EP0371847B1 - Matériau composite à base de fibres minérales, dispositif d'obtention et application du matériau composite - Google Patents

Matériau composite à base de fibres minérales, dispositif d'obtention et application du matériau composite Download PDF

Info

Publication number
EP0371847B1
EP0371847B1 EP89403181A EP89403181A EP0371847B1 EP 0371847 B1 EP0371847 B1 EP 0371847B1 EP 89403181 A EP89403181 A EP 89403181A EP 89403181 A EP89403181 A EP 89403181A EP 0371847 B1 EP0371847 B1 EP 0371847B1
Authority
EP
European Patent Office
Prior art keywords
felt
product
flakes
binder
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403181A
Other languages
German (de)
English (en)
Other versions
EP0371847A1 (fr
Inventor
Yves Demars
Christian Decoopman
François Szalata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Priority to AT89403181T priority Critical patent/ATE90118T1/de
Publication of EP0371847A1 publication Critical patent/EP0371847A1/fr
Application granted granted Critical
Publication of EP0371847B1 publication Critical patent/EP0371847B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H17/00Felting apparatus

Definitions

  • the subject of the invention is a composite material and its production device.
  • the material according to the invention is based on mineral fibers, in particular glass fibers, obtained by reconstitution of a mat of mineral fibers containing a binder. It is used, for example, as a primitive for obtaining molded parts.
  • natural fibers are used in particular textile fibers which have a fairly large average diameter, greater than 10 microns which is not very favorable from the point of view of the performance of acoustic and thermal insulation.
  • synthetic fibers mineral fibers are more particularly preferred, in particular the so-called insulation fibers such as glass fibers, rock fibers or slag fibers which are finer and are also produced at extremely low costs.
  • Patent application FR 2 608 964 describes, for example, the use of glass fiber mats for obtaining molded parts such as, for example, fittings for automobile parts.
  • the primitives are in this case sections of glass fiber mats obtained by high speed centrifugation of molten glass with a gaseous drawing of the filaments; the fibers being received on a endless conveyor belt closing a hood in which they are sprayed with an organic binder in aqueous solution; the sheet thus obtained being subsequently shaped in an oven where the polymerization of the binder occurs, and then cut to the desired dimensions to form the mat.
  • Fiberizing processes can be used, in particular so-called free centrifugation processes or processes in which the molten material is introduced into the interaction zone of two gas streams at high temperatures and at high speeds.
  • the reception is characterized by an aspiration of the fibers being collected on the endless strip under which a vacuum chamber is provided. Consequently, and even if it is possible to partially remedy it by operating under appropriate fiberizing and suction conditions, the mats or mineral fibers thus obtained always exhibit anisotropy, the fibers preferably being positioned in horizontal planes. This results in an anisotropy of certain physical properties, in particular of the tensile strength, anisotropy which moreover has certain advantages in particular with regard to the insulating power of the felt formed.
  • the insulating layers obtained from such flakes are significantly better than the blown wool layers obtained in the traditional way, but on many points, in particular the thermal conductivity, the difference between the properties of these layers and those of the mat. origin is still very sensitive.
  • the addition of binder can be carried out before the flakes are reunited again, at a temperature and under conditions free from any stress due to the process for preparing the fibers. .
  • the reception of the flakes can be done simply by depositing under gravity, that is to say under conditions which do not give rise to preferential orientation of the fibers and which therefore lead to more isotropic products.
  • patent publication AU-A-75 746/87 teaches a process for obtaining an insulating fibrous product containing a uniformly distributed binder, even if the product is based on fibers which are difficult to impregnate such as vegetable fibers. or animal.
  • This process - which can also be applied to mineral fibers - consists in carding a felt to substantially separate the fibers, then to complete this separation by fluidizing them by entraining them by a gas stream, the binder being sprayed on the fibers separated before that these are not deposited.
  • the subject of the present invention is a composite product based on mineral fibers obtained by reconstitution of a mat or felt in mineral insulation fibers, the thermal performance of which (based on an identical mass of product) is at least equal to 93%. those of the initial felt and comprising a binder which can be activated subsequently, chosen independently of the technique used to obtain said initial felt.
  • the composite product according to the invention is formed from flakes to which a subsequently activatable binder is added, obtained by shredding a felt based on mineral insulating fibers, less than 10% of the flasks comprising a dense nodule whose average diameter is more defined as less than 7 mm and which has a lower degree of impregnation with reactivable binder than the rest of the product.
  • the flakes are produced from a mineral fiber felt which is shredded using a carding machine made up of a single soft bristle brush cleaned by a comb.
