dispositifs à cristal liquide nematique, il est défini un ancrage planaire et parallèle sur les deux plaques du dispositif, comme illustré sur la figure 9A. Cependant, sur l'une des plaques, on contrôle l'angle d'évaporation θ( et l'épaisseur d'évaporation d'un dépôt pour placer le cristal liquide au voisinage de la plage de transition hachurée sur les figures 1 à 4. le cristal liquide est ainsi placé au voisinage d'un seuil d'instabilité, c'est-à-dire au voisinage d'un seuil de basculement azimutal. Cette disposition facilite le basculement du cristal liquide vers une formation hélicoïdale, par application d'un champ électrique extérieur, comme cela est connu en soi et tel qu'illustré schématiquement sur la figure 9B. En variante on peut définir initialement une disposition hélicoïdale du cristal liquide, proche d'un seuil d'instabilité, et transformer cette disposition hélicoïdale en une orientation parallèle des molécules par application d'un champ électrique externe.
APPLICATION DE L'INVENTION AU CONTROLE DE LA POLARITE DES INTERFACES SOLIDES-SMECTIQUES C*-FERROELECTRIQUES.
Les afficheurs à smectique C ferroélectriques, lorsqu'ils présentent un ancrage de surface dégénéré, permettent en théorie deux positions des molécules symétriques par rapport aux couches smectiques.
Dans une de ces positions, le dipôle électrique des molécules est orienté vers l'électrode, dans l'autre position, il est orienté vers le volume, par un champ appliqué extérieur. En théorie, ces deux positions devraient être équivalentes et permettre la réalisation d'affichage bistables.
Cependant dans la pratique, on constate qu'au lieu d'un affichage bistable entre deux états symétriques, on obtient des affichages monostables sur des textures tordues dont le contraste est mauvais et qui ne peuvent être multiplexes. Les inventeurs ont déterminé que ce phénomène était dû au fait que l'interface électrode/cristal liquide est polaire. Cette polarisation semble de nature chimique (différence d'affinité entre la surface et une partie des molécules).
La présente invention permet d'annuler la polarisation chimique grâce à une polarisation ordoélectrique induite par création d'un gradient d'ordre nematique, dans la phase smectique , de signe et amplitude convenables.
Pour obtenir une bonne compensation de la polarité chimique on peut prendre des interfaces très polies, sur lesquelles l'ordre nematique est supérieur à la valeur en volume , ou des interfaces rugueuses sur lesquelles l'ordre en surface est inférieur.
On a illustré sur la figure 10 l'orientation 0 ,- du cristal liquide ainsi obtenu sur les plaques inférieure et supérieure de dispositif pour différentes valeurs d'épaisseur d'un dépôt de SiO opéré par évaporation selon une incidence θ de 81° sur des plaques ITO séparées de 3μm, respectivement pour des températures de 55°C et 48,0°C.
Bien entendu la présente invention n'est pas limitée aux modes de réalisation et applications précités. Elle s'étend à- toute variante conforme à son esprit.
Claims
1. Procédé de préparation d'un dispositif à cristaux liquides, caractérisé par le fait qu'il comprend l'étape consistant à définir une rugosité de l'ordre de grandeur moléculaire du cristal liquide utilisé sur l'une au moins des plaques.
2. Procédé selon la revendication 1, caractérisé par le fait que la rugosité réalisée sur l'une au moins des plaques du dispositif possède une épaisseur comprise entre 20 et 40 A.
3. Procédé selon l'une des revendications 1 et 2, caractérisé par le fait que la rugosité est réalisée sur l'une au moins des plaques du dispositif à l'aide de l'une des techniques suivantes : dépôt d'un revêtement par évaporation, dépôt d'un revêtement par pulvérisation, attaque chimique ou bombardement ionique.
4. Procédé selon l'une des revendications 1 à 3, caractérisé par le fait que la rugosité est réalisée sur l'une au moins des plaques avec contrôle d'une direction préférentielle de rugosité, par exemple par contrôle d'une direction d'évaporation, pour obtenir à la fois une orientation des molécules du cristal liquide oblique par rapport à au moins une plaque, et une orientation azimutale des molécules par rapport à la direction préférentielle de rugosité.
