EP0377117B1 - Air separation process and apparatus - Google Patents

Air separation process and apparatus Download PDF

Info

Publication number
EP0377117B1
EP0377117B1 EP89122047A EP89122047A EP0377117B1 EP 0377117 B1 EP0377117 B1 EP 0377117B1 EP 89122047 A EP89122047 A EP 89122047A EP 89122047 A EP89122047 A EP 89122047A EP 0377117 B1 EP0377117 B1 EP 0377117B1
Authority
EP
European Patent Office
Prior art keywords
column
argon
rectification
oxygen
crude argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89122047A
Other languages
German (de)
French (fr)
Other versions
EP0377117A1 (en
EP0377117B2 (en
Inventor
Wilhelm Rohde
Horst Dipl.-Ing. Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6368245&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0377117(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0377117A1 publication Critical patent/EP0377117A1/en
Publication of EP0377117B1 publication Critical patent/EP0377117B1/en
Application granted granted Critical
Publication of EP0377117B2 publication Critical patent/EP0377117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the invention relates to a method and a device for air separation by low-temperature rectification of air, in which air is compressed, pre-cleaned, cooled, fed to a two-stage rectification and broken down into an oxygen-rich and a nitrogen-rich fraction, with another from the low-pressure stage of the rectification Argon-enriched oxygen fraction is removed and broken down into crude argon in a crude argon rectification and into a heavy-boiling residual fraction.
  • the main products of air separation, oxygen and nitrogen, can be taken directly from the two-stage rectification.
  • Argon on the other hand, whose boiling temperature is between the boiling temperatures of oxygen and nitrogen, accumulates in the middle region of the low-pressure stage of the rectification.
  • a fraction consisting essentially of oxygen is removed, with which a large part of the argon contained in the feed air is drawn off.
  • This fraction is broken down into crude argon and into a liquid residual fraction by rectification in a crude argon column. The remaining fraction is returned to the low pressure stage.
  • a method of the type mentioned is known from DE-OS-34 36 897.
  • gaseous crude argon is obtained, which consists of approximately 95% argon and is mainly contaminated by approximately 3% oxygen and 2% nitrogen (all percentages relate to the volume).
  • the oxygen can only be incompletely removed in the processes known hitherto during rectification in the crude argon column, which usually contains about 60 rectification trays, since the boiling points of argon and oxygen are extremely close to one another.
  • the difference in boiling temperatures is, for example, 2.9 K at a pressure of 1 bar.
  • the oxygen is separated from the raw argon in a so-called deoxo device by burning the oxygen with added hydrogen and separating the water formed in a dryer.
  • a deoxo device by burning the oxygen with added hydrogen and separating the water formed in a dryer.
  • Such a deoxo device is a complex apparatus and, above all, causes high operating costs due to the not inconsiderable consumption of hydrogen.
  • the provision of hydrogen is particularly complex if it does not occur in chemical processes that are carried out at the site of the air separation plant.
  • the invention has for its object to develop a method and an apparatus of the type mentioned, which are characterized by a low level of equipment and low operating costs.
  • the head of the rectification column in which such a separation is to be carried out must be cooled in order to produce reflux.
  • An indirect heat exchange with the bottom fraction from the pressure stage comes into question, as is usually also used in the crude argon rectification.
  • the bottom fraction is expanded in a top condenser and liquefied there. Indirect heat exchange absorbs heat from condensing gas in the top of the crude argon column.
  • the evaporated bottom fraction is introduced into the low pressure column.
  • a prerequisite for the fact that return can be generated in this way is, however, that the condensation temperature of the gas at the top of the column to be cooled is higher than the evaporation temperature of the evaporating bottom liquid. These temperatures are determined by the pressures of the respective fractions.
  • an exclusively rectifying separation of the oxygen is nevertheless maintained.
  • rectification trays are dispensed with in the device according to the invention and instead structured packings or fillers are used which bring about a substantially lower pressure drop within the rectification column. Since there was no empirical data on the effect of structured packings or packing elements in air rectification, it was only with the experience gained in a larger test facility that the possible implementation of packs in this area and especially in the crude argon column could be assessed. The tests showed that with a theoretical number of trays between 150 and 200, preferably about 180, an oxygen content of less than 1 ppm in the raw argon is possible with an economical argon yield.
  • the invention is explained in more detail below on the basis of an exemplary embodiment shown schematically in the drawing.
  • the figure shows in simplified form a method for air separation with subsequent argon extraction, which is carried out purely by rectification according to the invention.
  • Air is drawn in from the compressor 2 via line 1 and freed of water vapor and carbon dioxide in a cleaning stage 3.
  • the air is then cooled in a heat exchanger 4 in countercurrent to product gases and partly introduced via line 5 into the pressure column 10 of a two-stage rectification column 9.
  • Another part of the air is branched off in the heat exchanger 4 at an average temperature (line 6), expanded in a turbine 7 while performing work, and fed to the low-pressure column 11 via line 8.
  • a condenser-evaporator 12 gas is condensed from the top of the pressure column against evaporating bottom liquid of the low-pressure column, and is fed as a return to the pressure column.
  • Nitrogen gaseous (line 15) and liquid (line 14) are removed from the pressure column.
  • a portion of the liquid nitrogen is fed as a return liquid into the low pressure column via line 18.
  • Sump liquid is fed out of the pressure column via line 13 and partly fed via line 16 to the central region of the low pressure column.
  • Gaseous nitrogen (line 20) and gaseous oxygen (line 21) are taken from the low-pressure column as product streams and then warmed to almost ambient temperature in the heat exchanger4. Another fraction leaves the low-pressure column via line 22. This fraction contains 87-92%, preferably 90% oxygen, 8-13%, preferably 10% argon and also about 0.05% nitrogen and is fed into the lower region of a crude argon column 24.
  • the top condenser 26 of the crude argon column 24 is cooled by vaporizing liquid which is fed from the bottom of the pressure column 10 via line 17.
  • the bottom liquid in line 17 contains 35-40% oxygen and is expanded to approximately the pressure of the low pressure column before being introduced into the top condenser 26.
  • the evaporated portion is introduced via line 19 into the low pressure column.
  • the raw argon column 24 is equipped with structured packings which correspond to a theoretical number of plates from 170 to 200, preferably approximately 180, and is operated under the pressure of the low pressure column from 1.2 to 1.6, preferably approximately 1.3 bar.
  • packings with a similarly low pressure drop could also be used.
  • Raw argon is removed in gaseous form via line 25 and contains only about 1 ppm oxygen. A part of this raw argon is liquefied in the top condenser 26 and returned to the raw argon column as a return. The remaining raw argon is condensed in a raw argon liquefier 28 by heat exchange with evaporating nitrogen 29, which comes from the pressure column.
  • the nitrogen remaining in the crude argon is separated off.
  • the bottom of the column is heated by nitrogen gas which is brought out of the pressure column via line 15.
  • the condensed nitrogen 31 is used together with the liquid 32 removed from the pressure column to cool the head of the pure argon column.
  • gas is withdrawn via line 34 and partly liquefied in the top condenser 33 and returned to the pure argon column 30.
  • the remaining part is discharged via line 37 as residual gas, which consists essentially of nitrogen.
  • Liquid pure argon is removed via line 39 and still contains a total of 1-10 ppm, preferably 3 ppm, of impurities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