  • a carding machine with counter-rotating brushes conforming to FR-2 591 621 produces flakes comprising half of them dense nodules (and it is not possible to remedy this defect by extending the presence time flakes between the brushes because then the fibers are reduced to dust).
  • the composite product according to the invention contains a binder which can be activated subsequently.
  • a time set by the user is understood to be possibly a few seconds, where a polymerization oven is provided immediately downstream of the line or, on the contrary, several days and even several months, the latter case being more particularly found.
  • the duration of this period depends of course on the type of binder used, intermediate storage of the product is only possible with resins whose action does not occur - or extremely slowly - at room temperature. This is the case, for example, of hot-melt or thermosetting resins, added in powder form to the fibers.
  • hot-melt or thermosetting resins examples include phenol-formaldehyde novolac resins, epoxy resins, silicones, polyurethane, polyethylene and polypropylene.
  • the binder In liquid form, the binder is sprayed onto the fibers, either at the time of the carding operation or after it.
  • the addition of the binder is preferably carried out after carding, the binder being suspended in a gas for optimal distribution.
  • the flakes are preferably collected by simple deposit under gravity, without additional suction.
  • the products thus reconstituted are much more isotropic than the standard products obtained directly under the fiber hood, which is more particularly advantageous for the preparation of molded shaped parts which may be subsequently subjected to stresses at fairly high levels, this which is of course not the case when the flakes are used in bulk.
  • the composite product according to the invention is prepared as shown very diagrammatically in FIG. 1.
  • the initial felt 1 which we also call standard felt - or the 2 felts as shown here - is a felt made of mineral fibers.
  • a glass wool felt can be used, for example, the fibers being obtained by a process according to which the molten glass is introduced inside a centrifuge plate rotating at high speed from which it escapes in the form of filaments by a series of orifices made on the wall of the plate, the filaments being drawn in the form of fibers by a gas stream at high speed and high temperature, generated by burners surrounding the plate.
  • the temperature conditions of the glass and the gases, the pressures and the speeds used being for example those defined in European patent EP-91866.
  • the sizing is advantageously sprayed on the fibers before they are collected by a receiving member.
  • This sizing is preferably a 10% aqueous solution of a formo-phenolic resin comprising in the dry part 55% by weight of resol resin and a silane acting among other actions as an anti-dust agent.
  • a felt was used whose density is 11 kg / m3, the thermal resistance of 2 m2 ° C / Watt and the specific resistance to the passage of air of 6.4 Rayls / cm (resistance measured perpendicular to the glass fiber deposition plane).
  • the felt conditioned in the roll state is mounted on a reel here not shown.
  • the supply of the carding unit is obtained by means of a cylinder 2 and a counter-cylinder 3 ensuring the advancement of the product.
  • the felt 1 is simply compressed between the cylinders 2, 3, without cutting, which simplifies the device for these operations.
  • these two cylinders also maintain the felt by retaining it somewhat.
  • the carding unit 4, surrounded by a casing, is advantageously constituted by a single brush 5.
  • This brush has an outside diameter of for example 300 mm. It is provided with 6 fine bristles, mounted at a sufficient free height (within 45 mm) to allow them a certain flexibility. These bristles have for example a diameter of the order of 0.5 mm and are preferably wavy. According to the invention, they are made of metal, the best results have been obtained with hardened steel. The choice of metal may seem surprising given that it is known that bristles made of synthetic materials, for example polyamide, are more resistant to attack by abrasion from glass.
  • such a brush with fine metal bristles makes it possible to increase the number of bristles and to eliminate the counter-brush which has the disadvantage of prolonging the processing time of the felt made of mineral fibers and therefore accentuates its degradation.
  • the density of bristles must be high enough to allow complete shredding and over a small portion of the brush, but without however reaching a value such that it prohibits a separate action of each bristle.
  • a spacing of the bristles at the periphery of between 2 and 5 mm is satisfactory, better results having been obtained with approximately 1500 bristles, ie 1 bristle every 3.5 mm for a brush with a diameter of 300 mm.
  • the speed of rotation of the brush is for example close to 1000 revolutions per minute when the unit is fed by a felt of 11 kg / m3.
  • a simple comb 7 is used, consisting of points mounted on a plate 8, preferably very thin and very pointed. These points are, for example, metal needles less than 0.2 mm in diameter at the point which penetrate into the brush at a depth of for example 2 mm, this depth being able to vary thanks to the position adjustment mechanism 9.
  • the flakes are collected by gravity deposit in a closed enclosure 10, without transport by pneumatic means.
  • This pneumatic transport has the disadvantage during the extraction of air of favoring a preferential orientation of the flakes parallel to the direction of the carrier gas and moreover, it appreciably increases the cost price of the product.
