EP0383142A1 - Electromagnetic wave absorbing means and method of making it as well as its utilization - Google Patents

Electromagnetic wave absorbing means and method of making it as well as its utilization Download PDF

Info

Publication number
EP0383142A1
EP0383142A1 EP90102253A EP90102253A EP0383142A1 EP 0383142 A1 EP0383142 A1 EP 0383142A1 EP 90102253 A EP90102253 A EP 90102253A EP 90102253 A EP90102253 A EP 90102253A EP 0383142 A1 EP0383142 A1 EP 0383142A1
Authority
EP
European Patent Office
Prior art keywords
composition according
water
calcium silicate
absorber
silicate hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90102253A
Other languages
German (de)
French (fr)
Other versions
EP0383142B1 (en
Inventor
Klaus Friedrich Lippe
Manfred Lebherz
Werner Prof.-Dr. Wiesbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ytong AG
Original Assignee
Ytong AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ytong AG filed Critical Ytong AG
Publication of EP0383142A1 publication Critical patent/EP0383142A1/en
Application granted granted Critical
Publication of EP0383142B1 publication Critical patent/EP0383142B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the invention relates to a means for damping electromagnetic waves, a method for producing and using the means.
  • absorbers are used, which ensure good attenuation of the electromagnetic waves in a wide frequency band.
  • Known absorber materials consist of polyurethane foam, which is impregnated with carbon-containing latex.
  • the absorbers made from this material require a considerable amount of space, so that the space requirement and in this respect the costs are considerable.
  • these are Absorber based on polyurethane foam is very flammable, so there is a high risk of fire.
  • gas concrete essentially consists of the calcium silicate hydrate phases tobermorite and xonotlite as well as residual quartz.
  • the calcium silicate hydrate phases have the following composition formula: Tobermorite: 5C6S5H Xonotlite: 6C6S2H where C is the calcium oxide, S is the silicon dioxide and H is the water of crystallization.
  • the gas concrete should in principle be suitable for broadband camouflage of buildings against location with microwaves, but the low strength of a component caused by the very high air pore content, which forces large-volume construction, is criticized. It is therefore proposed in the cited document to ensure that by varying the composition of the base materials and the air content, the dielectric constant and the loss angle of the building material within the layer increase in the direction of propagation of the electromagnetic waves penetrating from outside. This is to be made possible by the fact that very large air pores are generated, that the air pore content in the surface area is chosen to be very high and reduced towards the inside, and that the known loss-generating substances are added. These measures make the component very expensive.
  • a waterproof outer layer is proposed, which but must not cause reflection.
  • This very thin outer layer is created by briefly, vigorously heating the surface in question after the foaming process, but before the final hardening, as a result of which the outer gas bubbles are to collapse and a very hard and very thin surface layer is to be formed without any pore.
  • a hot metal plate on the surface should be very smooth, so that rainwater can drain well and dirt of all kinds can not adhere. The generation of such a surface is difficult and makes the component even more expensive.
  • the object of the invention is to provide a means for absorbing or damping electromagnetic waves, the damping properties of which are at least as good as those of the gas concrete and the damping properties of which are essentially retained.
  • the invention thus creates a porous absorption material for electromagnetic waves that can be manufactured according to the easily controllable gas concrete technology, the properties of which are retained for a long time.
  • a product that essentially consists of calcium silicate hydrate phases in addition to air pores and residual quartz, which have a high crystal water content. It was found that these phases result in better damping than gas concrete, the damping depending on the crystal water content preserved. It was surprisingly found that the damping becomes lower when the crystal water content is reduced, which can be caused in an uncontrollable manner, for example, by the action of heat. It is therefore important to ensure that the crystal water content is maintained and / or to prevent water contained in the absorber material from escaping.
  • An impregnation is advantageous, which allows water and / or water vapor to penetrate into the material, but prevents it from escaping.
  • a particularly effective seal is achieved with a coating based on epoxy resin, for example Disbon coating no. 441, which is expediently sprayed, for example, over the entire surface of the material.
  • the material can also be impregnated with liquid epoxy resin.
  • the calcium silicate hydrate phases which are particularly effective for absorption, are ensured, for example, by the following batches, which are hardened in an autoclave according to customary gas concrete conditions: 20 to 40 M% quicklime 20 to 30 M% cement 40 to 60 M% quartz flour (grain size ⁇ 100 ⁇ m) 0.1 to 0.5 M% alkalis (e.g. K2O, Na2O) 0.05 to 0.15 M% aluminum powder.
  • 20 to 40 M% quicklime 20 to 30 M% cement 40 to 60 M% quartz flour (grain size ⁇ 100 ⁇ m) 0.1 to 0.5 M% alkalis (e.g. K2O, Na2O) 0.05 to 0.15 M% aluminum powder.
  • the autoclave should be cured at temperatures of 170 to 210 ° C to 4 to 12 hours.
  • the alkalis advantageously influence the phase formation in such a way that essentially crystal water-rich and stable, i.e. form the crystal water holding phases. It has been shown that the crystal water content of the absorber material should be above 10 M%, phases which are still partially amorphous being advantageous because these phases have a particularly high chemically bound "crystal water content".
  • the chemically bound water content is combined with an absorptively bound water content, i.e. the absorber material is additionally enriched with water, e.g. soaked in water, or you ensure that the so-called autoclave moisture is retained.
  • the absorptively bound water can also completely or partially fill the pores. So that this water is not lost, e.g. the surface of the material - as described above - impregnated and / or sealed so that the absorber properties of the material are retained. Amounts of absorptively bound water of 20 to 40% by mass are advantageous.
  • the agent according to the invention is preferably used with a bulk density of 300 to 800 kg / m3 and a crystal water content of 10 to 20 M%.
  • the agent according to the invention can also be mixed with carbon and / or ferrite in an amount of 5 to 30% by mass, as a result of which the damping values can be improved in a manner known per se.
  • the invention also relates to an absorber component for electromagnetic waves, which is constructed from the agent according to the invention.
  • the absorber component can preferably be designed as a plate or building block, which can have any spatial shape.
  • the absorber component 1 according to the invention according to FIG. 1 consists of the porous calcium silicate hydrate material described above. It is designed as a pyramid absorber and has a multiplicity of individual pyramids 2 on a base plate 3 side by side and one behind the other, as can be seen from FIG. 2.
  • the angle ⁇ enclosed by the side surfaces 4 of a pyramid in the pyramid tip is preferably 15 to 40 °.
  • the height k of the pyramids 2 are dependent on the lowest operating frequency.
  • the thickness s of the base plate 3 is primarily dependent on the total loss which is to be achieved.
  • the advantage of the pyramid structure is the uniform damping with regard to the angle of incidence and the polarization as well as a high damping due to the surface structure. This attenuation can be up to 60 dB.
  • the advantage of the absorber component according to the invention over the known absorbers with Pyrami The structure consists in the fact that the absorber according to the invention can have a much smaller depth at the same frequency and nevertheless a broadband effectiveness of the damping against high-frequency radiation is achieved.
  • This absorber component 1 in turn consists of a multiplicity of pyramids 2, which start from a base plate 3.
  • the porous calcium silicate hydrate material according to the invention serves as the production material.
  • the space 5 between the individual pyramids 2 is filled with a porous calcium silicate hydrate, which has a lower density than the material of the pyramids themselves and thus a favorable reflection behavior resulting from the lower density.
  • This configuration according to the invention creates an absorber with at least the same effectiveness as a pure pyramid absorber according to FIG. 2, but with the advantage that this absorber has a completely flat and even surface.
  • the absorber component designed in this way can be coated in the usual way as in the known building materials, for example with a coat of paint.
  • This absorber component according to the invention thus has a completely flat surface on the side facing the wave incidence.
  • the absorber components can have a side length of 30 to 50 cm.
  • the height of the pyramids is preferably three times the thickness of the base plate 3 and the sum of the height of the pyramids and the thickness of the base plate is ⁇ 30 cm.
  • the base plate 3 can be reinforced by flat absorber components.
  • the absorber component according to the invention can be chemically bound water in a range from 10 to 20 M% and, for example, by adding further admixtures, preferably made of carbon and / or ferrite particles with a proportion of 5 to 30 M% , 1 to 30 GHz can be optimized in terms of its damping properties.

