EP0385432A2 - Method for producing a three-dimensionally shaped, resin coated textile material and use of same - Google Patents
Method for producing a three-dimensionally shaped, resin coated textile material and use of same Download PDFInfo
- Publication number
- EP0385432A2 EP0385432A2 EP90103889A EP90103889A EP0385432A2 EP 0385432 A2 EP0385432 A2 EP 0385432A2 EP 90103889 A EP90103889 A EP 90103889A EP 90103889 A EP90103889 A EP 90103889A EP 0385432 A2 EP0385432 A2 EP 0385432A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- resin
- textile material
- textile
- stack
- dimensionally
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 87
- 239000011347 resin Substances 0.000 title claims abstract description 87
- 239000004753 textile Substances 0.000 title claims abstract description 81
- 239000000463 material Substances 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000004744 fabric Substances 0.000 claims abstract description 23
- 238000003856 thermoforming Methods 0.000 claims abstract description 3
- 239000000835 fiber Substances 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 229920002994 synthetic fiber Polymers 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 230000009969 flowable effect Effects 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 239000012209 synthetic fiber Substances 0.000 claims description 4
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- 239000005007 epoxy-phenolic resin Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 1
- 239000004640 Melamine resin Substances 0.000 claims 1
- 239000011162 core material Substances 0.000 description 28
- 239000010410 layer Substances 0.000 description 19
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000002657 fibrous material Substances 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 239000012784 inorganic fiber Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920004935 Trevira® Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- -1 for example Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/14—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
- B29C51/145—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets having at least one layer of textile or fibrous material combined with at least one plastics layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/22—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/14—Processes for the fixation or treatment of textile materials in three-dimensional forms
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06Q—DECORATING TEXTILES
- D06Q1/00—Decorating textiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/08—Deep drawing or matched-mould forming, i.e. using mechanical means only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2313/00—Use of textile products or fabrics as reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2024/00—Articles with hollow walls
Definitions
- the present invention relates to a process for producing a dimensionally stable, three-dimensionally shaped, resin-coated, sheet-like textile material, the deformed structures obtained by this process and their use as core material in the production of sheet-like sandwich bodies.
- Sheet-like sandwich bodies consisting of a core and two cover layers, the core of which has dimensionally stable, three-dimensionally deformed textile materials, are already e.g. known from FR-A-23 25 503 and EP-A-158 234.
- the sandwich material described in these publications has a core made of a three-dimensionally deformed, flat textile material which has a large number of elevations with the same height and flat plateau on a base surface in a regular arrangement.
- the core material with closed structure known from FR-A-2 325 503 is produced by pressing a resin-impregnated staple fiber fabric into one Mold of the desired geometric shape. Relative to the fiber weight, a relatively high amount of resin is used, so that an essentially fiber-reinforced resin molded body results after pressing.
- the core material thus obtained has a relatively high weight. It does not allow gas exchange and it shows little flexibility.
- the network-structured core material known from EP-A-158 234 (hereinafter also referred to as filigree-structured) is produced by deep-drawing a deep-drawable textile material impregnated with relatively little resin, e.g. a resin-impregnated knitted fabric (knitted fabric, knitted fabric).
- This core material known from EP-A-158 234 has a low density with good mechanical stability. It allows free gas exchange between the sides of the surface and is highly flexible.
- the core material known from EP-A-158 234 is produced by impregnating a sheet-like textile material with a thermoplastic or thermosetting resin, drying the impregnated material into a so-called prepreg and then deforming the prepreg to the desired shape of the core material a deep drawing process.
- a serious disadvantage of this manufacturing process is that it is very difficult to uniformly impregnate a deep-drawable sheet-like textile material with a resin without the material being fully or partially pre-stretched. Such a, possibly uneven, warping of the textile surface has a lack of deep-drawing ability and in the finished product a, possibly partial, reduction the fiber strength.
- the handling of the not yet precondensed, resin-impregnated, deep-drawable textile material can easily lead to a partial pre-stretching of this material, with the above-mentioned disadvantages for the uniformity of the quality of the end product, unless special precautions are taken.
- these manufacturing problems stand in the way of the widespread use of these core materials, which are intrinsically inexpensive.
- the present invention overcomes the disadvantage of this known manufacturing process.
- the present invention thus relates to a method for producing a dimensionally stable, three-dimensionally shaped, resin-coated, sheet-like textile material, which is characterized in that one or more layers of a thermoformable textile material and one or more resin films are stacked on top of one another, the stack at a temperature at which the Resin flowable is brought into the desired shape by a molding process, and then the temperature is set so that the resin can harden and the shaped stack is kept in the desired shape until the resin is completely or sufficiently hardened, whereby
- the term "sufficiently hardened” should be understood to mean that the resin in this state is able to stabilize the deformed fabric in the desired shape after opening the deep-drawing tool.
- FIG. 1 schematically illustrates a dimensionally stable, three-dimensionally shaped, resin-coated sheet-like textile material (1) produced according to the invention, which has a plurality of elevations (3) on a base area (2).
- the figure shows a reticulated filigree structure obtained by stretching the base material.
- any sheet-like textile material is considered as a deep-drawable textile material, the stretchability of which enables the partial increase in surface area occurring during deep-drawing without tearing the textile material.
- knitted fabrics such as e.g. Knitted or knitted fabrics in which the stretchability results from the deformability of the mesh structure.
- wrapping yarns which consist of a thread-like core material which is wrapped by a sheath thread that is 1.5 to 3 times, preferably 1.8 to 2.2 times longer is as the core material.
- a sheet-like textile material made from such a wrapping yarn can be in the form of a woven fabric, a knitted fabric, a knitted fabric, a scrim or a nonwoven reinforced by wrapping threads.
- the core threads are torn in a statistically distributed manner in the areas to be deformed, thereby releasing a corresponding length of the covering thread.
- This mechanism enables a considerable increase in area during the deep-drawing process without destroying the entire area.
- Deep-drawable textile materials are those which have a high, non-elastic deformability, such as, for example, from GB-A-2 176 511 and Derwent papers 87-025859 / 04 and 87-040235 / 06 of Japanese Patent Publications 61-282452 and 61-296152 are known.
- These known three-dimensionally deformable textile materials are produced by subjecting corresponding sheet-like textile materials made of synthetic fibers to heat-shrinkage treatment and thereby imparting them non-elastic extensibility, or by producing these textile materials from the start from yarns which already have non-elastic extensibility.
- Non-elastically stretchable yarns are described, for example, in DE-A-28 21 243 and DE-C-35 21 469.
- the thread material from which the deep-drawable textile fabric is made is not subject to any restrictions; Both knitted fabrics and the deep-drawable textile materials made from wrapping yarns can consist of continuous filament yarns as well as of spun yarns. However, ribbon threads or splice ribbon threads can also be used, for example. The same applies to the chemical nature of the thread material.
- the deep-drawable textile material it is possible for the deep-drawable textile material to consist of a covering yarn or of a knitted fabric made of natural fibers, synthetic fibers or inorganic fibers or continuous filaments, such as glass fibers.
- the textile material be constructed from synthetic fibers.
- the flame retardancy or flame retardancy of the material is in the foreground, it is preferred to use knitted fabrics made of inorganic fibers.
- Synthetic materials that can be considered are, for example, polyalkylenes, polyamides, polyesters or polyacrylonitrile.
- Polyester materials, in particular high-strength types, are particularly preferred for knitted fabrics, deep-drawable textile materials made from wrapping yarn preferably contain wrapping threads whose core threads with lower stability consist of polyalkylene or aliphatic polyamides and whose covering threads, which determine the final strength and stability of the three-dimensional element deformed by deep drawing, of aromatic polyesters, aromatic polyamides or polyacrylonitrile, in particular from the high-strength ones Types exist.
- the resin films to be used in the method according to the invention can consist of thermoplastic or thermosetting resins (also referred to below as matrix material).
- the thermoplastic or thermosetting resin used is one which can stiffen the sheet-like textile material so that it becomes self-supporting.
- Thermosets are therefore particularly preferred, ie those resins which cure at elevated temperature with crosslinking to form an infusible material of high rigidity.