  • the closed receiving chamber 10 is preferably made entirely of plastic.
  • the other aspect of the invention is the addition of a binder; after dosing (by pumps 11, 12) the binder is led through a pipe 13 to the fibers.
  • a binder in liquid form will rather be sprayed at a level located after the carding unit, this in order to avoid if possible fouling of the latter against a binder in powder form, with "wetting" power. less, will be sent to him on the flakes at the level of the carding unit.
  • this is only a general trend, the problem arising more precisely for each binder used.
  • the extreme opening of the flakes obtained according to the invention allows, if necessary, a very homogeneous distribution of the binder even after carding.
  • the fibers are deposited on a receiving mat 14 closing the carding hood 10. As shown in FIG. 1, this hood 10 completely closes the system which leads to yields of materials close to 100%.
  • the mattress is brought back to the desired thickness by a calendering machine 15 then the product is optionally led into an enclosure 16 in which a circulation of hot air is established ensuring the setting of the binder (for example in a melting furnace of the binder in the case of a hot-melt product).
  • a circulation of hot air is established ensuring the setting of the binder (for example in a melting furnace of the binder in the case of a hot-melt product).
  • it is of course carried out the various cutting operations 17 necessary before obtaining the finished product.
  • Another particularly interesting application of the method according to the invention is the production of molding primitives and in this case, the product is directly packaged after calendering, the setting of the binder taking place subsequently during the molding operation.
  • Products have been produced with extremely diverse amounts of binder. Tests have been carried out, for example, with a very low percentage of binder of between 10 and 15%, for a heat-activatable binder intended for a primitive for products molded using a hot press. Conversely, composite products have also been prepared comprising more than 70% of a mineral binder which can be activated by the addition of water.
  • the measured values for products a, c and d are practically identical.
  • the method according to the invention therefore makes it possible to produce end products very comparable to those of the art but which can be produced according to a production in two deferred stages, thus making the molding step independent of the step of fiber preparation.
  • Another aspect of the device according to the invention is that of recycling fibers. Indeed, it is known to prepare insulating products from fiber glass fiber felt waste.
  • the so-called textile fibers are therefore recovered by carding a felt using a carding machine traditionally used by the textile industry. Felts based on so-called insulating fibers such as those envisaged by the present invention do not not suitable because the carding machine transforms these more fragile fibers into dust.
  • With a carding machine according to the invention it is possible to replace part of the textile fibers with insulation fibers.
  • a reconstituted felt weighing 1.2 kg / m3 was thus produced without particular difficulty, for a density of 25 kg / m3, made up of 12% "flakes" according to the invention, of 74% fibers.
  • textile glass and 14% of a phenolic binder The proportion of mineral insulation fibers can possibly be increased to 20 or 25%, which is particularly advantageous when the available quantity of textile fiber waste is insufficient to cover the demand for reconstituted insulating products.
  • the first of these curves ( Figure 3) is a representation of the Lambda thermal conductivity measured in mW / m. ° K, as a function of the density of the prepared product (fibers and binders). This curve relates directly to the insulation capacity of a product, in fact the thermal conductivity is defined as equal to the ratio of the thickness of the product to its thermal resistance.
  • Curve A is the characteristic curve of a standard product obtained by the centrifugal process with gaseous stretching described above, the fineness of the fibers being characterized by a micronaire of 3 for 5 g.
  • the micronaire F is defined in a standardized way as the flow rate of a gaseous current measured after this gaseous current emitted under well-fixed pressure conditions has passed through a very compressed sample of 5 g of fibers. Note that the micronaire gives an indication of the braking of the gas stream by the glass fibers and is therefore characteristic of the fineness of the fibers. Such a micronaire of 3 to 5 g is characteristic of very fine glass fibers.
  • Curve B is that obtained with reconstituted products according to the invention, while curves C and D are respectively obtained for reconstituted products obtained in accordance with the teaching of FR 2,591,621 and for blown glass wool obtained in a conventional manner.
  • curves A and B are practically parallel and that consequently, the difference between the initial product (according to curve A) and the product reconstituted according to the invention is for the entire density range considered between 5 and 7%.
  • the composite product according to the invention can very easily replace the standard product, without a deterioration in the qualities being practically observable; we can especially produce very light products, typically 10 kg / m3 or less while blown fiber products always have a density greater than 15 kg / m3 (and in this case with very low insulating power compared to standard felts) , and that the lower limit is close to 12-13 kg / m3 for products according to FR 2,591,621.
  • the parallel specific resistance is much lower than the perpendicular specific resistance.
