EP0392521A2 - Kühlvorrichtung und Verfahren zu deren Steuerung - Google Patents

Kühlvorrichtung und Verfahren zu deren Steuerung Download PDF

Info

Publication number
EP0392521A2
EP0392521A2 EP90106983A EP90106983A EP0392521A2 EP 0392521 A2 EP0392521 A2 EP 0392521A2 EP 90106983 A EP90106983 A EP 90106983A EP 90106983 A EP90106983 A EP 90106983A EP 0392521 A2 EP0392521 A2 EP 0392521A2
Authority
EP
European Patent Office
Prior art keywords
fact
refrigerating device
block
improved refrigerating
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90106983A
Other languages
English (en)
French (fr)
Other versions
EP0392521B1 (de
EP0392521A3 (de
Inventor
Domenico Cappelletti
Valerio Aisa
Pietro Mariani
Francesco Santini
Alberto Mariani
Natale Monaldi
Aurelio Boninsegni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whirlpool EMEA SpA
Original Assignee
Merloni Elettrodomestici SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merloni Elettrodomestici SpA filed Critical Merloni Elettrodomestici SpA
Publication of EP0392521A2 publication Critical patent/EP0392521A2/de
Publication of EP0392521A3 publication Critical patent/EP0392521A3/de
Application granted granted Critical
Publication of EP0392521B1 publication Critical patent/EP0392521B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the present invention relates to a refrigerating device comprising two compartments and precisely a first compartment used for the storage of fresh food and a second compartment used for the freezing and storing of foods, a refrigerating circuit comprising a compressor, a first and a second evaporators arranged in said first and second compartments, respectively, and a condenser, and also comprising a temperature control system, having manual regulation possibility, located in said first compartment.
  • Refrigerating devices of the above mentioned type are known; they represent probablythe most widespread type of domestic refrigerators.
  • the two evaporators located respectively in the first compartment (fresh food compartment or 'refrigerator') and in the second compartment ('freezer'), are arranged in series on the same refrigerating circuit, driven, for costs reasons, by one compressor only.
  • the freezer compartment is practically 'towed' by the fresh food compartment (normally called 'refrigerator' compartment), the two evaporators being in series between themselves, and the thermostatic control being done with reference to the 'refrigerator' compartment only.
  • thermostatic control is done by means of a normal electromechanical thermostat just placed into the refrigerator compartment, equipped with a knob for the manual setting of the desired temperature, within certain limits.
  • the Italian patent application nr. 21201-A/79 describes a refrigerating device of the above cited type, where two sensor are provided in the fresh food compartment: one in air and the other on the plate of the evaporator; the control system comprises a thermostatic system of electronic type and the compressor is enabled when the plate of the evaporator reaches the temperature of +4°; the compressor is then disabled when the air probe detects that the temperature is fallen to the value manually input by the user.
  • Said patent has the aim of overfreezing foods placed in the 'freezer' compartment.
  • the restaurant patent application nr. 68230-A/80 also describes a refrigerating device of the above cited type, similar to the one described in the previous patent application, which provides, besides the usual thermostat, a thermistor placed in the fresh food compartment, in the point where the air is lower; when the compressor must operate for a long time, to fastly freeze the food, the thermistor commutates the output of the comparator, which acts on the circuit of the thermostat and switches off the compressor in order to impede that in the other compartment the temperature falls below zero degree.
  • the known systems have many drawbacks, first of all that, into very cold rooms, the compressor remains disabled for long time intervals and the temperature of the 'freezer' compartment reaches dangerous values for the storing of the food therein contained.
  • Aim of the present invention is to indicate how it is possible to realize a refrigerating device which can correctly operate at different room temperatures, which allows manufacturing uniformity, reliability in use and a reduced cost.
  • the aim of the present invention is to indicate a refrigerating device comprising two compartments and precisely a first compartment used for the storage of fresh food and a second compartment used for the freezing and storing of foods, a refrigerating circuit comprising a compressor, a first and a second evaporators arranged in said first and second compartments, respectively, and a condenser, and also comprising a temperature control system, having manual regulation possibility, located in said first compartment, characterized by the fact that automatic regulation means are provided, which operate on the basis of the room temperature so assuring the correct operation in both said two compartments.
  • number 1 indicates an electric fan
  • number 2 indicates the evaporator of the 'freezer' compartment
  • number 3 indicates a defrost heater located in the 'freezer' compartment
  • number 5 indicates the operation control device of the refrigerating device
  • number 4 indicates a knob for the regulation of the temperature (monoturn rotative linear potentiometer) which is part of said device
  • number 6 indicates a luminous warning light (LED) placed on said device
  • number 7 indicates a manual push (fast freezing) also located on said device
  • number 8 indicates the temperature probe of the evaporator of the 'refrigerator' compartment, connected to said device 5
  • number 9 indicates the air temperature probe of the same compartment, connected to the same device 5, and at last number 10 indicates the refrigerating fluid compressor.