- Known resins of this type are, for example, unsaturated polyester resins (alkyd resins), mixtures of unsaturated polyesters with unsaturated monomeric compounds such as, for example, styrene, epoxy resins, phenolic resins or melamine resins.
- the films to be used according to the invention from these still uncrosslinked resins have a thickness of approximately 50 to 500 ⁇ m, preferably 100 to 500 ⁇ m and a basis weight of approximately 50 to 500 g / m2, preferably 100 to 500 g / m2
- thinner or thicker resin films with a correspondingly lower or higher basis weight for special purposes, for example for processing very fine or particularly thick textile materials.
- these resin films already contain the crosslinking agent and necessary for crosslinking the resin the required polymerization catalyst and the appropriate accelerator substances.
- resin films are often provided with a carrier to improve their mechanical stability. Resin films of this type are also very suitable for carrying out the process according to the invention.
- a “stack” can also consist of a textile web and a resin film.
- the number of textile webs depends on the requirements placed on the strength of the core material to be manufactured. As a rule, no more than 4, preferably 1 or 2 textile webs, in particular a textile web, are used in a stack.
- the number of resin films in the stack depends on the desired degree of resin impregnation of the textile material.
- suitable coating quantities of the resin are in the range from 50 to 500, preferably from 100 to 300 g resin / m2 of the textile material.
- the amount of resin can be expediently adapted to the weight per square meter of the deep-drawable textile material. For example, when using a heavy textile material, you will work within the upper half of the specified ranges, with light textile materials in the lower half. For very special applications, it may be desirable to increase the amount of resin applied to such an extent that even when stretched Condition still a resin film remains between the threads of the textile network. However, it is preferred to measure the amount of resin so that the textile material forms a filigree network when stretched.
- a textile material is to be impregnated with a resin layer of 200 g resin / m2
- a film of, for example, 0.2 mm thickness with a basis weight of 200 g / m2 is placed in the stack to be deformed.
- the sequence of textile webs and resin films is expediently to be chosen such that, under the action of heat during the deep-drawing process, the resin can be distributed as evenly as possible into the textile surfaces.
- the resin can be distributed as evenly as possible into the textile surfaces.
- it is therefore expedient to use textile webs and resin films alternately.
- it can also be advantageous to construct the stack in such a way that the top and bottom surfaces of the stack are formed by fabric webs and the necessary amount of resin is ensured by a corresponding number of resin films lying inside the stack.
- a stack of 2 textile webs and 2 resin films can be constructed in the sequence: textile web - 2 resin films (or a stronger resin film) - textile web.
- Another dimensioning specification for the stack structure results from the strength requirements for the three-dimensionally deformed textile material. When used as a core material for sandwich moldings, it must have a certain minimum compressive strength. When crosslinking resins are used, this requirement is generally to be met if the ratio of the square meter weight of the textile material to the weight of the resin used per square meter (corresponding to the square meter weight of the resin film) is in the range from 1: 0.25 to 1: 4, preferably 1: 0.5 to 1: 2. In the case of stacks of several layers of textile material and several layers of resin films, the sums of the square meter weights of the textile material and the resin films must of course be taken into account.
- Such molded articles produced with a low resin coating can be processed into high-strength sandwich articles by gluing with cover layers if the molded articles are glued with a liquid or pasty adhesive and are wetted beforehand with a liquid which also serves as a solvent and / or wetting agent for the adhesive.
- the adhesive rises in the latticework of the network-structured shaped bodies and additionally reinforces them after curing. Without wetting, the adhesive does not rise up on the wall.
- An increase in the pressure and shear strength of the sandwich body can also be achieved in this way by using hydrophilic special hardeners which are known to the person skilled in the art.
- Stacks with layers of different textile materials can also be used for special applications. It is thus possible to also insert, for example, nonwovens between at least 2 layers of the deep-drawable textile materials described above and to distribute the resin films between these textile webs in the manner described above. It is also possible to use the fiber material of the textile To vary planar structures, for example combinations of textile webs made of organic and inorganic fibers, such as glass fibers, can also be used.
- Particularly preferred stacks consist of one or two textile webs, preferably knitted fabrics made of high-strength polyester fibers and one or two resin films in a suitable sequence.
- the stack is heated in a deep-drawing mold to a temperature at which the resin becomes flowable, then drawn into the desired three-dimensional shape, and held at this temperature at a temperature at which the resin can cure until the curing process of the Resin is completely or at least so far that the deep-drawn material remains dimensionally stable.
- this condition can already exist even if the curing is not yet complete.
- it may be advantageous for economic reasons to fully harden the mold by tempering it outside the deep-drawing tool, e.g. by heat treatment for approx. 10 minutes at 160 to 200 ° C in a drying oven.
- the liquefied resin matrix material
- the fiber material of the textile fabric envelops the fiber material of the textile fabric.
- the temperature at which the uncrosslinked resin melts is generally 100 to 250 ° C., preferably 140 to 200 ° C. Within this range, the temperature should be selected so that the fiber material is evenly enclosed in the resin matrix.
- the curing time of crosslinking resins in this temperature range is 2 to 5 minutes. After the curing time has expired, the three-dimensionally deformed textile material can be removed from the molding tool.
- a thermoplastic is used, so the thermoforming tool must first be kept at the temperature at which the thermoplastic flows in order to ensure the embedding of the fiber material in the polymer matrix. The closed drawing tool is then cooled and left in the closed state until the matrix resin has solidified again completely or at least to the extent that the deep-drawn material remains dimensionally stable.
- the three-dimensionally deformed textile material produced according to the invention can be used in a manner known per se, as has been described in detail, for example, in European Patent No. 158 234, for the production of sandwich bodies.
- One or more layers of the three-dimensionally deformed material can be used as the core for the sandwich structure, wherein the core layers can either be arranged one above the other or - as described in the cited document - interlocking.
- the core material is provided on both sides with relatively thin, solid cover layers.
- the cover layers are usually attached to the core material by means of suitable known adhesives, in particular by means of crosslinking polymer adhesives.
- FIG. 2 illustrates an embodiment of such a sandwich body (4). In an oblique view, it shows such a material with a lower cover layer (5), a partially removed upper cover layer (6) and the dimensionally stable, three-dimensionally deformed textile material (1) glued in between the cover layers as a core.
- Suitable outer layers for the sandwich moldings which can be produced are all outer panels which have also been used for sandwich constructions, such as aluminum or steel sheets, but in particular synthetic resin laminates with inlays, for example made of fabrics, made of carbon or glass threads. In simpler cases, plywood or hardboard, for example, are also suitable as cover layers.
- the core material produced according to the invention is arranged between the two cover layers provided on the inside with the adhesive material, and the sandwich obtained in this way is bonded under slight pressure, if appropriate at elevated temperature.
- a section measuring 15 x 30 cm edge length of a knitted fabric with a basis weight of 260 g / m2 made of high-strength polyester continuous yarn ( (R) Trevira high-strength) is covered with a commercially available 0.15 mm thick, carrier-free epoxy resin film ( (R) Structufilm R 382 from Hexcel SA) basis weight 150 g / m2, covered in the size 15 x 30 cm and the stack obtained in this way placed in a deep-drawing tool preheated to 200 ° C. which is equipped with male and female dies made of chromium-nickel steel.
- the matrix has a square pattern of round holes with a diameter of 1.5 cm and a center-to-center distance of 2.2 cm and a male with a square arrangement of 2 cm high round punches with a diameter of 1 cm and a center-to-center distance of 2.2 cm, the male punches being centered with respect to the female holes.
- the tool is closed at a working temperature of 200 ° C and held at this temperature for 3 minutes.
- the three-dimensionally deformed material obtained is then removed.
- the deep-drawn textile material produced in this way has a regular arrangement of a large number of thimble-like, approx. 2 cm high bumps with a flat plateau at a distance of 2.2 cm on a base and shows an open, filigree structure throughout. It is ideally suited as a core material for the production of sheet-like sandwich bodies.
- a sandwich panel manufactured using this deformed textile material as the core and two 1.5 mm thick plywood panels as cover layers has a compressive strength of 0.4 N / mm2.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Laminated Bodies (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines formstabilen, dreidimensional verformten, beharzten, flächenförmigen Textilmaterials, die nach diesem Verfahren erhaltenen verformten Gebilde sowie deren Verwendung als Kernmaterial bei der Herstellung von flächenförmigen Sandwichkörpern.The present invention relates to a process for producing a dimensionally stable, three-dimensionally shaped, resin-coated, sheet-like textile material, the deformed structures obtained by this process and their use as core material in the production of sheet-like sandwich bodies.