A process and apparatus for air separation by low temperature rectification are described in which argon is obtained exclusively by rectification. A crude argon column (24) is equipped with at least 150 theoretical plates in the form of low pressure drop packing so that, in it, a substantially complete separation of the oxygen is possible, e.g., less than about 10 ppm, preferably less than 1 ppm oxygen.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation von Luft, bei dem Luft verdichtet, vorgereinigt, abgekühlt, einer zweistufigen Rektifikation zugeführt und in eine sauerstoffreiche und in eine stickstoffreiche Fraktion zerlegt wird, wobei aus der Niederdruckstufe der Rektifikation eine weitere, mit Argon angereicherte Sauerstofffraktion entnommen und in einer Rohargonrektifikation in Rohargon und in eine schwerersiedende Restfraktion zerlegt wird.The invention relates to a method and a device for air separation by low-temperature rectification of air, in which air is compressed, pre-cleaned, cooled, fed to a two-stage rectification and broken down into an oxygen-rich and a nitrogen-rich fraction, with another from the low-pressure stage of the rectification Argon-enriched oxygen fraction is removed and broken down into crude argon in a crude argon rectification and into a heavy-boiling residual fraction.

Die Hauptprodukte einer Luftzerlegung, Sauerstoff und Stickstoff, können unmittelbar aus der zweistufigen Rektifikation entnommen werden. Argon dagegen, dessen Siedetemperatur zwischen den Siedetemperaturen von Sauerstoff und Stickstoff liegt, reichert sich im mittleren Bereich der Niederdruckstufe der Rektifikation an. An dieser Stelle wird eine im wesentlichen aus Sauerstoff bestehende Fraktion entnommen, mit der ein großer Teil des in der Einsatzluft enthaltenen Argons abgezogen wird. Diese Fraktion wird durch Rektifikation in einer Rohargonsäule in Rohargon und in eine flüssige Restfraktion zerlegt. Die Restfraktion wird in die Niederdruckstufe zurückgeführt.The main products of air separation, oxygen and nitrogen, can be taken directly from the two-stage rectification. Argon, on the other hand, whose boiling temperature is between the boiling temperatures of oxygen and nitrogen, accumulates in the middle region of the low-pressure stage of the rectification. At this point, a fraction consisting essentially of oxygen is removed, with which a large part of the argon contained in the feed air is drawn off. This fraction is broken down into crude argon and into a liquid residual fraction by rectification in a crude argon column. The remaining fraction is returned to the low pressure stage.

Ein Verfahren der eingangs gennanten Art ist aus der DE-OS-34 36 897 bekannt. Dort wird im Anschluß an eine zweistufige Luftrektifikation in einer Rohargonsäule gasförmiges Rohargon gewonnen, das zu etwa 95% aus Argon besteht und hauptsächlich durch ca. 3% Sauerstoff und 2% Stickstoff verunreinigt ist (alle Prozentangaben beziehen sich auf das Volumen). Der Sauerstoff kann bei den bisher bekannten Verfahren bei der Rektifikation in der Rohargonkolonne, die üblicherweise etwa 60 Rektifizierböden enthält, nur unvollständig entfernt werden, da die Siedepunkte von Argon und Sauerstoff außerordentlich dicht beieinander liegen. Die Differenz der Siedetemperaturen beträgt beispielsweise 2,9 K bei einem Druck von 1 bar.A method of the type mentioned is known from DE-OS-34 36 897. There, after a two-stage air rectification in a crude argon column, gaseous crude argon is obtained, which consists of approximately 95% argon and is mainly contaminated by approximately 3% oxygen and 2% nitrogen (all percentages relate to the volume). The oxygen can only be incompletely removed in the processes known hitherto during rectification in the crude argon column, which usually contains about 60 rectification trays, since the boiling points of argon and oxygen are extremely close to one another. The difference in boiling temperatures is, for example, 2.9 K at a pressure of 1 bar.

Soll reines Argon gewonnen werden, das weniger als 1% Verunreinigungen enthält, so muß der restliche Sauerstoff, der einen geringfügig höheren Siedepunkt als Argon aufweist, aus dem auf die bekannte Weise gewonnene Rohargon entfernt werden, bevor der leichterflüchtige Stickstoff in einer Reinargonsäule rektifikatorisch abgetrennt wird.If pure argon is to be obtained, which contains less than 1% impurities, the remaining oxygen, which has a slightly higher boiling point than argon, must be removed from the raw argon obtained in the known manner before the more volatile nitrogen is rectified in a pure argon column .

Die Abtrennung des Sauerstoffs aus dem Rohargon wird bei den bekannten Verfahren in einer sogenannten Deoxo-Vorrichtung durchgeführt, indem der Sauerstoff mit zugemischtem Wasserstoff verbrannt und das dabei entstandene Wasser in einem Trockner abgetrennt wird. Ein solches Verfahren ist beispielsweise in der DE-OS-34 28 968 veröffentlicht worden.In the known processes, the oxygen is separated from the raw argon in a so-called deoxo device by burning the oxygen with added hydrogen and separating the water formed in a dryer. Such a method has been published, for example, in DE-OS-34 28 968.