5. Dispositif à cristaux liquides obtenu par la mise en oeuvre du procédé conforme à l'une des revendications 1 à 4 du type comprenant deux plaques parallèles et une matière comprenant des molécules de cristal liquide placée entre les deux plaques, caractérisé par le fait que l'une au moins des plaques présente sur sa surface adjacente au cristal liquide une rugosité de l'ordre de grandeur moléculaire du cristal liquide considéré.
6. Dispositif selon la revendication 5, caractérisé par le fait que la rugosité réalisée sur l'une au moins des plaques possède une épaisseur comprise entre 20 et 40 A.
7. Dispositif selon l'une des revendications 5 et 8, caractérisé par le fait qu'une rugosité est réalisée sur chacune des deux plaques du dispositif.
8. Dispositif selon l'une des revendications 5 à 7, caractérisé par le fait que le cristal liquide est un cristal liquide nematique.
9. Dispositif selon l'une des revendications 5 a. 7, caractérisé par le fait que l'épaisseur et l'orientation de la rugosité sur l'une au moins des plaques sont adaptées pour définir une orientation oblique ψdu cristal liquide par rapport à l'une au moins des plaques et des directions d'ancrage sur les deux plaques inclinées relativement d'un angle /_> supérieur à 90°, pour la réalisation d'afficheurs nématiques supertwistés.
10. Dispositif selon l'une des revendications 5 à 8, caractérisé par le fait que la rugosité possède une direction préfé¬ rentielle, définie par exemple par une direction d'évaporation, que l'épaisseur et l'orientation de la rugosité sur l'une au moins des plaques sont adaptées pour définir deux orientations azimutales ψ possibles des molécules du cristal liquide symétriques par rapport à la direction préférentielle de rugosité et de l'ordre de 45° par rapport à cette direction, et qu'il comprend des moyens permettant d'appliquer un champ électrique externe au dispositif pour provoquer le basculement contrôlé des molécules d'une orientation azimutale à l'autre, afin de réaliser des ancrages nématiques bistables.
11. Dispositif selon l'une des revendications 5 à 8, caractérisé par le fait que l'épaisseur et l'orientation de la rugosité sur l'une au moins des plaques sont adaptées pour placer le cristal liquide au voisinage d'un seuil de basculement azimutal afin de faciliter ce basculement lors de l'application d'un champ électrique externe.
12. Dispositif selon l'une des revendications 5 a 7,
_. caractérisé par le fait que le cristal liquide est un smectique C ferroelectrique et que l'épaisseur et l'orientation de la rugosité sur l'une au moins des plaques sont adaptées pour définir une polarisation ordoélectrique annulant la polarisation globale en surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8717660 | 1987-12-17 | ||
FR8717660A FR2624985B1 (fr) | 1987-12-17 | 1987-12-17 | Dispositifs optiques a cristaux liquides presentant un gradient controle d'ordre en surface |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0393128A1 true EP0393128A1 (fr) | 1990-10-24 |
Family
ID=9357996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890900833 Ceased EP0393128A1 (fr) | 1987-12-17 | 1988-12-16 | Dispositifs optiques a cristaux liquides presentant un gradient controle d'ordre en surface |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0393128A1 (fr) |
JP (1) | JPH03502969A (fr) |
FR (1) | FR2624985B1 (fr) |
WO (1) | WO1989005993A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2666908B2 (fr) * | 1990-01-30 | 1992-12-18 | Centre Nat Rech Scient | Perfectionnements aux dispositifs optiques bistables a cristaux liquides et commande electrochirale. |
FR2657699B1 (fr) * | 1990-01-30 | 1992-05-15 | Centre Nat Rech Scient | Dispositif optique bistable a cristaux liquides et commande electrochirale. |
FR2666923A2 (fr) * | 1990-06-22 | 1992-03-20 | Centre Nat Rech Scient | Perfectionnements aux afficheurs a cristal liquide nematique, a bistabilite de surface, commandes par effet flexoelectrique. |