Flächenförmige Sandwichkörper aus einem Kern und zwei Deckschichten, deren Kern formstabile, dreidimensional verformte Textilmaterialien aufweist, sind bereits z.B. aus der FR-A-23 25 503 und der EP-A-158 234 bekannt. Das in diesen Druckschriften beschriebene Sandwichmaterial hat einen Kern aus einem dreidimensional verformten, flächenförmigen Textilmaterial, welches auf einer Basisfläche in regelmäßiger Anordnung eine Vielzahl von Erhebungen mit gleicher Höhe und flachem Plateau aufweist. Erhebliche Unterschiede zwischen den aus der FR-A-23 25 503 und der EP-A-158 234 bekannten Kernmaterialien bestehen bezüglich ihrer Struktur. Während die aus FR-A-23 25 503 bekannten Materialien eine im wesentlichen vollständig geschlossene Struktur zeigen, bei der sowohl die textilen Grundflächen als auch die Wandungen der auf der Grundfläche verteilten Erhebungen, eine massive, porenfreie, faserdurchzogene Harzmasse bilden, stellen die aus der EP-A 158 234 bekannten Kernmaterialien eine Netzwerkstruktur aus harzimprägnierten Fäden mit offenen Maschen dar.Sheet-like sandwich bodies consisting of a core and two cover layers, the core of which has dimensionally stable, three-dimensionally deformed textile materials, are already e.g. known from FR-A-23 25 503 and EP-A-158 234. The sandwich material described in these publications has a core made of a three-dimensionally deformed, flat textile material which has a large number of elevations with the same height and flat plateau on a base surface in a regular arrangement. There are considerable differences between the core materials known from FR-A-23 25 503 and EP-A-158 234 with regard to their structure. While the materials known from FR-A-23 25 503 show an essentially completely closed structure, in which both the textile base areas and the walls of the elevations distributed on the base area form a solid, pore-free, fiber-infused resin composition, which constitute the EP-A 158 234 known core materials represent a network structure made of resin-impregnated threads with open meshes.
Die Herstellung des aus der FR-A-2 325 503 bekannten Kernmaterials mit geschlossener Struktur erfolgt durch Pressen eines harzgetränkten Stapelfasergeleges in eine Preßform der gewünschten geometrischen Gestalt. Dabei wird, bezogen auf das Fasergewicht, eine relativ hohe Harzmenge eingesetzt, so daß sich nach dem Pressen ein im wesentlichen faserverstärkter Harzformkörper ergibt.The core material with closed structure known from FR-A-2 325 503 is produced by pressing a resin-impregnated staple fiber fabric into one Mold of the desired geometric shape. Relative to the fiber weight, a relatively high amount of resin is used, so that an essentially fiber-reinforced resin molded body results after pressing.
Das so erhaltene Kernmaterial hat ein relativ hohes Gewicht. Es gestattet keinen Gasaustausch und es zeigt eine geringe Flexibilität.The core material thus obtained has a relatively high weight. It does not allow gas exchange and it shows little flexibility.
Das aus der EP-A-158 234 bekannte netzstrukturierte (im folgenden auch filigranstrukturierte genannt) Kernmaterial wird hergestellt durch Tiefziehen eines mit relativ wenig Harz imprägnierten, tiefziehfähigen Textilmaterials wie z.B. einer harzimprägnierten Maschenware (Gewirke, Gestrick). Dieses aus der EP-A-158 234 bekannte Kernmaterial hat bei guter mechanischer Stabilität ein niedriges Raumgewicht. Es gestattet einen freien Gasaustausch zwischen den Seiten der Fläche und es weist eine hohe Flexibilität auf.The network-structured core material known from EP-A-158 234 (hereinafter also referred to as filigree-structured) is produced by deep-drawing a deep-drawable textile material impregnated with relatively little resin, e.g. a resin-impregnated knitted fabric (knitted fabric, knitted fabric). This core material known from EP-A-158 234 has a low density with good mechanical stability. It allows free gas exchange between the sides of the surface and is highly flexible.
Wie oben bereits ausgeführt, erfolgt die Herstellung der aus der EP-A-158 234 bekannten Kernmaterials durch Imprägnieren eines flächenförmigen Textilmaterials mit einem thermoplastischen oder duroplastischen Harz, Trocknen des imprägnierten Materials zu einem sogenannten Prepreg und anschließende Verformung des Prepregs zur gewünschten Form des Kernmaterials durch einen Tiefziehprozeß.As already stated above, the core material known from EP-A-158 234 is produced by impregnating a sheet-like textile material with a thermoplastic or thermosetting resin, drying the impregnated material into a so-called prepreg and then deforming the prepreg to the desired shape of the core material a deep drawing process.
Ein gravierender Nachteil dieses Herstellungsverfahrens besteht darin, daß es sehr schwierig ist, ein tiefziehfähiges flächenförmiges Textilmaterial gleichmäßig mit einem Harz zu imprägnieren, ohne daß es dabei zu einer ganzen oder partiellen Vordehnung des Materials kommt. Ein derartiger, gegebenenfalls ungleichmäßiger, Verzug der textilen Fläche hat eine mangelnde Tiefziehfähigkeit und im Fertigprodukt eine, gegebenenfalls partielle, Reduktion der Faserfestigkeit zur Folge. Auch die Handhabung des noch nicht vorkondensierten, mit Harz imprägnierten, tiefziehfähigen Textilmaterials kann leicht zu einer partiellen Vordehnung dieses Materials führen, mit den oben erwähnten Nachteilen für die Gleichmäßigkeit der Qualität des Endproduktes, wenn nicht besondere Vorsichtsmaßnahmen getroffen werden. Diese Herstellungsprobleme stehen bis zu einem gewissen Grad der weiten Verbreitung dieser an sich überaus günstigen Kernmaterialien im Wege. Die vorliegende Erfindung überwindet den Nachteil dieses bekannten Herstellungsverfahrens.A serious disadvantage of this manufacturing process is that it is very difficult to uniformly impregnate a deep-drawable sheet-like textile material with a resin without the material being fully or partially pre-stretched. Such a, possibly uneven, warping of the textile surface has a lack of deep-drawing ability and in the finished product a, possibly partial, reduction the fiber strength. The handling of the not yet precondensed, resin-impregnated, deep-drawable textile material can easily lead to a partial pre-stretching of this material, with the above-mentioned disadvantages for the uniformity of the quality of the end product, unless special precautions are taken. To some extent, these manufacturing problems stand in the way of the widespread use of these core materials, which are intrinsically inexpensive. The present invention overcomes the disadvantage of this known manufacturing process.
Die vorliegende Erfindung betrifft somit ein Verfahren zur Herstellung eines formstabilen, dreidimensional verformten, beharzten, flächenförmigen Textilmaterials, das dadurch gekennzeichnet ist, daß eine oder mehrere Schichten eines tiefziehfähigen Textilmaterials und eine oder mehrere Harzfolien übereinandergestapelt werden, der Stapel bei einer Temperatur, bei der das Harz fließfähig wird durch einen Formprozeß in die gewünschte Form gebracht wird, und daß man danach die Temperatur so einstellt, daß das Harz erhärten kann, und den geformten Stapel so lange in der gewünschten Form hält, bis das Harz vollständig oder hinreichend erhärtet ist, wobei der Begriff "hinreichend erhärtet" so zu verstehen ist, daß das Harz in diesem Zustand in der Lage ist, das verformte Flächengebilde nach dem öffnen des Tiefziehwerkzeuges in der gewünschten Form zu stabilisieren.The present invention thus relates to a method for producing a dimensionally stable, three-dimensionally shaped, resin-coated, sheet-like textile material, which is characterized in that one or more layers of a thermoformable textile material and one or more resin films are stacked on top of one another, the stack at a temperature at which the Resin flowable is brought into the desired shape by a molding process, and then the temperature is set so that the resin can harden and the shaped stack is kept in the desired shape until the resin is completely or sufficiently hardened, whereby The term "sufficiently hardened" should be understood to mean that the resin in this state is able to stabilize the deformed fabric in the desired shape after opening the deep-drawing tool.