Eine derartige Deoxo-Vorrichtung stellt eine aufwendige Apparatur dar und verursacht vor allem hohe Betriebskosten durch den nicht unerheblichen Verbrauch an Wasserstoff. Besonders aufwendig ist die Bereitstellung des Wasserstoffs, wenn dieser nicht ohnehin bei chemischen Prozessen anfällt, die am Ort der Luftzerlegungsanlage durchgeführt werden.Such a deoxo device is a complex apparatus and, above all, causes high operating costs due to the not inconsiderable consumption of hydrogen. The provision of hydrogen is particularly complex if it does not occur in chemical processes that are carried out at the site of the air separation plant.

Daneben ist die Verwendung von Packungen bei der Luftzerlegung aus der DE-C-1 053 469 bekannt. Der Einsatz von Packungen zur Erhöhung der Ausbeute in einer Rohargonsäule wird in den nicht vorveröffentlichten europäischen Patentanmeldungen EP-A-0 321 163 beziehungsweise EP-A-0 341 854 beschrieben.In addition, the use of packings for air separation is known from DE-C-1 053 469. The use of packs to increase the yield in a crude argon column is described in the unpublished European patent applications EP-A-0 321 163 and EP-A-0 341 854.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art zu entwickeln, die sich durch einen geringen apparativen Aufwand und niedrige Betriebskosten auszeichnen.The invention has for its object to develop a method and an apparatus of the type mentioned, which are characterized by a low level of equipment and low operating costs.

Diese Aufgabe wird durch die im kennzeichnenden Teil der Patentansprüche 1 bzo.3 aufgeführten Merkmale gelöst. Der abhängige Anspruch 2 beinhaltet eine besonders günstige Ausgestaltung der Erfindung.This object is achieved by the features listed in the characterizing part of patent claims 1 and 3. The dependent claim 2 contains a particularly favorable embodiment of the invention.

Eine rektifikatorische Trennung von Sauerstoff und Argon unter einen Sauerstoffanteil von etwa 1 % hinaus wurde bei der Planung von Luftzerlegungsanlagen bisher nicht ernsthaft erwogen, da eine solche Verfahrensweise wegen der geringen Differenz der Siedetemperaturen der beiden Stoffe außerordentlich schwierig und aufwendig erscheint. Diese Zurückhaltung ist auf zunächst einleuchtende Argumente gegründet, die im folgenden kurz ausgeführt werden.A rectification separation of oxygen and argon below an oxygen content of about 1% has not been seriously considered in the planning of air separation plants, since such a procedure appears extremely difficult and expensive because of the small difference in the boiling temperatures of the two substances. This reluctance is based on plausible arguments that are briefly explained below.

Der Kopf der Rektifiziersäule, in der eine solche Trennung durchgeführt werden soll, muß zur Erzeugung von Rücklauf gekühlt werden. Für diese Kopfkühlung kommt nur ein indirekter Wärmetausch mit der Sumpffraktion aus der Druckstufe in Frage, wie sie üblicherweise auch bei der Rohargonrektifikation angewandt wird. Die Sumpffraktion wird dabei in einen Kopfkondensator entspannt und dort verflüssigt. Durch indirekten Wärmetausch wird Wärme aus kondensierendem Gas im Kopf der Rohargonsäule aufgenommen. Die verdampfte Sumpffraktion wird in die Niederdrucksäule eingeleitet. Voraussetzung dafür, daß auf diese Weise Rücklauf erzeugt werden kann, ist allerdings, daß die Kondensationstemperatur des Gases am Kopf der zu kühlenden Säule höher als die Verdampfungstemperatur der verdampfenden Sumpfflüssigkeit ist. Diese Temperaturen werden durch die Drücke der jeweiligen Fraktionen festgelegt. Deren Werte sind beide an den Druck der Niederdrucksäule gebunden, da einerseits die zu rektifizierende argonhaltige Fraktion aus der Niederdrucksäule stammt und andererseits die zur Kühlung eingesetzte Fraktion anschließend in die Niederdrucksäule eingeführt wird. Eine zusätzliche Verdichtung eines der beiden Ströme wäre wirtschaftlich nicht vertretbar, da es sich im Vergleich zur gewonnenen Rohargonmenge um außerordentlich hohe Umsätze handelt.The head of the rectification column in which such a separation is to be carried out must be cooled in order to produce reflux. For this head cooling only an indirect heat exchange with the bottom fraction from the pressure stage comes into question, as is usually also used in the crude argon rectification. The bottom fraction is expanded in a top condenser and liquefied there. Indirect heat exchange absorbs heat from condensing gas in the top of the crude argon column. The evaporated bottom fraction is introduced into the low pressure column. A prerequisite for the fact that return can be generated in this way is, however, that the condensation temperature of the gas at the top of the column to be cooled is higher than the evaporation temperature of the evaporating bottom liquid. These temperatures are determined by the pressures of the respective fractions. Their values are both linked to the pressure of the low pressure column, because on the one hand the argon-containing fraction to be rectified comes from the low pressure column and on the other hand the fraction used for cooling is then introduced into the low pressure column. An additional compression of one of the two streams would not be economically justifiable, since it is in the Compared to the amount of crude argon obtained is extremely high sales.

Die Trennstufen von Rektifiziersäulen in Luftzerlegungsanlagen werden nahezu ausschließlich mittels Böden realisiert. Eine Säule zur vollständigen Abtrennung von Sauerstoff aus Argon müßte jedoch eine solch hohe Anzahl von Böden enthalten, daß dadurch eine starker Druckabfall innerhalb der Kolonne entstünde. Infolge dessen sänke der Druck am Kopf der Säule so weit ab, daß die Kondensationstemperatur des Kopfgases unterhalb der Verdampfungstemperatur der Sumpfflüssigkeit der Drucksäule (30 bis 40% Sauerstoff) beim Druck der Niederdrucksäule (ca. 1,4 bar) läge. Damit wäre eine Erzeugung von Rücklaufflüssigkeit nicht mehr möglich, in der Säule könnte keine Rektifikation durchgeführt werden.The separation stages of rectification columns in air separation plants are implemented almost exclusively by means of trays. However, a column for the complete separation of oxygen from argon would have to contain such a large number of trays that this would result in a sharp drop in pressure within the column. As a result, the pressure at the top of the column drops so far that the condensation temperature of the top gas is below the evaporation temperature of the bottom liquid of the pressure column (30 to 40% oxygen) at the pressure of the low pressure column (approx. 1.4 bar). It would no longer be possible to generate reflux liquid, and rectification could not be carried out in the column.