  • the curve 24 of the parallel specific resistance is practically coincident with the curve 22 of the standard product; on the other hand, the perpendicular specific resistance (curve 23) is a little lower. This explains the weakening of the insulation performance of the product (see thermal conductivity curve) but also shows that the anisotropy of the product has decreased.
  • Curve 31 corresponds to a standard product, always in the sense defined above, whose density is 45 kg / m3. Practically vertical at the start - which corresponds to a significant increase in the relative deformation even for a weak stress, the curve bends slightly for more important stresses but remains permanently concave. In addition, we see that a rate of 50% relative deformation is reached for a stress of 18 kg / m2.
  • the curve 32 is relatively flat, in other words the increase in the relative deformation is slower than that of the stress exerted.
  • This in fact corresponds to the presence of vertically arranged fibers which have the possibility of bending while in the horizontal plane the relative deformation is directly the result of the deformation of the fibers themselves under the effect of the stresses.
  • the curve of the relative strain becomes identical to that of the standard product, but starting from a non-zero initial value. It is indeed noted that for a given relative deformation, the stress to be exerted is approximately 12 kN / m2 higher with a reconstituted product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Laminated Bodies (AREA)

Description

  • L'invention a pour objet un matériau composite et son dispositif d'obtention. Le matériau selon l'invention est à base de fibres minérales, notamment de fibres de verre, obtenu par reconstitution d'un mat en fibres minérales contenant un liant. Il sert par exemple de primitif pour l'obtention de pièces moulées.
  • Il est connu d'obtenir des pièces, éventuellement en forme, denses ou au contraire très légères, par moulage d'un primitif à base de fibres naturelles ou synthétiques comportant un liant. Comme fibres naturelles sont utilisées notamment des fibres textiles qui ont un diamètre moyen assez élevé, supérieur à 10 microns ce qui n'est pas très favorable du point de vue des performances d'isolation acoustique et thermique. Parmi les fibres synthétiques sont plus particulièrement préférées les fibres minérales, notamment les fibres dites d'isolation telles les fibres de verre, les fibres de roche ou les fibres de laitier qui sont plus fines et sont en outre produites à des coûts extrêmement faibles.
  • La demande de brevet FR 2 608 964 décrit par exemple l'utilisation de mats à base de fibres de verre pour l'obtention de pièces moulées telles par exemple des garnitures de pièces automobiles. Les primitifs sont dans ce cas des tronçons de mats en fibres de verre obtenues par centrifugation à grande vitesse de verre fondu avec un étirage gazeux des filaments ; les fibres étant réceptionnées sur une bande convoyeuse sans fin fermant une hotte dans laquelle elles sont aspergées par un liant organique en solution aqueuse; la nappe ainsi obtenue étant ultérieurement conformée dans une étuve où se produit la polymérisation du liant, et ensuite découpée aux dimensions souhaitées pour former le mat.
  • D'autres procédés de fibrage peuvent être utilisés, notamment des procédés dits à centrifugation libre ou des procédés dans lesquels la matière en fusion est introduite dans la zone d'interaction de deux courants gazeux à hautes températures et à vitesses élevées. Toutefois quelque soit le procédé de fibrage choisi, la réception se caractérise par une aspiration les fibres étant recueillies sur la bande sans fin sous laquelle est prévue un caisson sous dépression. En conséquence et même s'il est possible d'y remédier partiellement en opérant dans des conditions de fibrage et d'aspiration idoines, les mats ou fibres minérales ainsi obtenus présentent toujours une anisotropie, les fibres se positionnant de préférence dans des plans horizontaux. Ceci se traduit par une anisotropie de certaines propriétés physiques, notamment de la résistance à la traction, anisotropie qui par ailleurs présente certains avantages notamment pour ce qui est du pouvoir isolant du feutre formé.
  • Un autre inconvénient rencontré est celui de la limitation dans le choix de la résine pulvérisée comme encollage en solution aqueuse. En effet, pour optimiser la répartition du liant dans le mat et obtenir notamment que celui-ci mouille bien les fibres afin de constituer une gangue protectrice, il est préférable de pulvériser le liant dans la hotte de fibrage, avant que les fibres ne se soient accumulées pour former un matelas. Or, compte tenu des conditions de température qui règnent dans la hotte de fibrage et pour éviter tout risque d'inflammation, il est impératif d'employer une résine en solution dans de l'eau. Ceci exclut la plupart des adhésifs usuels du type thermofusibles ou thermodurcissables. En général, on utilise une résine phénolique du type résine résol dont on sait qu'elle se décompose pour une température d'usage supérieure à 350°C, ce qui restreint notablement les possibilités d'application de produits pourtant à base de fibres qui sont par contre susceptibles de supporter sans dommage des températures par exemple bien supérieures à 500°C.