Landscapes

  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Golf Clubs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Aerials With Secondary Devices (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

The means for absorbing or attenuating electromagnetic waves in granular form or as a moulded body can be made using gas or foam concrete technology and contains not only air pores and residual quartz, but also hydrated calcium silicate phases containing water of crystallisation, the means predominantly containing hydrated calcium silicate phases having a chemically bound water content and/or a water of crystallisation content of more than 10 mol %. <IMAGE>

Description

Die Erfindung betrifft ein Mittel zum Dämpfen elektromagnetischer Wellen, ein Verfahren zur Herstellung sowie die Verwendung des Mittels.The invention relates to a means for damping electromagnetic waves, a method for producing and using the means.

Im Bereich der Digitaltechnik, der Radartechnik und der Medizin­technik werden immer höhere Ansprüche an die Abschirmung gegen hochfrequente Strahlungen gestellt. Aufgrund der Zunahme der Störstrahlungen wird die Abschirmung gegen hochfrequente Strahlungen immer wichtiger, da Auswirkungen von Fehlern in hochzentralisierten Systemteilen, z.B. in der Sicherheitstechnik, in der Flugsicherung, und bei bestimmten medizinischen Geräten vermieden werden müssen. Es werden deshalb spezielle Testräume gebaut, in denen elektronische Bauteile und Geräte auf ihre Sicherheit gegenüber hochfrequenten Strahlungen untersucht werden.In the field of digital technology, radar technology and medical technology, ever higher demands are placed on shielding against high-frequency radiation. Due to the increase in interference radiation, shielding against high-frequency radiation is becoming increasingly important, since the effects of errors in highly centralized system parts, e.g. in security technology, air traffic control, and certain medical devices must be avoided. Special test rooms are therefore being built in which electronic components and devices are examined for their safety against high-frequency radiation.

Um Abschirmungen gegen hochfrequente Strahlungen zu erreichen, werden sogenannte Absorber verwendet, die in einem breiten Frequenzband eine gute Dämpfung der elektromagnetischen Wellen gewährleisten. Bekannte Absorbermaterialien bestehen aus Polyuretanschaum, der mit kohlenstoffenthaltendem Latex imprä­gniert ist. Die aus diesem Material hergestellten Absorber benötigen einen erheblichen Platzbedarf, so daß der Raumbedarf und insofern die Kosten erheblich sind. Außerdem sind diese Absorber auf Basis von Polyuretanschaum sehr leicht brennbar, so daß eine hohe Gefährdung durch Feuer besteht.To achieve shielding against high-frequency radiation, so-called absorbers are used, which ensure good attenuation of the electromagnetic waves in a wide frequency band. Known absorber materials consist of polyurethane foam, which is impregnated with carbon-containing latex. The absorbers made from this material require a considerable amount of space, so that the space requirement and in this respect the costs are considerable. Besides, these are Absorber based on polyurethane foam is very flammable, so there is a high risk of fire.

Aus der DE-PS 1 026 805 ist bekannt, durch Bauelemente aus Gasbeton das Anpeilen eines Gebäudes mit Hilfe von Radargeräten zu erschweren.From DE-PS 1 026 805 it is known to complicate the aiming of a building with the aid of radar devices by means of components made of gas concrete.

Gasbeton besteht neben Luftporen im wesentlichen aus den Kalziumsilikathydratphasen Tobermorit und Xonotlit sowie aus Restquarz. Die Kalziumsilikathydratphasen haben die folgende Zusammensetzungsformel:
Tobermorit: 5C · 6S · 5H
Xonotlit: 6C · 6S · 2H
worin C der Kalziumoxid-, S der Siliciumdioxid- und H der Kristallwassergehalt bedeuten.
In addition to air pores, gas concrete essentially consists of the calcium silicate hydrate phases tobermorite and xonotlite as well as residual quartz. The calcium silicate hydrate phases have the following composition formula:
Tobermorite: 5C6S5H
Xonotlite: 6C6S2H
where C is the calcium oxide, S is the silicon dioxide and H is the water of crystallization.