Gemäß der Erfindung wird trotzdem an einer ausschließblich rektifikatorischen Abtrennung des Sauerstoffs festgehalten. Dies wird dadurch ermöglicht, daß bei der erfindungsgemäßen Vorrichtung auf Rektifizierböden verzichtet und statt dessen strukturierte Packungen oder Füllkörper eingesetzt werden, die einen wesentlich geringeren Druckabfall innerhalb der Rektifiziersäule bewirken. Da keinerlei Erfahrungswerte über die Wirkung von strukturierten Packungen oder Füllkörpern bei der Luftrektifikation vorlagen, konnte erst mit Hilfe der Erfahrungen, die in einer größeren Versuchanlage gewonnen wurden, die Realisierungsmöglichkeiten eines Einsatzes von Packungen auf diesem Gebiet und speziell in der Rohargonsäule eingeschätzt werden. Bei den Versuchen ergab sich, daß mit einer theoretischen Bodenzahl zwischen 150 und 200, vorzugsweise etwas 180, ein Sauerstoffgehalt von unter 1 ppm im Rohargon bei wirtschaftlicher Argonausbeute möglich ist.According to the invention, an exclusively rectifying separation of the oxygen is nevertheless maintained. This is made possible by the fact that rectification trays are dispensed with in the device according to the invention and instead structured packings or fillers are used which bring about a substantially lower pressure drop within the rectification column. Since there was no empirical data on the effect of structured packings or packing elements in air rectification, it was only with the experience gained in a larger test facility that the possible implementation of packs in this area and especially in the crude argon column could be assessed. The tests showed that with a theoretical number of trays between 150 and 200, preferably about 180, an oxygen content of less than 1 ppm in the raw argon is possible with an economical argon yield.

Besonders vorteilhaft ist es, diese Argonrektifikation bereits in der Rohargonsäule durchzuführen. Dadurch muß die Rohargonsäule zwar mit einer hohen Anzahl von Trennstufen ausgeführt werden und erreicht eine verhältnismäßig große Bauhöhe. Die erzielten Einsparungen sind jedoch ungleich höher als dieser zusätzliche Aufwand, da das sauerstofffreie Rohargon direkt einer Reinargonrektifikation zugeführt werden kann. Eine Deoxo-Anlage zur Entfernung von Restsauerstoff braucht nicht eingebaut zu werden. Der Hauptvorteil der Erfindung besteht jedoch darin, daß die hohen Betriebskosten einer Deoxo-Vorrichtung und der durch sie verursachte höhere Steuerungsaufwand vollständig wegfallen.It is particularly advantageous to carry out this argon rectification in the crude argon column. As a result, the raw argon column has to be designed with a large number of separation stages and achieves a relatively large overall height. However, the savings achieved are much higher than this additional effort, since the oxygen-free raw argon can be fed directly to pure argon rectification. A Deoxo system for removing residual oxygen does not need to be installed. The main advantage of the invention, however, is that the high operating costs of a deoxo device and the higher control effort caused by it are completely eliminated.

Die Erfindung wird im folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. Die Figur zeigt in vereinfachter Form ein Verfahren zur Luftzerlegung mit anschließender Argongewinnung, die erfindungsgemäß rein rektifikatorisch durchgeführt wird.The invention is explained in more detail below on the basis of an exemplary embodiment shown schematically in the drawing. The figure shows in simplified form a method for air separation with subsequent argon extraction, which is carried out purely by rectification according to the invention.

Über Leitung 1 wird Luft vom Verdichter 2 angesaugt und in einer Reinigungsstufe 3 von Wasserdampf und Kohlendioxid befreit. Die Luft wird anschließend in einem Wärmetauscher 4 im Gegenstrom zu Produktgasen abgekühlt und zu einem Teil über Leitung 5 in die Drucksäule 10 einer zweistufigen Rektifizierkolonne 9 eingeführt. Eine anderer Teil der Luft wird im Wärmetauscher 4 bei einer mittleren Temperatur abgezweigt (Leitung 6), in einer Turbine 7 arbeitsleistend entspannt und über Leitung 8 der Niederdrucksäule 11 zugeführt.Air is drawn in from the compressor 2 via line 1 and freed of water vapor and carbon dioxide in a cleaning stage 3. The air is then cooled in a heat exchanger 4 in countercurrent to product gases and partly introduced via line 5 into the pressure column 10 of a two-stage rectification column 9. Another part of the air is branched off in the heat exchanger 4 at an average temperature (line 6), expanded in a turbine 7 while performing work, and fed to the low-pressure column 11 via line 8.

In einem Kondensator-Verdampfer 12 wird Gas aus dem Kopf der Drucksäule gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule kondensiert, und als Rücklauf auf die Drucksäule aufgegeben. Aus der Drucksäule wird Stickstoff gasförmige (Leitung 15) und flüssig (Leitung 14) entnommen. Ein Teil des flüssig entnommenen Stickstoffs wird über Leitung 18 als Rücklaufflüssigkeit in die Niederdrucksäule eingespeist. Über Leitung 13 wird Sumpfflüssigkeit aus der Drucksäule heraus- und teilweise über Leitung 16 dem mittleren Bereich der Niederdrucksäule zugeführt.In a condenser-evaporator 12, gas is condensed from the top of the pressure column against evaporating bottom liquid of the low-pressure column, and is fed as a return to the pressure column. Nitrogen gaseous (line 15) and liquid (line 14) are removed from the pressure column. A portion of the liquid nitrogen is fed as a return liquid into the low pressure column via line 18. Sump liquid is fed out of the pressure column via line 13 and partly fed via line 16 to the central region of the low pressure column.