  • the control device 5 consists of a plastic material casing, containing an integrated circuit, on which there are mounted in a known way, a certain number of components; among them there is comprised an integrated circuit of the semi-custom type, which is responsible for actuating the main control functions, and which will be described in more detail with reference to figure 2.
  • the dimensions of the casing of the device 5 are limited and are practically equivalent to those of a normal electromechanical thermostat.
  • Compressor 10 and the evaporators of the freezer and refrigerating compartments are over sized, in order to satisfy the refrigerating needs of the respective compartments even in tropical climates.
  • the central rectangle (R) represents the semi-custom integrated circuit above cited; all around there are represented the accessory components connected to it.
  • symbol B indicates the block generating system time base;
  • T indicates the block performing the thermostatic control function (described in detail with reference to figure 3);
  • symbol F indicates the block performing the control function of the operating ratio (described in detail with reference to figure 6);
  • symbol S1 indicates the block performing the defrost function of the 'freezer' compartment (described in detail with reference to figure 5);
  • symbol S2 indicates the block performing the defrost function of the 'refrigerator' compartment, which is similar to block S1;
  • symbol A indicates the block performing the autotest function, which is realized all the times that the refrigerating device is switched on; at last symbol G indicates the block performing the loads handling function.
  • the two temperature probes 11 and 14 are each connected in a bridge circuit, including a tension comparator (01,02) whose output is connected respectively to the block T for the probe 11 and to the block S2 for the probe 14.
  • Loads MC, 15, 17 and 18 are connected to the block G, which controls them.
  • the block 20 represents the start of the flowchart; the block 20 transmits the control to block 21, which is a test block to verify that there is at the moment a cold request (or that the temperature detected by the probe 11 is higher than the one input through the knob 4); in the affirmative case (output SI) the control goes over to block 27, in the negative (output NO) the control goes over to block 22.
  • Block 22 is a test block to verify that the compressor is disactived; in the affirmative case (output SI) the control goes over to block 23, in the negative (output NO) the control goes over to block 24.
  • Block 23 increases the count of the disactive compressor time and then transmits again the control to block 21;
  • block 24 is a test block to verify that the active compressor time is equal to or higher than 8 minutes; in the affirmative case (output SI) the control goes over to block 25, in the negative (output NO) the control goes back to block 21.
  • Block 25 disables the compressor and transmits the control to block 26; block 26 resets the active compressor time and returns the control to block 21.
  • Block 27 is a test block to verify that the compressor is active; in the affirmative case (output SI) the control goes over to block 28, in the negative (output NO) the control goes over to block 29.
  • Block 28 increases the count of the active compressor time, and returns the control to block 21.
  • Block 29 is a test block to verify that the disactive compressor time is equal to or higher than 8 minutes; in the affirmative case (output SI) the control goes over to block 30, in the negative (output NO) the control goes back to block 21.
  • Block 30 activates the compressor and trasmits the control to the subsequent block 31, which in his turn, resets the count of the disactive compressor time and returns the control to block 21.
  • the imposition of an 8 minutes minimum time of activation-disactivation of the compressor has the aim to prevent stability problems, due to electric inteferences, realizing the hysteresis function which is normally obtained by the voltage comparator. It is so obtained a reduction of the number of components associated to the voltage comparator 01 (fig. 2), as the wired hysteresis (positive feedback) is no longer necessary, and an increase of the immunity to the electric inteferences (due to the absence of the said positive feedback).
  • the temperature hysteresis obtained in this way is equal to about one centigrade degree totally (half degree lower or higher).
  • block 40 represents the start of the flowchart; block 40 transmits the control to block 41, which is a test block to verify that the fast freezing function (so called 'fast freezer') is enabled; in the affirmative case (output SI) the control goes over to block 42, in the negative (output NO) the control goes over to block 43.
  • block 41 is a test block to verify that the fast freezing function (so called 'fast freezer') is enabled; in the affirmative case (output SI) the control goes over to block 42, in the negative (output NO) the control goes over to block 43.
  • Block 42 switches on the warning light, or confirms its switching on, and returns the control to block 41;
  • block 43 is a test block to verify that the defrost function is enabled; in the affirmative case (output SI) the control goes over to block 44, in the negative (output NO) the control goes over to block 45.
  • Block 44 activates or cornfirms the flashing operation of the warning light, and returns the control to block 41; block 45 switches off the warning light, or confirms its switching off, and returns the control to block 41.
  • block 50 represents the start of the flowchart; block 50 transmits the control to block S1, which is a test block to verify that the defrost function must start (the defrost cycles are normally required by the system, namely in fast freezing absence, every 14 hours for the freezer and every 7 hours for the refrigerator); in the affirmative case (output SI) the control goes over to block 52, in the negative (output NO) the control goes back to block 50.