  • Par ailleurs, il est connu par exemple du brevet français 2 591 621 de reconstituer des produits en fibres minérales à partir de flocons fibreux eux-mêmes produits à partir d'un mat - encore appelé feutre - par une opération de cardage au moyen de brosses contra-rotatives ou encore au moyen de fléaux rotatifs battant le feutre de préférence prédécoupé en bande. Le cardage est de préférence suivi d'un fouettage des flocons ou d'un transport pneumatique afin de relâcher les contraintes résiduelles. Les flocons produits sont usuellement utilisés tels quels. Ils sont par exemple répandus en couches sur le sol pour l'isolation thermique ou acoustique de combles non aménagés ou servent encore de matériau de remplissage de caissons par exemple pour la formation de cloisons intérieures.
  • Les couches isolantes obtenues à partir de tels flocons sont nettement plus performantes que les couches de laine soufflées obtenues de façon traditionnelle, mais sur de nombreux points, notamment la conductivité thermique, l'écart entre les propriétés de ces couches et celles du mat d'origine est encore très sensible.
  • La détérioration observée de la résistance thermique s'explique par la nature des flocons. En effet, il est bien connu que des fibres libres, c'est-à-dire non collées entre elles par un liant ont tendance naturellement à s'associer sous forme de boules. Aussi dans toute opération de cardage, on cherche à démêler ces amas pour retrouver des fibres intègres. Toutefois, les fibres minérales telles les fibres de verre et plus encore les fibres de roche sont extrêmement fragiles aussi le cardage casse les fibres et si on poursuit un peu trop longtemps l'opération, les réduit totalement en poussière. Par conséquent, la tendance est d'opérer avec des moyens de cardage "doux", comme ceux décrits dans le brevet FR 2 591 621 avec en contrepartie une moins bonne ouverture des flocons ce qui signifie qu'un grand nombre d'entre eux (environ 1 sur 2 dans le meilleur des cas) sont toujours constitués par des nodules centraux autour desquels rayonnent quelques rares fibres unitaires. Ces nodules étant particulièrement denses, ils ne permettent pas l'emprisonnement d'une quantité d'air importante, ce qui on le sait diminue le pouvoir isolant d'un produit fibreux. Aussi pour une isolation donnée doit-on accroître la quantité de produit nécessaire.
  • A cet inconvénient déjà fort grand s'ajoute le fait qu'il est très difficile d'imprégner ou "mouiller" ces nodules avec un liant, que celui-ci soit à l'état liquide ou plus encore à l'état solide sous forme pulvérulente et donc peut apte à pénétrer par capillarité au coeur des nodules. Typiquement, comme la plupart des liants présentent après polymérisation une coloration, ce phénomène se traduit par un aspect moucheté du produit après polymérisation, les nodules non imprégnés de liant ne présentant pas la même couleur que le reste du produit.
  • Par contre, à l'avantage de ce procédé il faut noter que l'addition de liant peut être effectuée avant que les flocons ne soient à nouveau réunis, à une température et dans des conditions libres de toute contrainte due au procédé de préparation des fibres. De plus, la réception des flocons peut se faire simplement par dépose sous gravité, c'est-à-dire dans des conditions qui n'entraînent pas d'orientation préférentielles des fibres et qui conduisent de ce fait à des produits plus isotropes.
  • D'autre part, la publication de brevet AU-A-75 746/87 enseigne un procédé d'obtention d'un produit fibreux isolant contenant un liant uniformément réparti, même si le produit est à base de fibres difficilement imprégnables telles les fibres végétales ou animales. Ce procédé - qui peut s'appliquer également à des fibres minérales - consiste à carder un feutre pour séparer substantiellement les fibres, puis pour compléter cette séparation à les fluidiser en les entraînant par un courant gazeux, le liant étant pulvérisé sur les fibres séparées avant que celles-ci ne se soient déposées. Dans cette publication, on ne propose pas des moyens de cardage spécifiques pour les fibres minérales de sorte qu'il faut comprendre par fibres minérales, des fibres de verre dites textiles - encore appelées fibres de verre de renforcement - c'est-à-dire des fibres produites au moyen d'une filière avec un étirage mécanique et dont le diamètre moyen est supérieur à 10 microns. Rappelons que des fibres dites d'isolation ont un diamètre moyen inférieur à 6 microns, généralement de l'ordre de 3 microns. De plus, les fibres dites textiles sont pratiquement toujours regroupées en fils à l'instar des fibres naturelles ce qui les éloignent totalement des fibres d'isolation du point de vue de leur comportement notamment au cardage. D'autre part, cette technique fait appel à un transport pneumatique des fibres ce qui pose le problème de l'élimination des courants gazeux générés et entraîne la nécessité de caissons aspirants qui comme indiqué plus haut conduisent à des produits anisotropes.