Die Figur 1 veranschaulicht schematisch ein erfindungsgemäß hergestelltes formstabiles, dreidimensional verformtes, beharztes flächenförmiges Textilmaterial (1), das auf einer Grundfläche (2) eine Vielzahl von Erhebungen (3) aufweist. Insbesondere in den Erhebungen zeigt die Figur eine durch die Dehnung des Grundmaterials erhaltene netzartige Filigranstruktur.FIG. 1 schematically illustrates a dimensionally stable, three-dimensionally shaped, resin-coated sheet-like textile material (1) produced according to the invention, which has a plurality of elevations (3) on a base area (2). In the elevations in particular, the figure shows a reticulated filigree structure obtained by stretching the base material.
Als tiefziehfähiges Textilmaterial kommt im Prinzip jedes flächenförmige Textilmaterial in Betracht, dessen Dehnbarkeit die beim Tiefziehen auftretende partielle Flächenvergrößerung ohne Reißen des Textilmaterials ermöglicht. Wie bereits in der EP-A-158 234 angegeben, eignen sich als tiefziehfähige Textilmaterialien insbesondere Maschenwaren wie z.B. Gewirke oder Gestricke, bei denen die Dehnbarkeit aus der Verformbarkeit der Maschenstruktur resultiert. Es ist auch bereits vorgeschlagen worden, tiefziehfähige textile Flächengebilde aus Umwindegarnen herzustellen, die aus einem fadenförmigen Kernmaterial bestehen, welches von einem Hüllfaden umwunden wird, der 1,5- bis 3-mal, vorzugsweise 1,8- bis 2,2-mal länger ist als das Kernmaterial. Ein flächenförmiges Textilmaterial aus einem derartigen Umwindegarn kann in Form eines Gewebes, eines Gewirkes, einer Raschelware, eines Geleges oder eines durch Umwindefäden verstärkten Vlieses vorliegen. Beim Tiefziehen eines solchen Materials werden die Kernfäden in den zu verformenden Bereichen statistisch verteilt zerrissen und geben dabei eine entsprechende Länge des Hüllfadens frei. Dieser Mechanismus ermöglicht im Verlauf des Tiefziehvorganges eine erhebliche Flächenvergrößerung ohne Zerstörung des gesamten Flächenzusammenhalts. Besonders bevorzugt dabei ist die Verwendung eines Umwindegarns, dessen Kernfäden eine niedrigere Stabilität haben als die Hüllfilamente, d.h. daß der Kernfaden bei der beim Tiefziehen auftretenden mechanischen und gegebenenfalls auch thermischen Belastung und/oder durch den Einfluß von Chemikalien zerstört wird, während der Hüllfaden gestreckt wird und die tragende Funktion im Flächengebilde übernimmt.In principle, any sheet-like textile material is considered as a deep-drawable textile material, the stretchability of which enables the partial increase in surface area occurring during deep-drawing without tearing the textile material. As already stated in EP-A-158 234, knitted fabrics such as e.g. Knitted or knitted fabrics in which the stretchability results from the deformability of the mesh structure. It has also already been proposed to produce deep-drawable textile fabrics from wrapping yarns, which consist of a thread-like core material which is wrapped by a sheath thread that is 1.5 to 3 times, preferably 1.8 to 2.2 times longer is as the core material. A sheet-like textile material made from such a wrapping yarn can be in the form of a woven fabric, a knitted fabric, a knitted fabric, a scrim or a nonwoven reinforced by wrapping threads. When deep-drawing such a material, the core threads are torn in a statistically distributed manner in the areas to be deformed, thereby releasing a corresponding length of the covering thread. This mechanism enables a considerable increase in area during the deep-drawing process without destroying the entire area. It is particularly preferred to use a wrapping yarn whose core threads have a lower stability than the sheath filaments, i.e. that the core thread is destroyed in the mechanical and possibly also thermal stress occurring during deep drawing and / or by the influence of chemicals, while the sheath thread is stretched and assumes the supporting function in the fabric.
Als tiefziehfähige Textilmaterialien kommen weiterhin solche in Betracht, die eine hohe, nicht-elastische Verformbarkeit aufweisen, wie sie z.B. aus der GB-A-2 176 511 sowie den Derwent Referaten 87-025859/04 und 87-040235/06 der Japanischen Patentpublikationen 61-282452 und 61-296152 bekannt sind. Diese bekannten dreidimensional verformbaren Textilmaterialien werden hergestellt, indem man entsprechende flächenförmige Textilmaterialien aus Synthesefasern einer Wärmeschrumpfbehandlung unterwirft und ihnen dadurch eine nicht-elastische Dehnbarkeit vermittelt, oder indem man diese Textilmaterialien von vornherein aus Garnen erzeugt, die bereits eine nicht-elastische Dehnbarkeit mitbringen. Nicht-elastisch dehnbare Garne sind beispielsweise beschrieben in der DE-A-28 21 243 und der DE-C-35 21 469.Further suitable as deep-drawable textile materials are those which have a high, non-elastic deformability, such as, for example, from GB-A-2 176 511 and Derwent papers 87-025859 / 04 and 87-040235 / 06 of Japanese Patent Publications 61-282452 and 61-296152 are known. These known three-dimensionally deformable textile materials are produced by subjecting corresponding sheet-like textile materials made of synthetic fibers to heat-shrinkage treatment and thereby imparting them non-elastic extensibility, or by producing these textile materials from the start from yarns which already have non-elastic extensibility. Non-elastically stretchable yarns are described, for example, in DE-A-28 21 243 and DE-C-35 21 469.
Das Fadenmaterial, aus dem das tiefziehfähige textile Flächengebilde hergestellt wird, ist keiner Beschränkung unterworfen; sowohl Gestricke als auch die aus Umwindegarnen hergestellten tiefziehfähigen Textilmaterialien können aus Endlosfilamentgarnen als auch aus Spinnfasergarnen bestehen. Es können aber auch beispielsweise Bändchenfäden oder Spleißbändchenfäden eingesetzt werden. Dasselbe gilt auch für die chemische Natur des Fadenmaterials. So ist es im Prinzip möglich, daß das tiefziehfähige Textilmaterial aus einem Umwindegarn oder aus einem Gestrick aus Naturfasern, Synthesefasern oder anorganischen Fasern oder Endlosfilamenten, wie z.B. Glasfasern besteht. Im Hinblick auf die bessere Variabilität der Festigkeitseigenschaften des Materials inbesondere im endgültig verfomten Zustand ist es Jedoch vorteilhaft, daß das Textilmaterial aus Synthesefasern aufgebaut ist. Steht dagegen die Schwerentflammbarkeit oder Schwerbrennbarkeit des Materials im Vordergrund so ist es bevorzugt, Maschenware aus anorganischen Fasern einzusetzen. Synthetische Materialien, die in Betracht kommen sind beispielsweise Polyalkylene, Polyamide, Polyester oder Polyacrylnitril. Besonders bevorzugt sind für Gestricke Polyestermaterialien, insbesondere hochfeste Typen, tiefziehfähige Textilmaterialien aus Umwindegarn enthalten vorzugsweise Umwindefäden, deren Kernfäden mit niedrigerer Stabilität aus Polyalkylen oder aliphatischen Polyamiden bestehen und deren Hüllfäden, die die Endfestigkeit und Stabilität des durch Tiefziehen verformten, dreidimensionalen Elementes bestimmen, aus aromatischen Polyestern, aromatischen Polyamiden oder Polyacrylnitril, insbesondere aus den hochfesten Typen bestehen.The thread material from which the deep-drawable textile fabric is made is not subject to any restrictions; Both knitted fabrics and the deep-drawable textile materials made from wrapping yarns can consist of continuous filament yarns as well as of spun yarns. However, ribbon threads or splice ribbon threads can also be used, for example. The same applies to the chemical nature of the thread material. In principle, it is possible for the deep-drawable textile material to consist of a covering yarn or of a knitted fabric made of natural fibers, synthetic fibers or inorganic fibers or continuous filaments, such as glass fibers. In view of the better variability of the strength properties of the material, in particular in the finally deformed state, it is advantageous, however, that the textile material be constructed from synthetic fibers. If, on the other hand, the flame retardancy or flame retardancy of the material is in the foreground, it is preferred to use knitted fabrics made of inorganic fibers. Synthetic materials that can be considered are, for example, polyalkylenes, polyamides, polyesters or polyacrylonitrile. Polyester materials, in particular high-strength types, are particularly preferred for knitted fabrics, deep-drawable textile materials made from wrapping yarn preferably contain wrapping threads whose core threads with lower stability consist of polyalkylene or aliphatic polyamides and whose covering threads, which determine the final strength and stability of the three-dimensional element deformed by deep drawing, of aromatic polyesters, aromatic polyamides or polyacrylonitrile, in particular from the high-strength ones Types exist.