Als Produktströme werden der Niederdrucksäule gasförmiger Stickstoff (Leitung 20) und gasförmiger Sauerstoff (Leitung 21) entnommen und anschließend im Wännetauscher4 auf nahezu Umgebungstemperatur angewärmt. Eine weitere Fraktion verläßt über Leitung 22 die Niederdruckkolonne. Diese Fraktion enthält 87 - 92%, vorzugsweise 90 % Sauerstoff, 8 -13 %, vorzugsweise 10% Argon und Außerdem etwa 0,05% Stickstoff und wird in den unteren Bereich einer Rohargonsäule 24 eingespeist. Der Kopfkondensator 26 der Rohargonsäule 24 wird durch verdampfende Flüssigkeit, die über Leitung 17 aus dem Sumpf der Drucksäule 10 herangeführt wird, gekühlt. Die Sumpfflüssigkeit in Leitung 17 enthält 35 - 40% Sauerstoff und wird vor der Einführung in den Kopfkondensator 26 auf etwa den Druck der Niederdrucksäule enspannt. Der verdampfte Anteil wird über Leitung 19 in die Niederdrucksäule eingeleitet.Gaseous nitrogen (line 20) and gaseous oxygen (line 21) are taken from the low-pressure column as product streams and then warmed to almost ambient temperature in the heat exchanger4. Another fraction leaves the low-pressure column via line 22. This fraction contains 87-92%, preferably 90% oxygen, 8-13%, preferably 10% argon and also about 0.05% nitrogen and is fed into the lower region of a crude argon column 24. The top condenser 26 of the crude argon column 24 is cooled by vaporizing liquid which is fed from the bottom of the pressure column 10 via line 17. The bottom liquid in line 17 contains 35-40% oxygen and is expanded to approximately the pressure of the low pressure column before being introduced into the top condenser 26. The evaporated portion is introduced via line 19 into the low pressure column.

Die Rohargonsäule 24 ist erfindungsgemäß mit strukturierten Packungen ausgestattet, die einer theoretischen Bodenanzahl von 170 - 200, vorzugsweise ca. 180 entsprechen, und wird unter dem Druck der Niederdrucksäule von 1,2 bis 1,6, vorzugsweise ca. 1,3 bar betrieben. Statt der Packungen könnten auch Füllkörper mit ähnlich geringem Druckverlust eingesetzt werden. Über Leitung 25 wird Rohargon gasförmig entnommen, das nur noch etwa 1 ppm Sauerstoff enthält. Ein Teil dieses Rohargons wird im Kopfkondensator 26 verflüssigt und als Rücklauf in die Rohargonsäule zurückgeleitet. Das übrige Rohargon wird in einem Rohargonverflüssiger 28 im Wärmetausch mit verdampfendem Stickstoff 29, der aus der Drucksäule stammt, kondensiert.According to the invention, the raw argon column 24 is equipped with structured packings which correspond to a theoretical number of plates from 170 to 200, preferably approximately 180, and is operated under the pressure of the low pressure column from 1.2 to 1.6, preferably approximately 1.3 bar. Instead of the packings, packings with a similarly low pressure drop could also be used. Raw argon is removed in gaseous form via line 25 and contains only about 1 ppm oxygen. A part of this raw argon is liquefied in the top condenser 26 and returned to the raw argon column as a return. The remaining raw argon is condensed in a raw argon liquefier 28 by heat exchange with evaporating nitrogen 29, which comes from the pressure column.

Wegen dergroßen Bauhöhe der erfindungsgemäß ausgeführten Rohargonsäule (etwa 30 m) bietet es sich an, in Leitung 40 das hydrostatische Potential des am Kopf der Rohargonsäule entnommenen Rohargons auszunutzen, um den für die Feinreinigung in einer Reinargonsäule 30 benötigten Druck zu erzeugen.Because of the large structural height of the crude argon column designed according to the invention (approx. 30 m), it is advisable to use the hydrostatic potential of the crude argon removed at the top of the crude argon column in line 40 in order to generate the pressure required for fine cleaning in a pure argon column 30.

In der Reinargonsäule, die ebenso wie die große Rektifiziersäule 9 auf konventionell Weise mit Böden ausgeführt sein kann, wird der im Rohargon verbliebene Stickstoff abgetrennt. Der Sumpf der Säule wird durch Stickstoffgas, das über Leitung 15 aus der Drucksäule herangeführtwird, beheizt. Der dabei kondensierte Stickstoff 31 wird gemeinsam mit aus der Drucksäule flüssig entnommenem Stickstoff 32 zur Kühlung des Kopfes der Reinargonsäule verwendet. Am Kopf der Reinargonsäule wird über Leitung 34 Gas entnommen und zum einen Teil im Kopfkondensator 33 verflüssigt und in die Reinargonsäule 30 zurückgeführt. Der übrige Teil wird über Leitung 37 als Restgas abgegeben, das im wesentlichen aus Stickstoff besteht. Über Leitung 39 wird flüssiges Reinargon entnommen, das insgesamt noch 1 - 10 ppm, vorzugsweise 3 ppm Verunreinigungen enthält.In the pure argon column, which, like the large rectification column 9, is made of soils in a conventional manner the nitrogen remaining in the crude argon is separated off. The bottom of the column is heated by nitrogen gas which is brought out of the pressure column via line 15. The condensed nitrogen 31 is used together with the liquid 32 removed from the pressure column to cool the head of the pure argon column. At the top of the pure argon column, gas is withdrawn via line 34 and partly liquefied in the top condenser 33 and returned to the pure argon column 30. The remaining part is discharged via line 37 as residual gas, which consists essentially of nitrogen. Liquid pure argon is removed via line 39 and still contains a total of 1-10 ppm, preferably 3 ppm, of impurities.