Der Gasbeton soll sich insbesondere wegen seines hohen Luftporen­gehalts, der eine kleine Dielektrizitätskonstante bewirkt, zwar zur breitbändigen Tarnung von Gebäuden gegen Ortung mit Mikrowel­len grundsätzlich eignen, bemängelt wird aber die durch die sehr hohen Luftporengehalte bedingte geringe Festigkeit eines Bauelements, die zu großvolumiger Bauweise zwingt. Es wird daher in der genannten Druckschrift vorgeschlagen, dafür zu sorgen, daß durch Variation der Zusammensetzung der Grundstoffe und des Luftgehalts die Dielektrizitätskonstante und der Verlustwinkel des Baustoffs innerhalb der Schicht in der Fortpflanzungsrichtung der von außen eindringenden elektromagnetischen Wellen zunehmen. Dies soll dadurch ermöglicht werden, daß sehr große Luftporen erzeugt werden, daß der Luftporengehalt im Oberflächenbereich sehr hoch und nach innen hin verringert gewählt wird und das bekannte verlusterzeugende Stoffe zugesetzt werden. Diese Maßnahmen verteuern das Bauelement ganz erheblich. Eine weitere Maßnahme soll dafür sorgen, daß kein Regenwasser in die Poren dringt. Vorgeschlagen wird eine wasserdichte Außenschicht, die jedoch keine Reflexion verursachen darf. Diese sehr dünne Außenschicht wird durch kurzzeitiges, starkes Erhitzen der betreffenden Oberfläche nach dem Schaumbildungsvorgang, aber vor dem endgültigen Härten erzeugt, wodurch die äußeren Gasblasen in sich zusammenfallen sollen und eine sehr harte und sehr dünne Oberflächenschicht ohne jede Pore entstehen soll. Insbesondere durch Auflegen einer heißen Metallplatte soll die Oberfläche sehr glatt werden, so daß Regenwasser gut ablaufen und Schmutz aller Art nicht festhaften kann. Die Erzeugung einer solchen Oberfläche ist schwierig und verteuert das Bauelement nochmals erheblich.Because of its high air pore content, which causes a low dielectric constant, the gas concrete should in principle be suitable for broadband camouflage of buildings against location with microwaves, but the low strength of a component caused by the very high air pore content, which forces large-volume construction, is criticized. It is therefore proposed in the cited document to ensure that by varying the composition of the base materials and the air content, the dielectric constant and the loss angle of the building material within the layer increase in the direction of propagation of the electromagnetic waves penetrating from outside. This is to be made possible by the fact that very large air pores are generated, that the air pore content in the surface area is chosen to be very high and reduced towards the inside, and that the known loss-generating substances are added. These measures make the component very expensive. Another measure is to ensure that no rainwater penetrates into the pores. A waterproof outer layer is proposed, which but must not cause reflection. This very thin outer layer is created by briefly, vigorously heating the surface in question after the foaming process, but before the final hardening, as a result of which the outer gas bubbles are to collapse and a very hard and very thin surface layer is to be formed without any pore. In particular, by placing a hot metal plate on the surface should be very smooth, so that rainwater can drain well and dirt of all kinds can not adhere. The generation of such a surface is difficult and makes the component even more expensive.

Gasbeton hat sich aber nicht nur wegen der oben beschriebenen schwierigen Herstellung der Sonder-Bauelemente nicht bewährt, denn die in der Druckschrift beschriebenen Anforderungen sind nicht in allen Fällen relevant, sondern es hat sich vielmehr gezeigt, daß die dämpfenden Eigenschaften von Gasbeton mit der Zeit bedeutend geringer werden.Gas concrete has not only proven itself because of the difficult manufacture of the special components described above, because the requirements described in the publication are not relevant in all cases, but rather it has been shown that the damping properties of gas concrete become significant over time decrease.

Aufgabe der Erfindung ist, ein Mittel zur Absorption bzw. zum Dämpfen elektromagnetischer Wellen zu schaffen, dessen dämpfende Eigenschaften zumindest ebenso gut sind wie die des Gasbetons und dessen dämpfende Eigenschaften im wesentlichen erhalten bleiben.The object of the invention is to provide a means for absorbing or damping electromagnetic waves, the damping properties of which are at least as good as those of the gas concrete and the damping properties of which are essentially retained.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen gekennzeichnet.This object is solved by the features of claim 1. Advantageous developments of the invention are characterized in the subclaims.

Die Erfindung schafft somit ein nach der gut beherrschbaren Gasbetontechnologie herstellbares, porosiertes Absorptionsmate­rial für elektromagnetische Wellen, dessen Eigenschaften langzeitig erhalten bleiben. Ermöglicht wird dies durch ein Produkt, das im wesentlichen neben Luftporen und Restquarz aus Kalziumsilikathydratphasen aufgebaut ist, die einen hohen Kristallwassergehalt haben. Es konnte festgestellt werden, daß diese Phasen eine gegenüber Gasbeton bessere Dämpfung ergeben, wobei die Dämpfung in Abhängigkeit vom Kristallwassergehalt erhalten bleibt. Es konnte nämlich überraschend festgestellt werden, daß die Dämpfung geringer wird, wenn der Kristallwasser­gehalt reduziert wird, was z.B. durch Wärmeeinwirkung unkontrol­lierbar bewirkt werden kann. Es ist daher wichtig dafür zu sorgen, daß der Kristallwassergehalt erhalten bleibt und/oder zu verhindern, daß im Absorbermaterial enthaltenes Wasser entweichen kann. Dies kann insbesondere dadurch erreicht werden, daß die Oberfläche des Materials imprägniert oder versiegelt wird und dadurch Wasser und/oder Wasserdampf undurchlässig wird. Vorteil­haft ist eine Imprägnierung, die das Eindringen von Wasser und/oder Wasserdampf in das Material gestattet, das Heraustreten dagegen verhindert. Eine besonders wirksame Versiegelung wird mit einer Beschichtung auf Epoxydharzbasis, z.B. Disbon-Beschichtung Nr. 441 erreicht, das auf die Oberfläche des Materials zweckmäßi­gerweise vollflächig z.B. gesprüht wird. Das Material kann aber auch mit flüssigem Epoxydharz getränkt werden.The invention thus creates a porous absorption material for electromagnetic waves that can be manufactured according to the easily controllable gas concrete technology, the properties of which are retained for a long time. This is made possible by a product that essentially consists of calcium silicate hydrate phases in addition to air pores and residual quartz, which have a high crystal water content. It was found that these phases result in better damping than gas concrete, the damping depending on the crystal water content preserved. It was surprisingly found that the damping becomes lower when the crystal water content is reduced, which can be caused in an uncontrollable manner, for example, by the action of heat. It is therefore important to ensure that the crystal water content is maintained and / or to prevent water contained in the absorber material from escaping. This can be achieved, in particular, by impregnating or sealing the surface of the material and thereby rendering water and / or water vapor impermeable. An impregnation is advantageous, which allows water and / or water vapor to penetrate into the material, but prevents it from escaping. A particularly effective seal is achieved with a coating based on epoxy resin, for example Disbon coating no. 441, which is expediently sprayed, for example, over the entire surface of the material. The material can also be impregnated with liquid epoxy resin.