Die beim erfindungsgemäßen Verfahren einzusetzenden Harzfolien können aus thermoplastischen oder duroplastischen Harzen (im folgenden auch mit Matrixmaterial bezeichnet) bestehen. Als thermoplastisches oder hitzehärtendes Harz wird ein solches verwendet, welches das flächenförmige Textilmaterial so versteifen kann, daß es selbsttragend wird. Bevorzugt sind daher insbesondere Duroplaste, d.h. solche Harze, die bei erhöhter Temperatur unter Vernetzung zu einem unschmelzbaren Material hoher Steifigkeit aushärten. Bekannte derartige Harze sind z.B. ungesättigte Polyesterharze (Alkydharze), Mischungen aus ungesättigten Polyestern mit ungesättigten monomeren Verbindungen wie z.B. Styrol, Epoxidharze, Phenolharze oder Melaminharze. Diese Harze werden im unvernetzten Zustand in welchem sie bei erhöhter Temperatur noch schmelzbar und fließfähig sind, in den Handel gebracht und appliziert. Die erfindungsgemäß einzusetzenden Folien aus diesen, noch unvernetzten Harzen, haben eine Stärke von etwa 50 bis 500 µm, vorzugsweise von 100 bis 500 µm und ein Flächengewicht von etwa 50 bis 500 g/m², vorzugsweise 100 bis 500 g/m²
Selbstverständlich ist es auch möglich, für spezielle Zwecke z.B. für die Verarbeitung sehr feiner oder besonders dicker Textilmaterialien, dünnere oder dickere Harzfolien mit entsprechend niedrigerem oder höherem Flächengewicht einzusetzen. In der Regel enthalten diese Harzfolien bereits den zur Vernetzung des Harzes erforderlichen Vernetzer und den erforderlichen Polymerisationskatalysator und die zweckmäßigen Beschleunigersubstanzen.The resin films to be used in the method according to the invention can consist of thermoplastic or thermosetting resins (also referred to below as matrix material). The thermoplastic or thermosetting resin used is one which can stiffen the sheet-like textile material so that it becomes self-supporting. Thermosets are therefore particularly preferred, ie those resins which cure at elevated temperature with crosslinking to form an infusible material of high rigidity. Known resins of this type are, for example, unsaturated polyester resins (alkyd resins), mixtures of unsaturated polyesters with unsaturated monomeric compounds such as, for example, styrene, epoxy resins, phenolic resins or melamine resins. These resins are marketed and applied in the uncrosslinked state, in which they are still meltable and flowable at elevated temperature. The films to be used according to the invention from these still uncrosslinked resins have a thickness of approximately 50 to 500 μm, preferably 100 to 500 μm and a basis weight of approximately 50 to 500 g / m², preferably 100 to 500 g / m²
Of course, it is also possible to use thinner or thicker resin films with a correspondingly lower or higher basis weight for special purposes, for example for processing very fine or particularly thick textile materials. As a rule, these resin films already contain the crosslinking agent and necessary for crosslinking the resin the required polymerization catalyst and the appropriate accelerator substances.
Handelsübliche Harzfolien sind häufig zur Verbesserung ihrer mechanischen Stabilität mit einem Träger versehen. Auch solche Harzfolien sind für die Durchführung des erfindungsgemäßen Verfahrens gut geeignet. Als Beispiel für handelsübliche Harzfolien auf Basis von Epoxid-Harz, die mit oder ohne Träger erhältlich und erfindungsgemäß einsetzbar sind, sei die von Hexcel S.A. in den Handel gebrachte Harzfolie (R)Structufilm R 382 genannt.Commercial resin films are often provided with a carrier to improve their mechanical stability. Resin films of this type are also very suitable for carrying out the process according to the invention. An example of commercially available resin films based on epoxy resin, which are available with or without a carrier and can be used according to the invention, is the Structufilm R 382 resin film (R) marketed by Hexcel SA.
Zur Herstellung des dreidimensional verformten Textilmaterials wird eine oder mehrere Schichten des tiefziehfähigen Textilmaterials und eine oder mehrere Harzfolien in geeigneter Abfolge zu einem "Stapel" übereinander gelegt. Ein solcher "Stapel" kann dementsprechend auch aus einer Textilbahn und einer Harzfolie bestehen. Die Anzahl der Textilbahnen richtet sich nach den Anforderungen, die an die Festigkeit des herzustellenden Kernmaterials gestellt werden. In der Regel werden nicht mehr als 4, vorzugsweise 1 oder 2 Textilbahnen, insbesondere eine Textilbahn, in einem Stapel verwendet. Die Anzahl der Harzfolien im Stapel richtet sich nach dem gewünschten Grad der Harzimprägnierung des Textilmaterials. geeignete Auflagenmengen des Harzes liegen im Bereich von 50 bis 500, vorzugsweise von 100 bis 300 g Harz/m² des Textilmaterials. Innerhalb der angegebenen Bereiche kann die Harzmenge noch zweckmäßig an das Quadratmetergewicht des tiefziehfähigen Textilmaterials angepaßt werden. So wird man bei Einsatz eines schweren Textilmaterials innerhalb der oberen Hälfte der angegebenen Bereiche arbeiten, bei leichten Textilmaterialien in der unteren Hälfte. Für ganz spezielle Anwendungen kann es erwünscht sein, die Harzauflagemenge so weit zu erhöhen, daß auch im gedehnten Zustand noch ein Harzfilm zwischen den Fäden des Textilnetzwerkes stehen bleibt. Bevorzugt ist es jedoch, die Harzmenge so zu bemessen, daß das Textilmaterial im gedehnten Zustand ein filigranartiges Netzwerk bildet. Soll ein Textilmaterial beispielsweise mit einer Harzauflage von 200 g Harz/m² imprägniert werden, so wird in den zu verformenden Stapel, eine Folie von z.B. 0,2 mm Stärke mit einem Flächengewicht von 200 g/m² eingelegt.To produce the three-dimensionally deformed textile material, one or more layers of the deep-drawable textile material and one or more resin films are laid in a suitable sequence on top of one another in a "stack". Accordingly, such a “stack” can also consist of a textile web and a resin film. The number of textile webs depends on the requirements placed on the strength of the core material to be manufactured. As a rule, no more than 4, preferably 1 or 2 textile webs, in particular a textile web, are used in a stack. The number of resin films in the stack depends on the desired degree of resin impregnation of the textile material. suitable coating quantities of the resin are in the range from 50 to 500, preferably from 100 to 300 g resin / m² of the textile material. Within the specified ranges, the amount of resin can be expediently adapted to the weight per square meter of the deep-drawable textile material. For example, when using a heavy textile material, you will work within the upper half of the specified ranges, with light textile materials in the lower half. For very special applications, it may be desirable to increase the amount of resin applied to such an extent that even when stretched Condition still a resin film remains between the threads of the textile network. However, it is preferred to measure the amount of resin so that the textile material forms a filigree network when stretched. If, for example, a textile material is to be impregnated with a resin layer of 200 g resin / m², a film of, for example, 0.2 mm thickness with a basis weight of 200 g / m² is placed in the stack to be deformed.