Claims (3)

1. A process for air separation by low-temperature rectification of air, wherein air is compressed, pre-purified, cooled, fed to a two-stage rectification column, and separated into a fraction rich in oxygen and a fraction rich in nitrogen, wherein a further oxygen fraction enriched with argon is extracted from the low-pressure stage of the rectification column and is separated in a crude argon rectification column into crude argon and a higher-boiling residual fraction, characterised in that the crude argon rectification is carried out using at least 150 theoretical plates and structured packings or fillers.
2. A process as claimed in Claim 1, characterised in that the crude argon from the crude argon rectification column is separated, in a pure argon rectification column, into pure argon and a lower-boiling residual fraction.
3. A device for the implementation of the process claimed in Claim 1, with a two-stage rectification column comprising a pressure column and a low-pressure column, and comprising a crude argon column, characterised in that the crude argon column comprises at least 150 theoretical plates and structured packings or fillers.
EP89122047A 1988-12-01 1989-11-29 Air separation process and apparatus Expired - Lifetime EP0377117B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3840506 1988-12-01
DE3840506A DE3840506A1 (en) 1988-12-01 1988-12-01 METHOD AND DEVICE FOR AIR DISASSEMBLY

Publications (3)

Publication Number Publication Date
EP0377117A1 EP0377117A1 (en) 1990-07-11
EP0377117B1 true EP0377117B1 (en) 1992-03-25
EP0377117B2 EP0377117B2 (en) 1995-05-17

Family

ID=6368245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122047A Expired - Lifetime EP0377117B2 (en) 1988-12-01 1989-11-29 Air separation process and apparatus

Country Status (11)

Country Link
US (1) US5019145A (en)
EP (1) EP0377117B2 (en)
JP (1) JPH0781781B2 (en)
KR (1) KR950014009B1 (en)
CN (1) CN1019690B (en)
AT (1) ATE74199T1 (en)
AU (1) AU617226B2 (en)
CA (1) CA2004263C (en)
DE (2) DE3840506A1 (en)
ES (1) ES2031677T5 (en)
ZA (1) ZA899186B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444422A1 (en) * 1990-02-02 1991-09-04 Air Products And Chemicals, Inc. Production of high purity argon
EP0446593A1 (en) * 1990-02-02 1991-09-18 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
EP0669509A1 (en) * 1994-02-24 1995-08-30 Linde Aktiengesellschaft Process and apparatus for obtaining pure argon
EP0684438A1 (en) 1994-05-27 1995-11-29 The BOC Group plc Air separation
EP0722074A2 (en) * 1995-01-11 1996-07-17 The BOC Group plc Air separation
US5557951A (en) * 1995-03-24 1996-09-24 Praxair Technology, Inc. Process and apparatus for recovery and purification of argon from a cryogenic air separation unit
EP0733869A2 (en) * 1995-03-21 1996-09-25 The BOC Group plc Air separation
DE19543953C1 (en) * 1995-11-25 1996-12-19 Linde Ag Recovery of oxygen@ and nitrogen@ under super-atmospheric pressure
EP0752565A2 (en) * 1995-07-06 1997-01-08 The BOC Group plc Production of Argon
EP0768503A2 (en) * 1995-10-11 1997-04-16 Linde Aktiengesellschaft Triple column air separation process
EP0775880A2 (en) 1995-11-21 1997-05-28 Linde Aktiengesellschaft Double column process and apparatus for cryogenic air separation
AU685930B2 (en) * 1994-06-17 1998-01-29 Boc Group Plc, The Air separation
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
EP2645031A1 (en) 2012-03-29 2013-10-02 Linde Aktiengesellschaft Separating column for a low temperature air separator facility, low temperature air separator facility and method for low temperature separation of air
EP2645033A1 (en) 2012-03-29 2013-10-02 Linde Aktiengesellschaft Transportable package with a cold box and method for manufacturing a low temperature air separator facility
WO2013159868A2 (en) 2012-04-27 2013-10-31 Linde Aktiengesellschaft Transportable package having a cold box, low-temperature air separation plant and method for producing a low-temperature air separation plant
WO2014135271A2 (en) 2013-03-06 2014-09-12 Linde Aktiengesellschaft Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant
EP3040665A1 (en) 2014-12-30 2016-07-06 Linde Aktiengesellschaft Distillation system and plant for the production of oxygen by crygenic separation of air
EP3048401A1 (en) 2015-01-20 2016-07-27 Linde Aktiengesellschaft Method and device for variable extraction of argon by cryogenic separation of air