FR2663770A1 (fr) * | 1990-06-22 | 1991-12-27 | Centre Nat Rech Scient | Afficheur a cristal liquide nematique, a bistabilite de surface, commande par effet flexoelectrique. |
GB9402513D0 (en) * | 1994-02-09 | 1994-03-30 | Secr Defence | Bistable nematic liquid crystal device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4153529A (en) * | 1975-04-21 | 1979-05-08 | Hughes Aircraft Company | Means and method for inducing uniform parallel alignment of liquid crystal material in a liquid crystal cell |
US4601544A (en) * | 1982-10-15 | 1986-07-22 | At&T Bell Laboratories | Nematic liquid crystal storage display device |
-
1987
- 1987-12-17 FR FR8717660A patent/FR2624985B1/fr not_active Expired - Fee Related
-
1988
- 1988-12-16 EP EP19890900833 patent/EP0393128A1/fr not_active Ceased
- 1988-12-16 WO PCT/FR1988/000623 patent/WO1989005993A1/fr not_active Application Discontinuation
- 1988-12-16 JP JP50076389A patent/JPH03502969A/ja active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO8905993A1 * |
Also Published As
Publication number | Publication date |
---|---|
JPH03502969A (ja) | 1991-07-04 |
FR2624985B1 (fr) | 1992-08-21 |
WO1989005993A1 (fr) | 1989-06-29 |
FR2624985A1 (fr) | 1989-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0286539A1 (fr) | Dispositif d'affichage à cristal liquide smectique ferroélectrique bistable | |
EP0093035B1 (fr) | Perfectionnements aux cellules optiques utilisant des cristaux liquides | |
EP0149398A2 (fr) | Dispositif de visualisation à mémoire utilisant un matériau ferroélectrique | |
Choudhary et al. | Advances in gold nanoparticle–liquid crystal composites | |
EP0535127B1 (fr) | Afficheur a cristal liquide nematique, a bistabilite de surface, commande par effet flexoelectrique | |
WO2001086345A2 (fr) | Dispositif bistable d'affichage en reflexion avec contraste inverse | |
FR2765698A1 (fr) | Dispositif d'affichage a cristal liquide du type a matrice active | |
EP0393128A1 (fr) | Dispositifs optiques a cristaux liquides presentant un gradient controle d'ordre en surface | |
US8369006B1 (en) | Nanoparticle doped hybrid photoreactives | |
Konshina et al. | Effect of dispersed CdSe/ZnS quantum dots on optical and electrical characteristics of nematic liquid crystal cells | |
EP0235634A1 (fr) | Cellule d'affichage | |
Vimal et al. | Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase | |
Kennedy et al. | Optical activity of chiral thin film and liquid crystal hybrids | |
EP1281169A1 (fr) | Dispositif bistable d'affichage en reflexion | |
WO1989012248A1 (fr) | Procede d'obtention d'une structure generatrice d'effets electrooptiques non lineaires, structure obtenue et applications | |
EP0517715A1 (fr) | Dispositif optique bistable a cristaux liquides et commande electrochirale | |
FR2587506A1 (fr) | Perfectionnements aux dispositifs optiques a cristaux liquides | |
Yamashita et al. | Effect of substrate surface on alignment of liquid crystal molecules | |
WO2013023869A1 (fr) | Procede de realisation d'un dispositif de phase a base de cristal liquide twiste a structure optimisee fonctionnant en lumiere non polarisee | |
FR2657699A1 (fr) | Dispositif optique bistable a cristaux liquides et commande electrochirale. | |
FR2572210A1 (fr) | Perfectionnements aux cellules optiques a cristaux liquides utilisant un effet de birefringence controlee | |
US11573466B2 (en) | Fabrication and processing methodologies for transparent PN-junctions and their use in liquid crystal hybrid devices | |
US9083149B1 (en) | Nanoparticle doped hybrid photorefractives | |
SRINIVASARAO | L’émergence spontanée de la chiralité | |
EP0397545B1 (fr) | Procédé et structure permettant la génération d'effets électrooptiques non linéaires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900611 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19920414 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19921012 |