  • block S1 is a test block to verify that the defrost function must start (the defrost cycles are normally required by the system, namely in fast freezing absence, every 14 hours for the freezer and every 7 hours for the refrigerator); in the affirmative case (output SI) the control goes over to block 52, in the negative (output NO) the control goes back to block 50.
  • Block 52 is a test block to verify that the compressor is disactivated; in the affirmative case (output SI) the control remains to block 52, in the negative (output NO) the control goes over to block 53.
  • Block 53 resets the count of the active compressor time and transmits the control to block 55.
  • Block 55 is a test block to verify that the compressor is disabled; in the affirmative case (output SI) the control goes over to block 58, in the negative (output NO) the control goes over to block 56.
  • Block 56 is a test block to verify that the compressor has been active for 3 hours; in the affirmative case (output SI) the control goes over to block 57, in the negative (output NO) the control goes over to block 54.
  • Block 54 increases the count of the active compressor time and returns the control to block 55; block 57 disables the compressor (said forced disactivation after a three hours uninterrupted operation can be necessary in case of high external temperature, when the compressor could be ever on) and transmits the control to block 58.
  • Block 58 enables the defrost heater and transmits the control to block 59; block 59 resets the count of the defrost time and transmits the control to block 60.
  • Block 60 is a test block to verify that the count of the defrost time has reached the predetermined maximum value (30 minutes); in the affirmative case (output SI) the control goes over to block 63, in the negative (output NO) the control goes over to block 61.
  • Block 61 is a test block to verify that the contact of the thermoprotector 16 is opened; in the affirmative case (output SI) the control goes over to block 63, in the negative (output NO) the control goes over to block 62.
  • Block 62 increases the count of the defrost time and returns the control to block 60; block 63 disables the defrost heater and returns the control to block 50.
  • the refrigerator defrost cycle operates in the same way; the end of the defrost cycle is determined by the probe 11, and precisely when the temperature that it detects is +4°C.
  • the block 65 represents the start of the flowchart; block 65 transmits the control to block 66, which is a test block to verify that the compressor is disabled; in the affirmative case (output SI) the control goes over to block 67, in the negative (output NO) the control goes back to block 66.
  • Block 67 resets the count of the disactive compressor time and transmits the control to block 68.
  • Block 68 which is a test block, verifies that the compressor is on; in the affirmative case (output SI) the control goes back to block 66, in the negative (output NO) the control goes over to block 69.
  • Block 69 which is a test block, verifies that the count of the disactive compressor time has reached the predetermined maxim value (80 minutes); in the affirmative case (output SI) the control goes over to block 71, in the negative (output NO) the control goes over to block 70.
  • Block 70 increases the count of the disactive compressor time, and transmits the control to block 68; block 71 enables the compressor and transmits the control to block 72.
  • Block 72 resets the count of the active compressor time and transmits the control to block 73.
  • Block 73 which is a test block, verifies that the count of the active compressor time has reached the predetermined maximum value (40 minutes); in the affirmative case (output SI) the control goes over to block 74, in the negative (output NO) the control goes over to block 75.
  • Block 74 disbles the compressor and transmits the control to block 66; block 75, which is a test block, verifies that the temperature in the refrigerator compartment is at the admissible minimum value (+1°); in the affirmative case (output SI) the control goes over to block 76, in the negative (output NO) the control goes over to block 77.
  • Block 76 activates the heater 18 of the refrigerator compartment and transmits the control to block 78; block 77 disables the heater 18 of the refrigerator compartment and transmits the control to block 78.
  • Block 78 from its side, increases the count of the active compressor time and returns the control to block 73.
  • the semi-custom integrated circuit included in the control device 5 according to the invention, besides the described characteristics, has also a memory function.
  • Such a function has the aim to memorize that a mains supply failure lasted for more than 10 seconds; in this case, when the mains supply returns, the compressor is activated for 45 minutes; simultaneously the regulation of the temperature to be maintained in the refrigerator compartment is simulated at +1°C.
  • Such a function is used in the manufacturing process to comparate the performance (temperature progress referred to a fixed time interval).
  • - low cost and manufacturing uniformity - thermostatic control independent from the room temperature; - compressor safety from unbalanced starts; - the freezer is not heated even in the case that the external temperature is low; - excessive ice is not formed even when the external temperature is higher than 30°C.
  • the probe to measure the air temperature of the refrigerator compartment is represented by a resistor with negative temperature coefficient (NTC), directly welded on the printed circuit contained in the control device 5.
  • NTC negative temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
EP90106983A 1989-04-14 1990-04-11 Kühlvorrichtung und Verfahren zu deren Steuerung Expired - Lifetime EP0392521B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT6727789 1989-04-14
IT8967277A IT1233203B (it) 1989-04-14 1989-04-14 Frigorifero perfezionato