  • La présente invention a pour objet un produit composite à base de fibres minérales obtenu par reconstitution d'un mat ou feutre en fibres minérales d'isolation, dont les performances thermiques (rapportées à une masse de produit identique) sont au moins égales à 93 % de celles du feutre initial et comportant un liant activable ultérieurement, choisi indépendamment de la technique utilisée pour l'obtention dudit feutre initial. Le produit composite selon l'invention est formé de flocons auxquels est ajouté un liant activable ultérieurement, obtenus par déchiquetage d'un feutre à base de fibres minérales d'isolation, moins de 10 % des flacons comportant un nodule dense dont le diamètre moyen est de plus défini comme inférieur à 7 mm et qui présente un degré d'imprégnation en liant réactivable moindre que le reste du produit.
  • De cette définition, il ressort que le terme flocons est pratiquement abusif car le déchiquetage du feutre est mené de manière telle que l'individualisation des fibres est pratiquement totale et que dès lors, on repasse par un stade où les fibres sont pratiquement toutes à l'état unitaire, comme cela était le cas au moment de leur fibrage.
  • Pour ce faire, les flocons sont produits à partir d'un feutre en fibres minérales qui est déchiqueté au moyen d'une cardeuse constituée par une seule brosse à poils souples nettoyée par un peigne. Par rapport aux moyens connus de l'art, on opère donc avec un dispositif extrêmement simplifié mais qui pourtant donne des résultats étonnamment supérieurs. En effet, une cardeuse à brosses contra-rotatives conformes à FR-2 591 621 produit des flocons comportant pour la moitié d'entre eux des nodules denses (et il n'est pas possible de remédier à ce défaut en prolongeant le temps de présence des flocons entre les brosses car alors on réduit les fibres en poussière).
  • Outre les flocons, le produit composite selon l'invention contient un liant activable ultérieurement. Par ultérieurement on entend une durée fixée par l'utilisateur qui peut être éventuellement de quelques secondes, cas où une étuve de polymérisation est prévue immédiatement en aval de la ligne ou au contraire de plusieurs jours et même plusieurs mois ce dernier cas se retrouvant plus particulièrement lorsque le produit reconstitué est utilisé à titre de primitif pour l'obtention de pièces moulées en forme.
  • La durée de cette période dépend bien sur du type de liant utilisé, un stockage intermédiaire du produit n'étant possible qu'avec des résines dont l'action ne se produit pas - ou extrêmement lentement - à température ambiante. Ceci est le cas par exemple de résines thermofusibles ou thermodurcissables, ajoutées sous forme pulvérulente aux fibres. Citons par exemple les résines phénol-formaldehyde novolaques, les résines époxy, les silicones, le polyuréthane, le polyéthylène et le polypropylène.
  • De toute façon, le fait que la résine est ajoutée sur des fibres froides, loin de toute installation de fibrage, donne une entière liberté dans le choix du liant (résine ou liant minéral).
  • Sous forme liquide, le liant est pulvérisé sur les fibres indifféremment au moment de l'opération de cardage ou après celle-ci. Lorsqu'il est sous sa forme pulvérulente, l'addition du liant est effectuée de préférence après le cardage, le liant étant en suspension dans un gaz pour une répartition optimale.
  • Les flocons sont de préférence recueillis par simple dépose sous gravité, sans aspiration complémentaire. Les produits ainsi reconstitués sont beaucoup plus isotropes que les produits standards obtenus directement sous la hotte de fibrage, ce qui est plus particulièrement avantageux pour la préparation de pièces moulées en forme susceptibles d'être ultérieurement soumises à des contraintes à des niveaux assez élevés, ce qui n'est bien sûr pas le cas lorsque les flocons sont utilisés en vrac.
  • D'autres détails et caractéristiques avantageux de l'invention sont décrits ci-après en référence aux planches annexées qui représentent :
    • Figure 1 : un schéma d'une ligne pour produit composite selon l'invention,
    • figure 2 : une vue plus détaillée de la cardeuse de la figure 1,
    • Figure 3 : les courbes d'évolution de la conductivité thermique en fonction de la densité,
    • Figure 4 : les courbes comparées des valeurs des résistances spécifiques au passage de l'air en fonction de la densité,
    • Figure 5 : les courbes comparées des valeurs de déformation relative en fonction de la contrainte exercée.