Werden in einem zu verformenden Stapel mehrere Textilbahnen vorgesehen, so ist die Abfolge von Textilbahnen und Harzfolien zweckmäßigerweise so zu wählen, daß unter Wärmeeinwirkung beim Tiefziehprozeß eine möglichst gleichmäßige Verteilung des Harzes in die textilen Flächen erfolgen kann. Für dickere Stapel wird man daher zweckmäßigerweise Textilbahnen und Harzfolien alternierend einsetzen. Im Hinblick auf die Reinhaltung des Formwerkzeuges kann es auch vorteilhaft sein, den Stapel so aufzubauen, daß die Ober- und Unterfläche des Stapels von Gewebebahnen gebildet wird und die notwendige Harzmenge durch eine entsprechende Anzahl im Inneren des Stapels liegender Harzfolien gewährleistet wird. So kann beispielsweise ein Stapel aus 2 Textilbahnen und 2 Harzfolien in der Abfolge: Textilbahn - 2 Harzfolien (oder eine stärkere Harzfolie) - Textilbahn aufgebaut sein.If several textile webs are to be provided in a stack to be deformed, the sequence of textile webs and resin films is expediently to be chosen such that, under the action of heat during the deep-drawing process, the resin can be distributed as evenly as possible into the textile surfaces. For thicker stacks, it is therefore expedient to use textile webs and resin films alternately. With a view to keeping the molding tool clean, it can also be advantageous to construct the stack in such a way that the top and bottom surfaces of the stack are formed by fabric webs and the necessary amount of resin is ensured by a corresponding number of resin films lying inside the stack. For example, a stack of 2 textile webs and 2 resin films can be constructed in the sequence: textile web - 2 resin films (or a stronger resin film) - textile web.
Eine weitere Bemessungsvorschrift für den Stapelaufbau ergibt sich aus den Festigkeitsanforderungen an das dreidimensional verformte Textilmaterial. Bei seinem Einsatz als Kernmaterial für Sandwichformteile muß es eine bestimmte Mindestdruckfestigkeit aufweisen. Diese Forderung ist bei Einsatz vernetzender Harze in der Regel dann zu erfüllen, wenn das Verhältnis des Quadratmetergewichtes des Textilmaterials zum Gewicht des pro Quadratmeter eingesetzten Harzes (entsprechend dem Quadratmetergewicht der Harzfolie) im Bereich von 1:0,25 bis 1:4, vorzugsweise 1:0,5 bis 1:2 liegt. Bei Stapeln aus mehreren Lagen Textilmaterial und mehreren Lagen Harzfolien sind hierbei selbstverständlich die Summen der Quadratmetergewichte des Textilmaterials und der Harzfolien in Betracht zu ziehen.Another dimensioning specification for the stack structure results from the strength requirements for the three-dimensionally deformed textile material. When used as a core material for sandwich moldings, it must have a certain minimum compressive strength. When crosslinking resins are used, this requirement is generally to be met if the ratio of the square meter weight of the textile material to the weight of the resin used per square meter (corresponding to the square meter weight of the resin film) is in the range from 1: 0.25 to 1: 4, preferably 1: 0.5 to 1: 2. In the case of stacks of several layers of textile material and several layers of resin films, the sums of the square meter weights of the textile material and the resin films must of course be taken into account.
Wie bereits weiter oben erwähnt, kann es bei speziellen Anwendungen auch erwünscht sein, die Harzmenge gegenüber den üblichen Mengen zu erhöhen. Andererseits kann es bei Einsatz spezieller Techniken bei der Herstellung von Sandwichformkörpern auch durchaus ausreichen, weniger Harz bezogen auf das Textilmaterial einzusetzen, so daß die Harzmatrix nicht das gesamte Fasermaterial einschließt, daß aber die Formstabilität des verformten Stapels gewährleistet ist. Derartige, mit geringer Harzauflage hergestellten Formkörper können durch Verkleben mit Deckschichten zu hochfesten Sandwichkörpern verarbeitet werden, wenn die Formkörper mit einem flüssigen oder pastösen Klebstoff verklebt werden und zuvor mit einer Flüssigkeit benetzt werden, die zudem als Lösungsmittel und/oder Benetzungsmittel für den Klebstoff dient. Hierbei ist zu beobachten, daß der Klebstoff in dem Gitterwerk der netzstrukturierten Formkörper aufsteigt und diese nach dem Aushärten zusätzlich verstärkt. Ohne die Benetzung steigt der Klebstoff nicht an der Wandung empor. Auch durch die Verwendung von hydrophilen Spezialhärtern, die dem Fachmann geläufig sind, läßt sich auf diese Weise eine Steigerung der Druck- und Scherfestigkeit der Sandwichkörper erzielen.As already mentioned above, it may also be desirable in special applications to increase the amount of resin compared to the usual amounts. On the other hand, when using special techniques in the production of sandwich moldings, it may also be sufficient to use less resin, based on the textile material, so that the resin matrix does not include the entire fiber material, but that the dimensional stability of the deformed stack is ensured. Such molded articles produced with a low resin coating can be processed into high-strength sandwich articles by gluing with cover layers if the molded articles are glued with a liquid or pasty adhesive and are wetted beforehand with a liquid which also serves as a solvent and / or wetting agent for the adhesive. It can be observed here that the adhesive rises in the latticework of the network-structured shaped bodies and additionally reinforces them after curing. Without wetting, the adhesive does not rise up on the wall. An increase in the pressure and shear strength of the sandwich body can also be achieved in this way by using hydrophilic special hardeners which are known to the person skilled in the art.
Für spezielle Anwendungen können auch Stapel mit Lagen unterschiedlicher Textilmaterialien eingesetzt werden. So ist es möglich, zwischen mindestens 2 Lagen der oben beschriebenen tiefziehfähigen Textilmaterialien auch z.B. Vliese einzulegen und die Harzfolien zwischen diesen Textilbahnen in der oben beschriebenen Weise zu verteilen. Weiterhin ist es möglich, das Fasermaterial der textilen Flächengebilde zu variieren, beispielsweise können auch Kombinationen von Textilbahnen aus organischen und anorganischen Fasern, wie z.B. Glasfasern, verwendet werden.Stacks with layers of different textile materials can also be used for special applications. It is thus possible to also insert, for example, nonwovens between at least 2 layers of the deep-drawable textile materials described above and to distribute the resin films between these textile webs in the manner described above. It is also possible to use the fiber material of the textile To vary planar structures, for example combinations of textile webs made of organic and inorganic fibers, such as glass fibers, can also be used.
Besonders bevorzugte Stapel bestehen aus einer oder zwei Textilbahnen, vorzugsweise Gestricken aus hochfesten Polyesterfasern und einer oder zwei Harzfolien in zweckmäßiger Abfolge.Particularly preferred stacks consist of one or two textile webs, preferably knitted fabrics made of high-strength polyester fibers and one or two resin films in a suitable sequence.
Der Stapel wird in einer Tiefziehform auf eine solche Temperatur erwärmt, bei der das Harz fließfähig wird, dann in die gewünschte dreidimensionale Form gezogen, und bei einer Temperatur, bei der das Harz aushärten kann, so lange in dieser Form gehalten, bis der Härtungsprozeß des Harzes ganz oder zumindest soweit abgeschlossen ist, daß das tiefgezogene Material formstabil bleibt. Diese Bedingung kann bei Einsatz eines Duroplasten auch bereits bei noch nicht vollständiger Aushärtung gegeben sein. In diesem Fall kann es aus ökonomischen Gründen vorteilhaft sein, die vollständige Aushärtung durch Tempern des Formlings außerhalb des Tiefziehwerkzeugs, z.B. durch eine Wärmebehandlung ca. 10 Minuten bei 160 bis 200°C in einem Trockenofen, auszuführen. In der Fließphase umhüllt das verflüssigte Harz (Matrixwerkstoff) das Fasermaterial des textilen Flächengebildes.The stack is heated in a deep-drawing mold to a temperature at which the resin becomes flowable, then drawn into the desired three-dimensional shape, and held at this temperature at a temperature at which the resin can cure until the curing process of the Resin is completely or at least so far that the deep-drawn material remains dimensionally stable. When using a thermoset, this condition can already exist even if the curing is not yet complete. In this case, it may be advantageous for economic reasons to fully harden the mold by tempering it outside the deep-drawing tool, e.g. by heat treatment for approx. 10 minutes at 160 to 200 ° C in a drying oven. In the flow phase, the liquefied resin (matrix material) envelops the fiber material of the textile fabric.