Der Fachmann kennt viele Kalziumsilikathydratphasen, die einen höheren Kristallwasseranteil als Tobermorit und Xonotlit haben, deren Kristallwassergehalt für eine ausreichende Dämpfung zu gering ist. Der Fachmann kennt auch die Verfahrensparameter der Gasbetontechnologie, mit dem die kristallwasserreichen Phasen erzeugt werden können. Bevorzugt werden die folgenden Kalziumsi­likathydratphasen, die neben Luftporen und Restquarz entweder allein oder in Kombination im Absorbermaterial vorhanden sein sollen: 14 Å Tobermorit C · S · 2-2,5 H teilkristallines CSH (CSH I) 0,8-1,5C · S · 0,5 - 2,5H α - C₂S-Hydrat 2C · S · 2-4H The person skilled in the art knows many calcium silicate hydrate phases which have a higher crystal water content than tobermorite and xonotlite, the crystal water content of which is too low for adequate damping. The person skilled in the art is also familiar with the process parameters of gas concrete technology with which the phases rich in water of crystallization can be generated. The following calcium silicate hydrate phases are preferred, which should be present in the absorber material either alone or in combination with air pores and residual quartz: 14 Å Tobermorite C · S · 2-2.5 H semi-crystalline CSH (CSH I) 0.8-1.5C · S · 0.5 - 2.5H α - C₂S hydrate 2C · S · 2-4H

Die für die Absorption besonders wirksamen Kalziumsilikathydrat­phasen werden z.B. durch die folgenden Gemenge gewährleistet, die nach üblichen Gasbetonbedingungen im Autoklaven gehärtet werden:
20 bis 40 M% Branntkalk
20 bis 30 M% Zement
40 bis 60 M% Quarzmehl (Körnung < 100 µm)
0,1 bis 0,5 M% Alkalien (z.B. K₂O,Na₂O)
0,05 bis 0,15 M% Aluminiumpulver.
The calcium silicate hydrate phases, which are particularly effective for absorption, are ensured, for example, by the following batches, which are hardened in an autoclave according to customary gas concrete conditions:
20 to 40 M% quicklime
20 to 30 M% cement
40 to 60 M% quartz flour (grain size <100 µm)
0.1 to 0.5 M% alkalis (e.g. K₂O, Na₂O)
0.05 to 0.15 M% aluminum powder.

Die Härtung im Autoklaven sollte bei Temperaturen von 170 bis 210°C bis 4 bis 12 Stunden erfolgen.The autoclave should be cured at temperatures of 170 to 210 ° C to 4 to 12 hours.

Die Alkalien beeinflussen in vorteilhafter Weise die Phasenbil­dung derart, daß sich im wesentlichen kristallwasserreiche und beständige, d.h. das Kristallwasser haltende Phasen bilden. Es hat sich gezeigt, daß die Kristallwassergehalte des Absorber­materials über 10 M% liegen sollten, wobei Phasen von Vorteil sind, die noch teilamorph sind, weil diese Phasen einen besonders hohen chemisch gebundenen "Kristallwassergehalt" aufweisen.The alkalis advantageously influence the phase formation in such a way that essentially crystal water-rich and stable, i.e. form the crystal water holding phases. It has been shown that the crystal water content of the absorber material should be above 10 M%, phases which are still partially amorphous being advantageous because these phases have a particularly high chemically bound "crystal water content".

Nach einer besonderen Ausführungsform der Erfindung wird der chemisch gebundene Wassergehalt mit einem absorptiv gebundenen Wassergehalt kombiniert, d.h. das Absorbermaterial wird zusätz­lich mit Wasser angereichert, z.B. mit Wasser getränkt, oder man sorgt dafür, daß die sogenannte Autoklavfeuchte erhalten bleibt. Das absorptiv gebundene Wasser kann auch ganz oder teilweise die Poren ausfüllen. Damit dieses Wasser nicht verlorengeht, wird z.B. die Oberfläche des Materials - wie oben beschrieben - imprägniert und/oder versiegelt, so daß die Absorber-Eigenschaf­ten des Materials erhalten bleiben. Vorteilhaft sind Mengen von absorptiv gebundenem Wasser von 20 bis 40 M%.According to a particular embodiment of the invention, the chemically bound water content is combined with an absorptively bound water content, i.e. the absorber material is additionally enriched with water, e.g. soaked in water, or you ensure that the so-called autoclave moisture is retained. The absorptively bound water can also completely or partially fill the pores. So that this water is not lost, e.g. the surface of the material - as described above - impregnated and / or sealed so that the absorber properties of the material are retained. Amounts of absorptively bound water of 20 to 40% by mass are advantageous.

Das erfindungsgemäße Mittel wird vorzugsweise mit einer Rohdichte von 300 bis 800 kg/m³ und einem Kristallwassergehalt von 10 bis 20 M% verwendet. Das erfindungsgemäße Mittel kann zudem mit Kohlenstoff und/oder Ferrit in einer Menge von 5 bis 30 M% versetzt sein, wodurch sich die Dämpfungswerte in an sich bekannter Weise noch verbessern lassen.The agent according to the invention is preferably used with a bulk density of 300 to 800 kg / m³ and a crystal water content of 10 to 20 M%. The agent according to the invention can also be mixed with carbon and / or ferrite in an amount of 5 to 30% by mass, as a result of which the damping values can be improved in a manner known per se.

Die Erfindung bezieht sich außerdem auf ein Absorber-Bauteil für elektromagnetische Wellen, das aus dem erfindungsgemäßen Mittel aufgebaut ist. Das Absorber-Bauteil kann vorzugsweise als Platte oder Baustein ausgebildet sein, die beliebige Raumformen aufweisen können. Es ergeben sich bei Verwendung der Bauteile zudem die Vorteile des normalen Wandbaustoffs, nämlich Wärmeiso­lierung und Schallisolierung. Des weiteren kann das erfindungsge­mäße Absorber-Bauteil mit einer üblichen Oberflächenschutz­schicht, z.B. einer Akrylatbeschichtung, versehen werden, wobei YR der Schutzschicht einen Wert von etwa YR = 10 nicht über­schreitet.The invention also relates to an absorber component for electromagnetic waves, which is constructed from the agent according to the invention. The absorber component can preferably be designed as a plate or building block, which can have any spatial shape. When using the components, there are also the advantages of normal wall building materials, namely thermal insulation and sound insulation. Furthermore, the absorber component according to the invention can be provided with a customary surface protective layer, for example an acrylate coating, the YR of the protective layer not exceeding a value of approximately YR = 10.