  • Le produit composite selon l'invention est préparé comme indiqué très schématiquement à la figure 1. Le feutre initial 1 que nous appelons encore feutre standard - ou les 2 feutres comme ici représentés - est un feutre en fibres minérales. On peut utiliser par exemple un feutre en laine de verre, les fibres étant obtenues par un procédé selon lequel le verre fondu est introduit à l'intérieur d'une assiette de centrifugation tournant à grande vitesse dont il s'échappe sous forme de filaments par une série d'orifices pratiqués sur la paroi de l'assiette, les filaments étant étirés sous forme de fibres par un courant gazeux à grande vitesse et haute température, généré par des brûleurs entourant l'assiette. Les conditions de températures du verre et des gaz, les pressions et les vitesses utilisées étant par exemple celles définies dans le brevet européen EP-91866. L'encollage est avantageusement pulvérisé sur les fibres avant qu'elles ne soient recueillies par un organe de réception. Cet encollage est de préférence une solution aqueuse à 10 % d'une résine formo-phénolique comportant en partie de sec 55 % en poids de résine résol et d'un silane agissant entre autres actions comme agent anti-poussière. A titre d'exemple, on a utilisé un feutre dont la densité est de 11 kg/m³, la résistance thermique de 2 m²°C/Watt et la résistance spécifique au passage de l'air de 6,4 Rayls/cm (résistance mesurée perpendiculairement au plan de dépôt des fibres de verre). Le feutre conditionné à l'état de rouleau est monté sur un dévidoir ici non représenté.
  • Comme plus précisément représenté à l'aide de la figure 2, l'alimentation de l'unité de cardage est obtenue au moyen d'un cylindre 2 et d'un contre-cylindre 3 assurant l'avancée du produit. Le feutre 1 est simplement comprimé entre les cylindres 2, 3, sans découpe ce qui simplifie le dispositif de ces opérations. Avantageusement, ces deux cylindres assurent également le maintien du feutre en le retenant quelque peu.
  • L'unité de cardage 4, entourée d'un carter, est avantageusement constituée par une seule brosse 5. Cette brosse a un diamètre extérieur de par exemple 300 mm. Elle est munie de poils 6 fins, montés selon un hauteur libre suffisante (d'ici 45 mm) pour leur permettre une certaine souplesse. Ces poils ont par exemple un diamètre de l'ordre de 0,5 mm et sont de préférence ondulés. Selon l'invention, ils sont en métal, les meilleurs résultats ont été obtenus avec de l'acier trempé. Le choix du métal peut paraître surprenant dans la mesure où il est connu que des poils en matériaux synthétiques, par exemple en polyamide résistant mieux à l'attaque par l'abrasion du verre. En fait, il a été constaté selon l'invention que des poils en matériaux synthétiques - et donc du fait de certaines contraintes technologiques obligatoirement d'un diamètre de plus de 1 mm - s'échauffent énormément au cours de l'opération de cardage et qu'en conséquence ils s'usent beaucoup plus rapidement que des poils dans un matériau moins résistant dans l'absolu mais plus fins. Par ailleurs, l'emploi de poils fins permet une meilleure adéquation entre les dimensions de l'outil de découpe qu'ils constituent et celles des fibres que l'on cherche à séparer.
  • Avantageusement, une telle brosse à poils métalliques fins permet d'augmenter le nombre de poils et de supprimer la contre-brosse qui a pour inconvénient de prolonger le temps de traitement du feutre en fibres minérales et de ce fait accentue sa dégradation. La densité de poils doit être suffisamment importante pour permettre un déchiquetage complet et sur une petite portion de la brosse, mais sans toutefois atteindre une valeur telle qu'elle interdise une action séparée de chaque poil. En pratique un écartement des poils à la périphérie compris entre 2 et 5 mm donne satisfaction, des meilleurs résultats ayant été obtenus avec environ 1500 poils soit 1 poil tous les 3,5 mm pour une brosse de 300 mm de diamètre.
  • La vitesse de rotation de la brosse est voisine par exemple de 1000 tours par minute lorsque l'unité est alimentée par un feutre de 11 kg/m³.
  • Pour nettoyer la brosse, on utilise un simple peigne 7 constitué par des pointes montées sur une plaque 8 de préférence très fines et très pointues. Ces pointes sont par exemple des aiguilles métalliques de moins de 0,2 mm de diamètre à la pointe qui pénètrent dans la brosse selon une profondeur de par exemple 2 mm, cette profondeur pouvant varier grâce au mécanisme de réglage de position 9.