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133790A (en) * 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
US5161380A (en) * 1991-08-12 1992-11-10 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification system for enhanced argon production
US5235816A (en) * 1991-10-10 1993-08-17 Praxair Technology, Inc. Cryogenic rectification system for producing high purity oxygen
US5207066A (en) * 1991-10-22 1993-05-04 Bova Vitaly I Method of air separation
US5237823A (en) * 1992-03-31 1993-08-24 Praxair Technology, Inc. Cryogenic air separation using random packing
JP2966999B2 (en) * 1992-04-13 1999-10-25 日本エア・リキード株式会社 Ultra high purity nitrogen / oxygen production equipment
US5230217A (en) * 1992-05-19 1993-07-27 Air Products And Chemicals, Inc. Inter-column heat integration for multi-column distillation system
US5305611A (en) * 1992-10-23 1994-04-26 Praxair Technology, Inc. Cryogenic rectification system with thermally integrated argon column
US5311744A (en) * 1992-12-16 1994-05-17 The Boc Group, Inc. Cryogenic air separation process and apparatus
DE4317916A1 (en) * 1993-05-28 1994-12-01 Linde Ag Process and apparatus for the isolation of argon
DE4332870C2 (en) * 1993-09-27 2003-02-20 Linde Ag Method and device for obtaining a krypton / xenon concentrate by low-temperature separation of air
DE4406049A1 (en) * 1994-02-24 1995-09-07 Linde Ag Fractional distillation system for pure argon from air
DE4406069A1 (en) * 1994-02-24 1995-09-07 Linde Ag Fractional distillation system for pure argon from air
CA2142317A1 (en) * 1994-02-24 1995-08-25 Anton Moll Process and apparatus for the recovery of pure argon
DE4406051A1 (en) * 1994-02-24 1995-08-31 Linde Ag Fractional distillation of argon from air, with increased purity and economy,
US5396772A (en) * 1994-03-11 1995-03-14 The Boc Group, Inc. Atmospheric gas separation method
US5440884A (en) * 1994-07-14 1995-08-15 Praxair Technology, Inc. Cryogenic air separation system with liquid air stripping
GB9423955D0 (en) 1994-11-24 1995-01-11 Boc Group Plc Air seperation
DE4443190A1 (en) * 1994-12-05 1996-06-13 Linde Ag Method and apparatus for the cryogenic separation of air
WO1997001068A1 (en) * 1995-06-20 1997-01-09 Nippon Sanso Corporation Method and apparatus for separating argon
US5799508A (en) * 1996-03-21 1998-09-01 Praxair Technology, Inc. Cryogenic air separation system with split kettle liquid
FR2757421B1 (en) * 1996-12-24 1999-01-15 Air Liquide PROCESS FOR PURIFYING CRYOGENIC FLUID BY FILTRATION AND / OR ADSORPTION
US5768914A (en) * 1997-07-28 1998-06-23 Air Products And Chemicals, Inc. Process to produce oxygen and argon using divided argon column
US5916261A (en) * 1998-04-02 1999-06-29 Praxair Technology, Inc. Cryogenic argon production system with thermally integrated stripping column
US6347534B1 (en) * 1999-05-25 2002-02-19 Air Liquide Process And Construction Cryogenic distillation system for air separation
US6276170B1 (en) * 1999-05-25 2001-08-21 Air Liquide Process And Construction Cryogenic distillation system for air separation
DE19957017A1 (en) * 1999-11-26 2001-05-31 Linde Ag Device for the production of argon
US6321567B1 (en) 2000-10-06 2001-11-27 Praxair Technology, Inc. Structured packing system for reduced distillation column height
US7087804B2 (en) * 2003-06-19 2006-08-08 Chevron U.S.A. Inc. Use of waste nitrogen from air separation units for blanketing cargo and ballast tanks
DE102007035619A1 (en) 2007-07-30 2009-02-05 Linde Ag Process and apparatus for recovering argon by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
JP5642923B2 (en) * 2008-06-10 2014-12-17 エア・ウォーター株式会社 Air separation method
EP2211131A1 (en) 2009-01-21 2010-07-28 Linde AG Method for operating an air segmentation assembly
DE102009016043A1 (en) 2009-04-02 2010-10-07 Linde Ag Method for operating a pure argon column, comprises initiating a nitrogen-containing argon stream into an upper- or middle area of the pure argon column from which lower area of the argon column is drawn-off to a pure argon product
US8899075B2 (en) 2010-11-18 2014-12-02 Praxair Technology, Inc. Air separation method and apparatus
DE102012006479A1 (en) 2012-03-29 2013-10-02 Linde Ag Transportable package with a coldbox and method of manufacturing a cryogenic air separation plant
CN103267403B (en) * 2013-05-15 2015-09-16 兖矿集团有限公司 A kind of system and method improving liquid argon yield
CN103256081B (en) * 2013-05-22 2015-04-22 南京飓能电控自动化设备制造有限公司 Energy comprehensive utilization method based on supercritical air
DE102013018664A1 (en) 2013-10-25 2015-04-30 Linde Aktiengesellschaft Process for the cryogenic separation of air and cryogenic air separation plant
US10663222B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US11828532B2 (en) * 2020-12-31 2023-11-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for transfer of liquid

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE821951C (en) * 1949-06-20 1951-11-22 Linde Eismasch Ag Process for the extraction of argon
NL111405C (en) * 1953-11-12
IT1034544B (en) * 1975-03-26 1979-10-10 Siad PROCEDURE AND PLANT FOR AIR FRACTION WITH A SIMPLE GRINDING COLUMN
IT1034545B (en) * 1975-03-26 1979-10-10 Siad PROCESS AND PLANT FOR OBTAINING THE ARGON STARTING FROM AN AIR FRACTION PROCESS
CH617357A5 (en) * 1977-05-12 1980-05-30 Sulzer Ag
DE3428968A1 (en) * 1984-08-06 1986-02-13 Linde Ag, 6200 Wiesbaden METHOD AND DEVICE FOR DISASSEMBLING ROHARGON
DE3436897A1 (en) * 1984-10-08 1986-04-10 Linde Ag, 6200 Wiesbaden Process and apparatus for operating an air separation plant
LU86284A1 (en) * 1986-01-30 1987-09-03 Belge Etat PROCESS FOR OBTAINING ETHYLENE FROM ETHANOL
US4871382A (en) * 1987-12-14 1989-10-03 Air Products And Chemicals, Inc. Air separation process using packed columns for oxygen and argon recovery
US4836836A (en) * 1987-12-14 1989-06-06 Air Products And Chemicals, Inc. Separating argon/oxygen mixtures using a structured packing
US4838913A (en) * 1988-02-10 1989-06-13 Union Carbide Corporation Double column air separation process with hybrid upper column