Die Temperatur, bei der das Schmelzen des unvernetzten Harzes erfolgt, liegt in der Regel bei 100 bis 250°C, vorzugsweise bei 140 bis 200°C. Innerhalb dieses Bereiches ist die Temperatur so zu wählen, daß das Fasermaterial gleichmäßig in die Harzmatrix eingeschlossen wird. Die Härtungsdauer vernetzender Harze in diesem Temperaturbereich liegt bei 2 bis 5 Min. Nach Ablauf der Härtungsdauer kann das dreidimensional verformte Textilmaterial dem Formwerkzeug entnommen werden. Wird anstelle eines vernetzenden Harzes, ein Thermoplast eingesetzt, so ist das Tiefziehwerkzeug zunächst auf der Temperatur zu halten, bei der der Thermoplast fließt, um die Einbettung des Fasermaterials in die Polymermatrix zu gewährleisten. Anschließend wird das geschlossene Ziehwerkzeug abgekühlt und so lange in geschlossenem Zustand belassen, bis das Matrixharz wieder vollständig oder zumindest soweit verfestigt ist, daß das tiefgezogene Material formstabil bleibt.The temperature at which the uncrosslinked resin melts is generally 100 to 250 ° C., preferably 140 to 200 ° C. Within this range, the temperature should be selected so that the fiber material is evenly enclosed in the resin matrix. The curing time of crosslinking resins in this temperature range is 2 to 5 minutes. After the curing time has expired, the three-dimensionally deformed textile material can be removed from the molding tool. Instead of one crosslinking resin, a thermoplastic is used, so the thermoforming tool must first be kept at the temperature at which the thermoplastic flows in order to ensure the embedding of the fiber material in the polymer matrix. The closed drawing tool is then cooled and left in the closed state until the matrix resin has solidified again completely or at least to the extent that the deep-drawn material remains dimensionally stable.
Besonders bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens sind solche, in denen mehrere der oben genannten bevorzugten Merkmale realisiert werden.Particularly preferred embodiments of the method according to the invention are those in which several of the preferred features mentioned above are implemented.
Das erfindungsgemäß hergestellte dreidimensional verformte Textilmaterial kann in an sich bekannter Weise, wie sie z.B. im Europäischen Patent Nr. 158 234 detailliert beschrieben worden ist, zur Herstellung von Sandwichkörpern verwendet werden. Dabei können eine oder mehrere Schichten des dreidimensional verformten Materials als Kern für die Sandwichstruktur eingesetzt werden, wobei die Kernlagen entweder übereinander liegend oder - wie in der genannten Druckschrift beschrieben - ineinandergreifend angeordnet werden können. Zur Herstellung der Sandwichstruktur wird in an sich bekannter Weise das Kernmaterial beidseitig mit relativ dünnen festen Deckschichten versehen. Die Befestigung der Deckschichten am Kernmaterial erfolgt üblicherweise durch geeignete bekannte Kleber, insbesondere durch vernetzende Polymerisatkleber. Die Figur 2 veranschaulicht eine Ausführungsform eines solchen Sandwichkörpers (4). Sie zeigt in schräger Aufsicht ein solches Material mit einer unteren Deckschicht (5), einer teilweise entfernten oberen Deckschicht (6) und dem zwischen den Deckschichten als Kern eingeklebten, erfindungsgemäß hergestellten, formstabilen dreidimensional verformten Textilmaterial (1).The three-dimensionally deformed textile material produced according to the invention can be used in a manner known per se, as has been described in detail, for example, in European Patent No. 158 234, for the production of sandwich bodies. One or more layers of the three-dimensionally deformed material can be used as the core for the sandwich structure, wherein the core layers can either be arranged one above the other or - as described in the cited document - interlocking. To produce the sandwich structure, the core material is provided on both sides with relatively thin, solid cover layers. The cover layers are usually attached to the core material by means of suitable known adhesives, in particular by means of crosslinking polymer adhesives. FIG. 2 illustrates an embodiment of such a sandwich body (4). In an oblique view, it shows such a material with a lower cover layer (5), a partially removed upper cover layer (6) and the dimensionally stable, three-dimensionally deformed textile material (1) glued in between the cover layers as a core.
Als Deckschichten für die herstellbaren Sandwichformkörper eignen sich alle auch bisher für Sandwichkonstruktionen verwendeten Außenplatten, wie beispielsweise Aluminium- oder Stahlbleche, insbesondere aber Kunstharzlaminate mit Einlagen, beispielsweise aus Geweben, aus Kohlenstoff- oder Glasfäden. In einfacheren Fällen eignen sich als Deckschichten beispielsweise aber auch Sperrholz oder Hartfaserplatten. Zur Herstellung wird zwischen den beiden, auf den Innenseiten mit dem Klebematerial versehenen Deckschichten das erfindungsgemäß hergestellte Kernmaterial angeordnet, und der so erhaltene Sandwich unter leichtem Druck, gegebenenfalls bei erhöhter Temperatur, verklebt.Suitable outer layers for the sandwich moldings which can be produced are all outer panels which have also been used for sandwich constructions, such as aluminum or steel sheets, but in particular synthetic resin laminates with inlays, for example made of fabrics, made of carbon or glass threads. In simpler cases, plywood or hardboard, for example, are also suitable as cover layers. For the production, the core material produced according to the invention is arranged between the two cover layers provided on the inside with the adhesive material, and the sandwich obtained in this way is bonded under slight pressure, if appropriate at elevated temperature.
Das folgende Ausführungsbeispiel dient zur Veranschaulichung des erfindungsgemäßen Verfahrens.The following exemplary embodiment serves to illustrate the method according to the invention.
Ein Abschnitt in der Größe von 15 x 30 cm Kantenlänge einer Wirkware mit einem Flächengewicht von 260 g/m² aus hochfestem Polyester-Endlosgarn ((R)Trevira hochfest) wird mit einer handeslüblichen 0,15 mm starken trägerfreien Epoxidharzfolie ((R)Structufilm R 382 der Fa. Hexcel S.A.) Flächengewicht 150 g/m², in der Größe 15 x 30 cm bedeckt und der so erhaltene Stapel in ein auf 200°C vorgewärmtes Tiefziehwerkzeug eingelegt, das mit Patrizen und Matrizen aus Chromnickelstahl ausgerüstet ist. Die Matrize weist ein quadratisches Muster von runden Löchern mit 1,5 cm Durchmesser und einen Mittelpunktsabstand von 2,2 cm und eine Patrize mit einer quadratischen Anordnung von 2 cm hohen runden Stempeln von 1 cm Durchmesser und einem Mittelpunktsabstand von 2,2 cm auf, wobei die Patrizenstempel bezüglich der Matrizenlöcher zentriert sind.A section measuring 15 x 30 cm edge length of a knitted fabric with a basis weight of 260 g / m² made of high-strength polyester continuous yarn ( (R) Trevira high-strength) is covered with a commercially available 0.15 mm thick, carrier-free epoxy resin film ( (R) Structufilm R 382 from Hexcel SA) basis weight 150 g / m², covered in the size 15 x 30 cm and the stack obtained in this way placed in a deep-drawing tool preheated to 200 ° C. which is equipped with male and female dies made of chromium-nickel steel. The matrix has a square pattern of round holes with a diameter of 1.5 cm and a center-to-center distance of 2.2 cm and a male with a square arrangement of 2 cm high round punches with a diameter of 1 cm and a center-to-center distance of 2.2 cm, the male punches being centered with respect to the female holes.
Das Werkzeug wird bei einer Arbeitstemperatur von 200°C geschlossen und 3 Minuten bei dieser Temperatur gehalten.The tool is closed at a working temperature of 200 ° C and held at this temperature for 3 minutes.
Anschließend wird das erhaltene dreidimensional verformte Material entnommen.The three-dimensionally deformed material obtained is then removed.