Anhand der Zeichnung wird ein erfindungsgemäßes Absorber-Bauteil im folgenden beispielhaft näher erläutert. Es zeigen:

  • Fig. 1 eine Draufsicht auf ein erfindungsgemäßes Absorber-­Bauteil;
  • Fig. 2 einen Schnitt entlang der Schnittlinie II-II in Fig. 1 und
  • Fig. 3 einen Schnitt durch eine andere Ausführungsform des erfindungsgemäßen Absorber-Bauteils.
An absorber component according to the invention is explained in more detail below by way of example with reference to the drawing. Show it:
  • 1 shows a plan view of an absorber component according to the invention;
  • Fig. 2 shows a section along the section line II-II in Fig. 1 and
  • 3 shows a section through another embodiment of the absorber component according to the invention.

Das erfindungsgemäße Absorber-Bauteil 1 gemäß Fig. 1 besteht aus dem oben beschriebenen porosiertem Kalziumsilikathydratmaterial. Es ist als Pyramidenabsorber ausgebildet und weist eine Vielzahl von einzelnen Pyramiden 2 auf einer Basisplatte 3 nebeneinander und hintereinander auf, wie aus Fig. 2 erkennbar ist. Der von den Seitenflächen 4 einer Pyramide in der Pyramidenspitze einge­schlossene Winkel α beträgt vorzugsweise 15 bis 40°. Die Höhe k der Pyramiden 2 sind abhängig von der tiefsten Betriebsfre­quenz. Die Dicke s der Grundplatte 3 ist primär abhängig davon, welche Durchgangsdämpfung insgesamt erreicht werden soll. Der Vorteil der Pyramidenstruktur liegt in der gleichmäßigen Dämpfung bezüglich des Einfallwinkels und der Polarisation sowie einer hohen Dämpfung aufgrund der Oberflächenstruktur. Diese Dämpfung kann bis zu 60 dB betragen. Der Vorteil des erfindungsgemäßen Absorber-Bauteils gegenüber den bekannten Absorbern mit Pyrami­ denstruktur besteht darin, daß der erfindungsgemäße Absorber eine wesentlich geringere Tiefe bei gleicher Frequenz haben kann und trotzdem eine breitbandige Wirksamkeit der Dämpfung gegen hochfrequente Strahlungen erreicht wird.The absorber component 1 according to the invention according to FIG. 1 consists of the porous calcium silicate hydrate material described above. It is designed as a pyramid absorber and has a multiplicity of individual pyramids 2 on a base plate 3 side by side and one behind the other, as can be seen from FIG. 2. The angle α enclosed by the side surfaces 4 of a pyramid in the pyramid tip is preferably 15 to 40 °. The height k of the pyramids 2 are dependent on the lowest operating frequency. The thickness s of the base plate 3 is primarily dependent on the total loss which is to be achieved. The advantage of the pyramid structure is the uniform damping with regard to the angle of incidence and the polarization as well as a high damping due to the surface structure. This attenuation can be up to 60 dB. The advantage of the absorber component according to the invention over the known absorbers with Pyrami The structure consists in the fact that the absorber according to the invention can have a much smaller depth at the same frequency and nevertheless a broadband effectiveness of the damping against high-frequency radiation is achieved.

In Fig. 3 ist eine weitere vorteilhafte Ausführungsform eines erfindungsgemäßen Absorber-Bauteils dargestellt. Dieses Absorber-­Bauteil 1 besteht wiederum aus einer Vielzahl von Pyramiden 2, die von einer Grundplatte 3 ausgehen. Als Herstellungsmaterial dient das erfindungsgemäße porosierte Kalziumsilikathydratmate­rial. Erfindungsgemäß ist weiterhin vorgesehen, daß der Zwischen­raum 5 zwischen den einzelnen Pyramiden 2 mit einem porosierten Kalziumsilikathydrat ausgefüllt ist, das eine geringere Dichte als das Material der Pyramiden selbst aufweist und damit ein aus der geringeren Dichte resultierendes günstiges Reflexionsverhal­ten. Durch diese erfindungsgemäße Ausgestaltung entsteht ein Absorber mit mindestens der gleichen Wirksamkeit wie ein reiner Pyramiden-Absorber gemäß Fig. 2, wobei jedoch der Vorteil erreicht wird, daß dieser Absorber eine vollkommen plane und ebene Oberfläche aufweist. Hierdurch kann das so gestaltete Absorber-Bauteil in üblicher Weise wie bei den bekannten Baumaterialien beschichtet werden und zwar beispielsweise mit einem Anstrich. Dieses erfindungsgemäße Absorber-Bauteil besitzt somit eine vollständig ebene Oberfläche auf der dem Welleneinfall zugewandten Seite.3 shows a further advantageous embodiment of an absorber component according to the invention. This absorber component 1 in turn consists of a multiplicity of pyramids 2, which start from a base plate 3. The porous calcium silicate hydrate material according to the invention serves as the production material. According to the invention it is further provided that the space 5 between the individual pyramids 2 is filled with a porous calcium silicate hydrate, which has a lower density than the material of the pyramids themselves and thus a favorable reflection behavior resulting from the lower density. This configuration according to the invention creates an absorber with at least the same effectiveness as a pure pyramid absorber according to FIG. 2, but with the advantage that this absorber has a completely flat and even surface. As a result, the absorber component designed in this way can be coated in the usual way as in the known building materials, for example with a coat of paint. This absorber component according to the invention thus has a completely flat surface on the side facing the wave incidence.

Was die Abmessungen der erfindungsgemäßen Absorber-Bauteile betrifft, so können diese eine Seitenlänge von 30 bis 50 cm aufweisen. Die Höhe der Pyramiden beträgt vorzugsweise das Dreifache der Dicke der Grundplatte 3 und die Summe aus der Höhe der Pyramiden und der Dicke der Grundplatte beträgt ≦ 30 cm. Für sehr hohe Durchgangsdämpfungen kann die Grundplatte 3 durch plane Absorber-Bauteile verstärkt werden.As far as the dimensions of the absorber components according to the invention are concerned, they can have a side length of 30 to 50 cm. The height of the pyramids is preferably three times the thickness of the base plate 3 and the sum of the height of the pyramids and the thickness of the base plate is ≦ 30 cm. For very high penetration loss, the base plate 3 can be reinforced by flat absorber components.