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446593A1 (en) * 1990-02-02 1991-09-18 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
EP0444422A1 (en) * 1990-02-02 1991-09-04 Air Products And Chemicals, Inc. Production of high purity argon
EP0669509A1 (en) * 1994-02-24 1995-08-30 Linde Aktiengesellschaft Process and apparatus for obtaining pure argon
EP0684438A1 (en) 1994-05-27 1995-11-29 The BOC Group plc Air separation
AU685930B2 (en) * 1994-06-17 1998-01-29 Boc Group Plc, The Air separation
AU706679B2 (en) * 1995-01-11 1999-06-24 Boc Group Plc, The Air separation
EP0722074A2 (en) * 1995-01-11 1996-07-17 The BOC Group plc Air separation
EP0733869A2 (en) * 1995-03-21 1996-09-25 The BOC Group plc Air separation
EP0733589A2 (en) * 1995-03-24 1996-09-25 Praxair Technology, Inc. Process and apparatus for recovery and purification of argon from a cryogenic air separation unit
US5557951A (en) * 1995-03-24 1996-09-24 Praxair Technology, Inc. Process and apparatus for recovery and purification of argon from a cryogenic air separation unit
EP0752565A2 (en) * 1995-07-06 1997-01-08 The BOC Group plc Production of Argon
EP0768503A2 (en) * 1995-10-11 1997-04-16 Linde Aktiengesellschaft Triple column air separation process
DE19537913A1 (en) * 1995-10-11 1997-04-17 Linde Ag Triple column process for the low temperature separation of air
EP0775880A2 (en) 1995-11-21 1997-05-28 Linde Aktiengesellschaft Double column process and apparatus for cryogenic air separation
EP0775881A2 (en) 1995-11-25 1997-05-28 Linde Aktiengesellschaft Process and apparatus for recovering oxygen and nitrogen at superatmospheric pressure
DE19543953C1 (en) * 1995-11-25 1996-12-19 Linde Ag Recovery of oxygen@ and nitrogen@ under super-atmospheric pressure
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
EP2645031A1 (en) 2012-03-29 2013-10-02 Linde Aktiengesellschaft Separating column for a low temperature air separator facility, low temperature air separator facility and method for low temperature separation of air
EP2645033A1 (en) 2012-03-29 2013-10-02 Linde Aktiengesellschaft Transportable package with a cold box and method for manufacturing a low temperature air separator facility
WO2013143646A2 (en) 2012-03-29 2013-10-03 Linde Aktiengesellschaft Transportable package with a cold box, and method for producing a low-temperature air separation system
WO2013159868A2 (en) 2012-04-27 2013-10-31 Linde Aktiengesellschaft Transportable package having a cold box, low-temperature air separation plant and method for producing a low-temperature air separation plant
WO2014135271A2 (en) 2013-03-06 2014-09-12 Linde Aktiengesellschaft Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant
EP3040665A1 (en) 2014-12-30 2016-07-06 Linde Aktiengesellschaft Distillation system and plant for the production of oxygen by crygenic separation of air
EP3048401A1 (en) 2015-01-20 2016-07-27 Linde Aktiengesellschaft Method and device for variable extraction of argon by cryogenic separation of air

Also Published As

Publication number Publication date
DE58901041D1 (en) 1992-04-30
KR950014009B1 (en) 1995-11-20
JPH02247484A (en) 1990-10-03
AU4582189A (en) 1990-06-07
KR900009433A (en) 1990-07-04
CA2004263A1 (en) 1990-06-01
EP0377117A1 (en) 1990-07-11
ES2031677T3 (en) 1992-12-16
ATE74199T1 (en) 1992-04-15
US5019145A (en) 1991-05-28
CN1019690B (en) 1992-12-30
DE3840506A1 (en) 1990-06-07
EP0377117B2 (en) 1995-05-17
AU617226B2 (en) 1991-11-21
ES2031677T5 (en) 1995-09-16
CA2004263C (en) 1994-02-01
CN1043196A (en) 1990-06-20
JPH0781781B2 (en) 1995-09-06
ZA899186B (en) 1990-08-29
DE3840506C2 (en) 1992-01-16

Similar Documents

Publication Publication Date Title
EP0377117B1 (en) Air separation process and apparatus
EP0955509B1 (en) Process and apparatus to produce high purity nitrogen
EP0299364B1 (en) Process and apparatus for air separation by rectification
DE69100239T2 (en) Manufacture of ultra high purity oxygen in low temperature air separation.
EP0628777B1 (en) Process and apparatus for obtaining argon
EP1243881B1 (en) Cryogenic triple column air separation system
DE4443190A1 (en) Method and apparatus for the cryogenic separation of air
EP0384213A2 (en) Air rectification process and apparatus
DE69209572T2 (en) Process for the production of the purest nitrogen
DE69614950T2 (en) METHOD AND DEVICE FOR PRODUCING HIGH PURITY NITROGEN
EP0669508B1 (en) Process and apparatus for obtaining pure argon
EP0363861B1 (en) Process for obtaining impure argon
DE69412521T2 (en) Cryogenic single column rectification system for the production of nitrogen gas under increased pressure and high purity
DE69204800T2 (en) Co-production of pure and ultra high purity volatile component of a multi-component stream.
DE69520134T2 (en) Method and device for compressing a gas mixture to be distilled and for relaxing at least one gas stream
EP1006326B1 (en) Process and apparatus for the production of pressurised oxygen and krypton/xenon by cryogenic air separation
EP0768503A2 (en) Triple column air separation process
DE69301418T2 (en) Double heat pump cryogenic rectification system
DE69004647T2 (en) Method and device for the low-temperature separation of air.
DE69223217T2 (en) Process for the removal of hydrogen in cryogenic distillation to produce high-purity nitrogen
DE69611469T2 (en) Method and device for evaporating a liquid stream
DE19933558A1 (en) Process to extract nitrogen and oxygen from air by fractionated cryogenic distillation enhances the overall operating efficiency of the process
DE3035844A1 (en) Medium-purity oxygen prodn. - uses part of nitrogen current to counter cooling losses and heats remainder
EP0559117B1 (en) Process and apparatus for separating a gas mixture
DE19819338A1 (en) Air rectification process for production of compressed nitrogen@

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19900601

17Q First examination report despatched

Effective date: 19910314

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 74199

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58901041

Country of ref document: DE

Date of ref document: 19920430

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THE BOC GROUP PLC

Effective date: 19921221

26 Opposition filed

Opponent name: PRAXAIR TECHNOLOGY, INC.

Effective date: 19921222

Opponent name: THE BOC GROUP PLC

Effective date: 19921221

NLR1 Nl: opposition has been filed with the epo

Opponent name: PRAXAIR TECHNOLOGY, INC.

Opponent name: THE BOC GROUP PLC

EAL Se: european patent in force in sweden

Ref document number: 89122047.7

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19950517

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE ES FR GB IT NL SE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19950531

ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19950916

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081127

Year of fee payment: 20

Ref country code: NL

Payment date: 20081103

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081216

Year of fee payment: 20

Ref country code: AT

Payment date: 20081112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081126

Year of fee payment: 20

Ref country code: BE

Payment date: 20081110

Year of fee payment: 20

Ref country code: SE

Payment date: 20081107

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081126

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *LINDE A.G.

Effective date: 20091129

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20091128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20091130

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091130

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091128