Publications (3)

Publication Number Publication Date
EP0392521A2 true EP0392521A2 (de) 1990-10-17
EP0392521A3 EP0392521A3 (de) 1991-03-20
EP0392521B1 EP0392521B1 (de) 1995-12-27

Family

ID=11301076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106983A Expired - Lifetime EP0392521B1 (de) 1989-04-14 1990-04-11 Kühlvorrichtung und Verfahren zu deren Steuerung

Country Status (4)

Country Link
EP (1) EP0392521B1 (de)
DE (1) DE69024395T2 (de)
ES (1) ES2081866T3 (de)
IT (1) IT1233203B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509476A2 (de) * 1991-04-18 1992-10-21 MERLONI ELETTRODOMESTICI S.p.A. Kühlgerät
EP0513539A2 (de) * 1991-04-18 1992-11-19 MERLONI ELETTRODOMESTICI S.p.A. Haushaltsgerät mit elektronischer Steuerung
DE4132719A1 (de) * 1991-10-01 1993-04-08 Bosch Siemens Hausgeraete Kuehlgeraet, insbesondere mehrtemperaturen-kuehlschrank
EP0686818A2 (de) * 1994-06-08 1995-12-13 Merloni Elettrodomestici S.p.A. Verfahren zur Steuerung eines Kühlgerätes und ein Gerät zur Durchführung des Verfahrens
WO2013160109A1 (de) * 2012-04-25 2013-10-31 BSH Bosch und Siemens Hausgeräte GmbH Einkreis-kältegerät

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10219486A1 (de) * 2002-04-30 2003-11-20 Rudolf Faude Elektrisches Kühlgerät