Durch die Auswahl der Rohdichte des porosierten Kalziumsilikat­hydratmaterials sowie des kristallin gebundenen Wassers bzw. chemisch gebundenen Wassers in einem Bereich von 10 bis 20 M% sowie beispielsweise durch Zugabe weiterer Beimengungen, vorzugsweise aus Kohlenstoff- und/oder Ferritpartikel mit einem Anteil von 5 bis 30 M% kann das erfindungsgemäße Absorber-­Bauteil, bezogen auf einen Frequenzbereich von z.B. 0,1 bis 30 GHz in Bezug auf seine Dämpfungseigenschaften optimiert werden.

Figure imgb0001
By selecting the bulk density of the porous calcium silicate hydrate material and the crystalline water or The absorber component according to the invention, based on a frequency range of, for example, 0, can be chemically bound water in a range from 10 to 20 M% and, for example, by adding further admixtures, preferably made of carbon and / or ferrite particles with a proportion of 5 to 30 M% , 1 to 30 GHz can be optimized in terms of its damping properties.
Figure imgb0001

Aus diesem Beispiel ergibt sich ohne weiteres die überraschend hohe Absorptionswirkung eines erfindungsgemäßenAbsorbermaterials gegenüber üblichem Gasbeton.From this example, the surprisingly high absorption effect of an absorber material according to the invention compared to conventional gas concrete is readily apparent.

Claims (27)