Das so hergestellte, tiefgezogene Textilmaterial weist auf einer Grundfläche eine regelmäßige Anordnung einer Vielzahl fingerhutähnlicher, ca. 2 cm hoher Erhebungen mit flachem Plateau im Abstand von 2,2 cm auf und zeigt durchgehend eine offene Filigranstruktur. Es ist hervorragend als Kernmaterial zur Herstellung von flächenförmigen Sandwichkörpern geeignet. Eine unter Einsatz dieses verformten Textilmaterials als Kern und zweier 1,5 mm starker Sperrholzplatten als Deckschichten hergestellte Sandwichplatte weist eine Druckfestigkeit von 0,4 N/mm² auf.The deep-drawn textile material produced in this way has a regular arrangement of a large number of thimble-like, approx. 2 cm high bumps with a flat plateau at a distance of 2.2 cm on a base and shows an open, filigree structure throughout. It is ideally suited as a core material for the production of sheet-like sandwich bodies. A sandwich panel manufactured using this deformed textile material as the core and two 1.5 mm thick plywood panels as cover layers has a compressive strength of 0.4 N / mm².
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3906877A DE3906877A1 (en) | 1989-03-03 | 1989-03-03 | METHOD FOR PRODUCING A THREE-DIMENSIONALLY DEFORMED, RESINED TEXTILE MATERIAL AND ITS USE |
DE3906877 | 1989-03-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0385432A2 true EP0385432A2 (en) | 1990-09-05 |
EP0385432A3 EP0385432A3 (en) | 1991-09-25 |
EP0385432B1 EP0385432B1 (en) | 1994-07-13 |
Family
ID=6375489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90103889A Expired - Lifetime EP0385432B1 (en) | 1989-03-03 | 1990-02-28 | Method for producing a three-dimensionally shaped, resin coated textile material and use of same |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0385432B1 (en) |
JP (1) | JPH02277617A (en) |
AT (1) | ATE108366T1 (en) |
DE (2) | DE3906877A1 (en) |
ES (1) | ES2058637T3 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9415840U1 (en) * | 1994-09-30 | 1994-12-08 | G. Schwartz GmbH & Co. KG, 46509 Xanten | Molding compound |
DE10357307A1 (en) * | 2003-12-05 | 2005-07-14 | 2H Kunststoff Gmbh | Contact body, in particular for an evaporation humidifier, and method for producing a contact body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4230764A (en) * | 1979-04-30 | 1980-10-28 | The United States Of America As Represented By The Secretary Of The Army | Prestressed article |
DE3325327A1 (en) * | 1982-07-24 | 1984-01-26 | Rolls-Royce Ltd., London | VACUUM FORMING PROCESS |
EP0185960A2 (en) * | 1984-12-12 | 1986-07-02 | Bayer Ag | Production of reinforced plastics |
DE3812323A1 (en) * | 1988-04-14 | 1989-10-26 | Basf Ag | FIBER COMPOSITES |
EP0345463A2 (en) * | 1988-06-01 | 1989-12-13 | PCD-Polymere Gesellschaft m.b.H. | Process for continuously producing fibre-reinforced thermoplastic webs, the fibre-reinforced thermoplastic webs and their use |
-
1989
- 1989-03-03 DE DE3906877A patent/DE3906877A1/en not_active Withdrawn
-
1990
- 1990-02-28 DE DE59006389T patent/DE59006389D1/en not_active Expired - Fee Related
- 1990-02-28 EP EP90103889A patent/EP0385432B1/en not_active Expired - Lifetime
- 1990-02-28 AT AT90103889T patent/ATE108366T1/en not_active IP Right Cessation
- 1990-02-28 ES ES90103889T patent/ES2058637T3/en not_active Expired - Lifetime
- 1990-03-02 JP JP2051599A patent/JPH02277617A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4230764A (en) * | 1979-04-30 | 1980-10-28 | The United States Of America As Represented By The Secretary Of The Army | Prestressed article |
DE3325327A1 (en) * | 1982-07-24 | 1984-01-26 | Rolls-Royce Ltd., London | VACUUM FORMING PROCESS |
EP0185960A2 (en) * | 1984-12-12 | 1986-07-02 | Bayer Ag | Production of reinforced plastics |
DE3812323A1 (en) * | 1988-04-14 | 1989-10-26 | Basf Ag | FIBER COMPOSITES |
EP0345463A2 (en) * | 1988-06-01 | 1989-12-13 | PCD-Polymere Gesellschaft m.b.H. | Process for continuously producing fibre-reinforced thermoplastic webs, the fibre-reinforced thermoplastic webs and their use |
Also Published As
Publication number | Publication date |
---|---|
DE59006389D1 (en) | 1994-08-18 |
ATE108366T1 (en) | 1994-07-15 |
DE3906877A1 (en) | 1990-09-06 |
ES2058637T3 (en) | 1994-11-01 |
EP0385432A3 (en) | 1991-09-25 |
EP0385432B1 (en) | 1994-07-13 |
JPH02277617A (en) | 1990-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0512431B1 (en) | Method for producing a three-dimensionally shaped textile material and its use | |
EP0411372B1 (en) | Flat deformable textile material and net formed therefrom | |
DE69321549T2 (en) | DEFORMABLE COMPOSITE FABRIC AND MANUFACTURING METHOD THEREFOR | |
DE3586913T2 (en) | FIBER REINFORCED PLASTIC COMPOSITE. | |
DE60105338T3 (en) | Intermediate composite, its production process and its use as a molding material | |
DE3784580T2 (en) | METHOD FOR PRODUCING THERMOPLASTIC REINFORCED COMPOSITE FILMS AND ITEMS MADE THEREOF. | |
WO1999044810B1 (en) | Fibrous structure arrangement and a method for producing a preform | |
DE3919742A1 (en) | ENERGY ABSORPTION SYSTEM FOR VEHICLE DOORS AND METHOD FOR THE PRODUCTION THEREOF | |
DE69003499T2 (en) | DEFORMABLE TEXTILE STRUCTURE. | |
DE69526669T2 (en) | UNIDIRECTIONAL RIBBON WITH LOW RESIN | |
DE2310991A1 (en) | METHOD FOR MANUFACTURING A POROUS, THERMOPLASTIC RESIN ARTICLE REINFORCED WITH GLASS MATS | |
DE2701132A1 (en) | Process for the production of molded bodies from foamed synthetic resin | |
EP0321735A2 (en) | Light composite material | |
EP0222399A2 (en) | Reinforcing material and method for its production | |
DE69223324T2 (en) | METHOD FOR PRODUCING A LAMINATED ARMORED FIBER STRUCTURE AND FIBER ARMED STRUCTURE | |
EP0402708A1 (en) | Light composite material with thermosetting material | |
EP0418772A2 (en) | Dimensionally stable laminate, and method of manufacture | |
DE69003088T2 (en) | Textile core, process for the production thereof of composite goods obtained with such a textile core. | |
DE68926177T2 (en) | Heat shrinkable fibers and products made from them | |
DE1560899C3 (en) | Impregnated, unconsolidated laminate in sheet or sheet form | |
DE69130111T2 (en) | METHOD FOR PRODUCING A COMPOSITE AND COMPOSITE | |
EP2036701B1 (en) | Layered structure and method and device for manufacturing a layered structure | |
EP0385432B1 (en) | Method for producing a three-dimensionally shaped, resin coated textile material and use of same | |
DE3807874A1 (en) | Composite board and its use | |
DE4024510A1 (en) | DEEP-DRAWABLE TEXTILE MATERIAL AND MOLDED BODIES MADE THEREOF |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19901221 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19930507 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 108366 Country of ref document: AT Date of ref document: 19940715 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59006389 Country of ref document: DE Date of ref document: 19940818 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940916 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2058637 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 90103889.3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: HOECHST AKTIENGESELLSCHAFT TRANSFER- ARTEVA TECHNO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20000110 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000114 Year of fee payment: 11 Ref country code: FR Payment date: 20000114 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20000117 Year of fee payment: 11 Ref country code: GB Payment date: 20000117 Year of fee payment: 11 Ref country code: AT Payment date: 20000117 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20000119 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000125 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20000128 Year of fee payment: 11 |
|
NLS | Nl: assignments of ep-patents |
Owner name: ARTEVA TECHNOLOGIES S.A.R.L. |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
BERE | Be: lapsed |
Owner name: ARTEVA TECHNOLOGIES S.A.R.L. Effective date: 20010228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011031 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010901 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90103889.3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20021016 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040311 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050901 |