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2347634A1 (fr) * 1976-04-08 1977-11-04 Bosch Siemens Hausgeraete Refrigerateur, en particulier refrigerateur a deux compartiments
EP0064873A2 (de) * 1981-05-07 1982-11-17 R D Technology Limited Überwachungs- und Warnvorrichtung für eine Kühlanlage
US4546618A (en) * 1984-09-20 1985-10-15 Borg-Warner Corporation Capacity control systems for inverter-driven centrifugal compressor based water chillers
US4627245A (en) * 1985-02-08 1986-12-09 Honeywell Inc. De-icing thermostat for air conditioners
EP0298349A2 (de) * 1987-07-09 1989-01-11 INDUSTRIE ZANUSSI S.p.A. Kühlvorrichtung für verschiedene Temperaturen mit einem Einkompressorkühlkreislauf und mit einer Einthermostattemperaturregelung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2347634A1 (fr) * 1976-04-08 1977-11-04 Bosch Siemens Hausgeraete Refrigerateur, en particulier refrigerateur a deux compartiments
EP0064873A2 (de) * 1981-05-07 1982-11-17 R D Technology Limited Überwachungs- und Warnvorrichtung für eine Kühlanlage
US4546618A (en) * 1984-09-20 1985-10-15 Borg-Warner Corporation Capacity control systems for inverter-driven centrifugal compressor based water chillers
US4627245A (en) * 1985-02-08 1986-12-09 Honeywell Inc. De-icing thermostat for air conditioners
EP0298349A2 (de) * 1987-07-09 1989-01-11 INDUSTRIE ZANUSSI S.p.A. Kühlvorrichtung für verschiedene Temperaturen mit einem Einkompressorkühlkreislauf und mit einer Einthermostattemperaturregelung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509476A2 (de) * 1991-04-18 1992-10-21 MERLONI ELETTRODOMESTICI S.p.A. Kühlgerät
EP0513539A2 (de) * 1991-04-18 1992-11-19 MERLONI ELETTRODOMESTICI S.p.A. Haushaltsgerät mit elektronischer Steuerung
EP0509476A3 (en) * 1991-04-18 1993-12-01 Merloni Elettrodomestici Spa Refrigerating apparatus
EP0513539A3 (en) * 1991-04-18 1993-12-01 Merloni Elettrodomestici Spa Household appliance with electronic control
DE4132719A1 (de) * 1991-10-01 1993-04-08 Bosch Siemens Hausgeraete Kuehlgeraet, insbesondere mehrtemperaturen-kuehlschrank
DE4132719C2 (de) * 1991-10-01 1998-01-15 Bosch Siemens Hausgeraete Mehrtemperaturen-Kühlschrank
EP0686818A2 (de) * 1994-06-08 1995-12-13 Merloni Elettrodomestici S.p.A. Verfahren zur Steuerung eines Kühlgerätes und ein Gerät zur Durchführung des Verfahrens
EP0686818A3 (de) * 1994-06-08 1998-01-14 Merloni Elettrodomestici S.p.A. Verfahren zur Steuerung eines Kühlgerätes und ein Gerät zur Durchführung des Verfahrens
WO2013160109A1 (de) * 2012-04-25 2013-10-31 BSH Bosch und Siemens Hausgeräte GmbH Einkreis-kältegerät

Also Published As

Publication number Publication date
DE69024395T2 (de) 1996-05-15
ES2081866T3 (es) 1996-03-16
DE69024395D1 (de) 1996-02-08
IT8967277A0 (it) 1989-04-14
IT1233203B (it) 1992-03-20
EP0392521B1 (de) 1995-12-27
EP0392521A3 (de) 1991-03-20

Similar Documents

Publication Publication Date Title
JP3712938B2 (ja) マルチポイントデジタル温度制御装置
EP0927919B1 (de) Elektronische Thermostatsteuerung und Anwendung als Mehrpunkt-Teperaturueberwacher in Heizungs- und Kuehlsystemen
US4283921A (en) Control and alarm system for freezer case temperature
US5634346A (en) Apparatus and method for controlling a room air conditioner
US4297852A (en) Refrigerator defrost control with control of time interval between defrost cycles
US4916912A (en) Heat pump with adaptive frost determination function
CA1141006A (en) Heat pump control system
US4663941A (en) Refrigerator temperature and defrost control
JPS62206370A (ja) 除霜間隔を自己調整できる冷凍制御システム
US3335576A (en) Defrost control for refrigeration apparatus
US3453837A (en) Defrost control apparatus
EP0392521A2 (de) Kühlvorrichtung und Verfahren zu deren Steuerung
EP0513539B1 (de) Haushaltsgerät mit elektronischer Steuerung
EP0045728B1 (de) Elektronischer Temperaturregler für ein Gefriergerät
EP0383222B1 (de) Kältevorrichtung
GB2031631A (en) Refrigerator temperature monitor
GB2133867A (en) Defrost control means
EP0803690A1 (de) Abtausteuerung für ein Kühlsystem, wobei die Bestimmung der Umgebungstemperatur verwendet wird
KR0148171B1 (ko) 온도 센서의 통전제어수단을 구비한 공기조화기
EP0494785A1 (de) Temperatur-Regelsystem für einen Kühlschrank
US4535599A (en) Control device for refrigerating equipment
GB2045980A (en) Electromagnetic Temperature Control Arrangement for Refrigerators
US3164969A (en) Heat pump defrost control
US3483919A (en) Electric refrigerator with defrosting means
EP0298347A2 (de) Kühlschrank mit Schnellabkühlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB

17P Request for examination filed

Effective date: 19910912

17Q First examination report despatched

Effective date: 19920728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REF Corresponds to:

Ref document number: 69024395

Country of ref document: DE

Date of ref document: 19960208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081866

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030428

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030502

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030505

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030509

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040412