1. Mittel zur Absorption bzw. zum Dämpfen elektromagnetischer Wellen in Granulatform oder als Formkörper, das nach der Gas- oder Schaumbetontechnologie herstellbar ist und neben Luftporen und Restquarz kristallwasserenthaltende Kalziumsi­likathydratphasen aufweist,
dadurch gekennzeichnet,
daß es überwiegend Kalziumsilikathydratphasen aufweist, die einen chemisch gebundenen und/oder Kristallwasser-Gehalt von über 10 M% haben.
1. means for absorbing or damping electromagnetic waves in granular form or as a shaped body which can be produced using gas or foam concrete technology and, in addition to air pores and residual quartz, has calcium silicate hydrate phases containing water of crystallization,
characterized by
that it predominantly has calcium silicate hydrate phases which have a chemically bound and / or water of crystallization content of over 10 M%.
2. Mittel nach Anspruch 1,
dadurch gekennzeichnet,
daß der chemisch gebundene und/oder Kristallwasser-Gehalt der Kalziumsilikathydratphasen über 12 M% beträgt.
2. Composition according to claim 1,
characterized by
that the chemically bound and / or crystal water content of the calcium silicate hydrate phases is over 12 M%.
3. Mittel nach Anspruch 1 und/oder 2,
dadurch gekennzeichnet,
daß der chemisch gebundene und/oder Kristallwasser-Gehalt 10 bis 20 M% beträgt.
3. Composition according to claim 1 and / or 2,
characterized by
that the chemically bound and / or crystal water content is 10 to 20 M%.
4. Mittel nach einem oder mehreren der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß es absorptiv gebundenes und/oder porenfüllendes Wasser in einer Menge von 20 bis 40 M% enthält.
4. Composition according to one or more of claims 1 to 3,
characterized by
that it contains absorptively bound and / or pore-filling water in an amount of 20 to 40 M%.
5. Mittel nach Anspruch 4,
dadurch gekennzeichnet,
daß es absorptiv gebundenes und/oder porenfüllendes Wasser in einer Menge von 25 bis 35 M% enthält.
5. Composition according to claim 4,
characterized by
that it contains absorptively bound and / or pore-filling water in an amount of 25 to 35 M%.
6. Mittel nach einem oder mehreren der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die Oberfläche gegen Wasseraustritt imprägniert ist.
6. Composition according to one or more of claims 1 to 5,
characterized by
that the surface is impregnated against water leakage.
7. Mittel nach einem oder mehreren der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Oberfläche gegen Wasserdampfaustritt imprägniert ist.
7. Composition according to one or more of claims 1 to 6,
characterized by
that the surface is impregnated to prevent water vapor from escaping.
8. Mittel nach einem oder mehreren der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß die Oberfläche gegen Wasseraustritt versiegelt ist.
8. Composition according to one or more of claims 1 to 7,
characterized by
that the surface is sealed against water leakage.
9. Mittel nach einem oder mehreren der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß die Oberfläche gegen Wasserdampfaustritt versiegelt ist.
9. Composition according to one or more of claims 1 to 8,
characterized by
that the surface is sealed against the escape of water vapor.
10. Mittel nach Anspruch 8 oder 9,
dadurch gekennzeichnet,
daß die Oberfläche mit einer Beschichtung auf Epoxydharzba­sis belegt ist.
10. Composition according to claim 8 or 9,
characterized by
that the surface is covered with a coating based on epoxy resin.
11. Mittel nach Anspruch 10,
dadurch gekennzeichnet,
daß die Oberfläche mit einer Beschichtung auf Epoxydharzba­sis besprüht ist.
11. Agent according to claim 10,
characterized by
that the surface is sprayed with a coating based on epoxy resin.
12. Mittel nach Anspruch 10,
dadurch gekennzeichnet,
daß die Oberfläche durch Tränkung mit Epoxydharz belegt ist.
12. Composition according to claim 10,
characterized by
that the surface is covered with impregnation with epoxy resin.
13. Mittel nach einem oder mehreren der Ansprüche 1 bis 12,
dadurch gekennzeichnet,
daß die Kalziumsilikathydratphasen überwiegend aus minde­stens einer der folgenden Kalziumsilikathydratphasen bestehen:
14 Å Tobermorit
α -C₂S-Hydrat
CSH I
teilkristallines CSH
und gegebenenfalls 11,3 Å Tobermorit aufweist.
13. Composition according to one or more of claims 1 to 12,
characterized by
that the calcium silicate hydrate phases consist predominantly of at least one of the following calcium silicate hydrate phases:
14 Å Tobermorite
α -C₂S hydrate
CSH I
semi-crystalline CSH
and optionally has 11.3 Å tobermorite.
14. Mittel nach einem oder mehreren der Ansprüche 1 bis 13,
dadurch gekennzeichnet,
daß es Kohlenstoff und/oder Ferrit enthält.
14. Composition according to one or more of claims 1 to 13,
characterized by
that it contains carbon and / or ferrite.
15. Mittel nach Anspruch 14,
dadurch gekennzeichnet,
daß es Kohlenstoff und/oder Ferrit in einer Menge von 5 bis 30 M% enthält.
15. Composition according to claim 14,
characterized by
that it contains carbon and / or ferrite in an amount of 5 to 30% by mass.
16. Mittel nach einem oder mehreren der Ansprüche 1 bis 15,
dadurch gekennzeichnet,
daß es eine Rohdichte von 300 bis 800 kg/m³ aufweist.
16. Composition according to one or more of claims 1 to 15,
characterized by
that it has a bulk density of 300 to 800 kg / m³.
17. Verfahren zur Herstellung eines Mittels nach einem oder mehreren der Ansprüche 1 bis 16,
dadurch gekennzeichnet,
daß ein Gemenge bestehend aus
20 bis 30 M% Branntkalk
20 bis 30 M% Zement
40 bis 60 M% Quarzmehl (Sand)
0,1 bis 0,5 M% Alkalien
0,05 bis 0,15 M% Aluminiumpulver
hydrothermal gehärtet wird.
17. A process for the preparation of an agent according to one or more of claims 1 to 16,
characterized by
that a batch consisting of
20 to 30 M% quicklime
20 to 30 M% cement
40 to 60 M% quartz flour (sand)
0.1 to 0.5 M% alkalis
0.05 to 0.15 M% aluminum powder
is cured hydrothermally.
18. Verfahren nach Anspruch 17,
dadurch gekennzeichnet,
daß die Härtung bei Temperaturen von 170 bis 210° C durchge­führt wird.
18. The method according to claim 17,
characterized by
that the curing is carried out at temperatures of 170 to 210 ° C.
19. Verfahren nach Anspruch 17 und/oder 18,
dadurch gekennzeichnet,
daß die Härtung 4 bis 12 Stunden durchgeführt wird.
19. The method according to claim 17 and / or 18,
characterized by
that the curing is carried out for 4 to 12 hours.
20. Verfahren nach einem oder mehreren der Ansprüche 17 bis 19,
dadurch gekennzeichnet,
daß die Oberfläche mit Akrylharz versiegelt wird.
20. The method according to one or more of claims 17 to 19,
characterized by
that the surface is sealed with acrylic resin.
21. Verfahren nach einem oder mehreren der Ansprüche 17 bis 20,
dadurch gekennzeichnet,
daß die Oberfläche zur Verhinderung von Wasser- und/oder Wasserdampfaustritt mit einem geeigneten Mittel imprägniert wird.
21. The method according to one or more of claims 17 to 20,
characterized by
that the surface is impregnated with a suitable agent to prevent water and / or water vapor from escaping.
22. Verwendung eines Mittels nach einem oder mehreren der Ansprüche 1 bis 16,
hergestellt nach einem oder mehreren der Ansprüche 17 bis 21,
dadurch gekennzeichnet,
daß das Mittel platten- oder bausteinförmig verwendet wird.
22. Use of an agent according to one or more of claims 1 to 16,
produced according to one or more of claims 17 to 21,
characterized by
that the agent is used in plate or block form.
23. Verwendung nach Anspruch 22,
dadurch gekennzeichnet,
daß das Mittel in Form eines Pyramidenabsorbers (1) verwendet wird, dessen Pyramiden (2) nebeneinander und hintereinander auf einer Grundplatte (3) angeordnet sind.
23. Use according to claim 22,
characterized by
that the agent is used in the form of a pyramid absorber (1), the pyramids (2) of which are arranged side by side and one behind the other on a base plate (3).
24. Verwendung nach Anspruch 23,
dadurch gekennzeichnet,
daß ein Pyramidenabsorber (1) verwendet wird, bei dem die Seitenwände (4) der Pyramiden (2) in der Pyramidenspitze einen Winkel α von 15 bis 40° einschließen.
24. Use according to claim 23,
characterized by
that a pyramid absorber (1) is used in which the side walls (4) of the pyramids (2) form an angle α of 15 to 40 ° in the pyramid tip.
25. Verwendung nach Anspruch 23 und/oder 24,
dadurch gekennzeichnet,
daß ein Pyramidenabsorber (1) verwendet wird, bei dem der zwischen den einzelnen Pyramiden (2) bestehende Zwischenraum (5) mit einem porosierten Kalziumsilikathydrat ausgefüllt ist, das gegenüber dem Material der Pyramiden (2) eine geringere Rohdichte aufweist.
25. Use according to claim 23 and / or 24,
characterized by
that a pyramid absorber (1) is used in which the space (5) between the individual pyramids (2) is filled with a porous calcium silicate hydrate which has a lower bulk density than the material of the pyramids (2).
26. Verwendung nach Anspruch 25,
dadurch gekennzeichnet,
daß ein Pyramidenabsorber (1) verwendet wird, bei dem das die Zwischenräume (5) ausfüllende Material eingegossen ist.
26. Use according to claim 25,
characterized by
that a pyramid absorber (1) is used, in which the material filling the spaces (5) is poured in.
27. Verwendung nach Anspruch 26,
dadurch gekennzeichnet,
daß ein Pyramidenabsorber (1) verwendet wird, bei dem das die Zwischenräume (5) ausfüllende Material aus einzelnen Formkörpern gebildet ist.
27. Use according to claim 26,
characterized by
that a pyramid absorber (1) is used, in which the material filling the spaces (5) is formed from individual shaped bodies.
EP90102253A 1989-02-15 1990-02-05 Electromagnetic wave absorbing means and method of making it as well as its utilization Expired - Lifetime EP0383142B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3904576 1989-02-15
DE3904576 1989-02-15

Publications (2)

Publication Number Publication Date
EP0383142A1 true EP0383142A1 (en) 1990-08-22
EP0383142B1 EP0383142B1 (en) 1994-08-24

Family

ID=6374157

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90102253A Expired - Lifetime EP0383142B1 (en) 1989-02-15 1990-02-05 Electromagnetic wave absorbing means and method of making it as well as its utilization

Country Status (4)

Country Link
EP (1) EP0383142B1 (en)
AT (1) ATE110497T1 (en)
DE (1) DE59006865D1 (en)
ES (1) ES2018767T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456554A2 (en) * 1990-05-06 1991-11-13 Isover Saint-Gobain Electrical conducting element and producing method
DE4201871A1 (en) * 1991-03-07 1992-09-10 Feldmuehle Ag Stora COMPONENT FOR ABSORPTION OF ELECTROMAGNETIC SHAFT AND ITS USE
DE4223177A1 (en) * 1992-07-15 1994-01-20 Cerasiv Gmbh Material used to absorb and shield electromagnetic waves - comprising finely divided, electrically nonconducting solid and a finely divided electrically conducting solid
EP0689262A1 (en) * 1994-06-23 1995-12-27 Takenaka Corporation Wave absorber composition, radio wave absorber member, radio wave absorber and method for producing wave absorber member
CN109516744A (en) * 2019-01-21 2019-03-26 河北工业大学 A kind of waveform electromagnetic wave absorption concrete structure based on 3D printing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122472B8 (en) * 2000-05-31 2004-09-02 Colfirmit Rajasil Gmbh & Co. Kg Use of a powder or granulate made of ferrite
DE102007058480A1 (en) * 2007-12-04 2009-06-10 Frankonia Handels- und Vertriebsgesellschaft für chemisch- und elektrotechnische Produkte mbH Absorber for wide-band absorption of electromagnetic waves, and for use as hybrid absorber, has electrically conductive absorber body, and is tapered upwards from base area, where absorber body is made of calcium silicate mixture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464006A (en) * 1944-04-28 1949-03-08 Philco Corp Radio wave absorption device
DE1174679B (en) * 1960-02-02 1964-07-23 Erhard Mueller Process for the production of molded bodies made of concrete and coated with plastic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464006A (en) * 1944-04-28 1949-03-08 Philco Corp Radio wave absorption device
DE1174679B (en) * 1960-02-02 1964-07-23 Erhard Mueller Process for the production of molded bodies made of concrete and coated with plastic

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456554A2 (en) * 1990-05-06 1991-11-13 Isover Saint-Gobain Electrical conducting element and producing method
EP0456554A3 (en) * 1990-05-06 1993-09-29 Isover Saint-Gobain Electrical conducting element and producing method
DE4201871A1 (en) * 1991-03-07 1992-09-10 Feldmuehle Ag Stora COMPONENT FOR ABSORPTION OF ELECTROMAGNETIC SHAFT AND ITS USE
DE4223177A1 (en) * 1992-07-15 1994-01-20 Cerasiv Gmbh Material used to absorb and shield electromagnetic waves - comprising finely divided, electrically nonconducting solid and a finely divided electrically conducting solid
DE4223177C2 (en) * 1992-07-15 1994-06-16 Cerasiv Gmbh Material for the absorption and shielding of electromagnetic waves, process for its production and its use
EP0689262A1 (en) * 1994-06-23 1995-12-27 Takenaka Corporation Wave absorber composition, radio wave absorber member, radio wave absorber and method for producing wave absorber member
US5932054A (en) * 1994-06-23 1999-08-03 Takenaka Corporation Radio wave absorber composition, radio wave absorber member, radio wave absorber, and method for producing radio wave absorber member
CN109516744A (en) * 2019-01-21 2019-03-26 河北工业大学 A kind of waveform electromagnetic wave absorption concrete structure based on 3D printing
CN109516744B (en) * 2019-01-21 2021-12-14 河北工业大学 Wave electromagnetism wave-absorbing concrete structure based on 3D printing

Also Published As

Publication number Publication date
ES2018767A4 (en) 1991-05-16
ES2018767T3 (en) 1994-12-16
ATE110497T1 (en) 1994-09-15
EP0383142B1 (en) 1994-08-24
DE59006865D1 (en) 1994-09-29

Similar Documents

Publication Publication Date Title
DE60129522T2 (en) GIPS COMPOSITIONS AND METHODS THEREFOR
EP0114965B1 (en) Coated insulating slabs for façades and roofings based on mineral fibres, and method for their production
EP3568380B1 (en) Building material mixture for shielding against electromagnetic radiation
EP0956277B1 (en) Lightweight material containing blown perlite and methods of producing the same
DE3222063A1 (en) PORTLAND CEMENT STRUCTURE WITH A FLUID-TIGHT SURFACE AND METHOD FOR THEIR PRODUCTION
DE2717276A1 (en) PLASTER MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
DE2224945A1 (en) PLASTER PREPARATIONS
DE3220058C2 (en)
DE2139793A1 (en) Process and mixing component to improve the physical properties of concrete
EP0383142B1 (en) Electromagnetic wave absorbing means and method of making it as well as its utilization
DE2454875C3 (en) Process for the production of calcium silicate moldings
DE19804325C2 (en) Monolithic cement-based building board and process for its manufacture
DE10351259A1 (en) Dry mix for thick-layer roughcast mortar includes a hydrophobizing agent in an amount such that the mortar has a defined capillary water uptake
DE3512322C2 (en)
CH698623B1 (en) Radiation-screening constructional concrete, for protecting persons against environmental electromagnetic fields, comprises binder and electroconductive material, e.g. graphite
AT395711B (en) INSULATION AND COMPENSATING DIMENSIONS
DE2807290C2 (en) Filling material for fire protection elements and process for its manufacture
DE10326623A1 (en) Production of hardened gypsum from gypsum building plates used in the building industry comprises adding a mixture of fly ash and/or wet ash to building gypsum and/or gypsum slurry to produce a moisture-resistant hardened gypsum
DE19933297C2 (en) Fiber-reinforced aerated concrete and process for its production
DE2323659C3 (en) Process for the production of sound absorption boards, boards, panels or other shaped bodies
DE2746783C2 (en) Process for the manufacture of tabular thermal insulation bodies
DE102013226861A1 (en) Shaped body made of a lightweight material and process for its preparation and use
EP1133606A1 (en) Method for producing an at least two-layered external wall element and external wall element produced using said method
DE3248664A1 (en) Coated facade or roof insulating panel of mineral fibres and process for its production
DE19912652A1 (en) Acid resistant mortar or concrete, especially for internal lining of cooling towers, is produced using a highly densifiable binder mixture of cement, fly ash and micro-silica

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900726

ITCL It: translation for ep claims filed

Representative=s name: ING. A. GIAMBROCONO & C. S.R.L.

GBC Gb: translation of claims filed (gb section 78(7)/1977)
TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19931207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 110497

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59006865

Country of ref document: DE

Date of ref document: 19940929

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940915

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ORGANIZZAZIONE D'AGOSTINI

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2018767

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 90102253.3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980202

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980225

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980601

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990206

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990308

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990408

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990427

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990205

EUG Se: european patent has lapsed

Ref document number: 90102253.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

BERE Be: lapsed

Owner name: YTONG A.G.

Effective date: 20000228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050205