  • Après le cardage, les flocons sont recueillis par dépose sous gravité dans une enceinte close 10, sans transport par des moyens pneumatiques. Ce transport pneumatique présente en effet l'inconvénient lors de l'extraction de l'air de favoriser une orientation préférentielle des flocons parallèlement à la direction du gaz porteur et de plus, il augmente sensiblement le prix de revient du produit. Pour éviter l'accumulation des flocons en raison de l'électricité statique, l'enceinte close 10 de réception est de préférence entièrement en matière plastique.
  • L'observation sous microscope des flocons obtenus les montre constitués de fibres relativement longues, c'est-à-dire d'environ 2 cm alors que les fibres du feutre initial ont une longueur d'environ 10 cm ; il s'agit là bien entendu d'une valeur moyennée après estimation sur un échantillon de taille réduite la mesure réelle étant particulièrement délicate. Ces fibres plus courtes sont moins sujettes aux problèmes de stratification, en revanche leur longueur reste encore suffisante pour assurer l'emprisonnement d'une quantité importante d'air. De plus ces fibres se répartissent de façon extrêmement homogène, moins de 10 % des flocons comportant un nodule central dense dont le diamètre est de moins de 7 mm ou se présentant sous forme de mèche.
  • A ce sujet, il semble d'ailleurs que les fibres sont presque à un état plus unitaire qu'au moment de la fabrication du feutre initial. Une explication de cet état inattendu est peut-être la présence du liant utilisé comme encollage pour le feutre initial qui joue là un rôle de lubrifiant entre les fibres - à l'instar de ce qui est recherché par tout ensimage et qui de plus favorise l'écartement des fibres - propriété recherchée pour augmenter les capacités de reprise d'épaisseur du produit.
  • L'autre aspect de l'invention est l'addition d'un liant ; après son dosage (par des pompes 11, 12) le liant est conduit par une canalisation 13 jusqu'aux fibres. En règle générale, un liant sous forme liquide sera plutôt pulvérisé à un niveau situé après l'unité de cardage, ceci afin d'éviter si possible l'encrassement de celle-ci par contre un liant sous forme pulvérulente, au pouvoir "mouillant" moindre, sera lui envoyé sur les flocons au niveau de l'unité de cardage. Mais comme indiqué précédemment, il ne s'agit là que d'une tendance générale, le problème se posant plus précisément pour chaque liant utilisé. Par contre, ce qui doit être noté, c'est que l'extrême ouverture des flocons obtenus selon l'invention permet le cas échéant une distribution très homogène du liant même après le cardage.
  • Les fibres se déposent sur un tapis récepteur 14 fermant la hotte de cardage 10. Comme représenté à la figure 1, cette hotte 10 ferme totalement le système ce qui conduit à des rendements de matières voisins de 100 %. En sortie de hotte, le matelas est ramené à l'épaisseur souhaitée par une calandreuse 15 puis le produit est éventuellement conduit dans une enceinte 16 dans laquelle est établie une circulation d'air chaud assurant la prise du liant (par exemple dans un four de fusion du liant s'agissant d'un produit thermofusible). Parallèlement ou à la suite de ces opérations, on procède bien entendu aux différentes opérations de découpe 17 nécessaires avant l'obtention du produit fini.
  • Une autre application particulièrement intéressante du procédé selon l'invention est la réalisation de primitifs de moulage et dans ce cas, le produit est directement conditionné après son calandrage, la prise du liant ayant lieu ultérieurement lors de l'opération de moulage.
  • Des produits ont été réalisés avec des quantités de liant extrêmement diverses. Des essais ont été effectués par exemple avec un pourcentage très faible de liant compris entre 10 et 15 %, pour un liant thermoactivable destiné à un primitif pour produits moulés à la presse à chaud. A l'opposé, on a également préparé des produits composites comportant plus de 70 % d'un liant minéral activable par addition d'eau.
  • A titre d'exemples d'application comme primitifs de moulage ont été réalisées 3 séries a), b), c) de produits contenant respectivement 30 % d'un liant du type epoxy, constitué par des déchets de production de peinture par projection électrostatique 50 % de polypropylène et 17 % d'un liant phénolique (bakelite), les pourcentages de liants étant donnés par rapport à la masse du produit fini. Ces primitifs secs peuvent être conservés aussi longtemps que nécessaire avant leur pressage chaud. On a ensuite mesuré conformément à la norme NF-B-51224 les valeurs des contraintes à la rupture (en MPa) et des modules en flexion en (G. Pa) pour différentes masses volumiques (en kg/m³). Une quatrième série de mesures a été effectuée à titre comparatif à partir de produits moulés usuels, préparés par voie humide et comportant 18 % de résines phénoliques. Les résultats sont rassemblés au tableau suivant :
    Figure imgb0001
  • Les valeurs mesurées pour les produits a, c et d sont pratiquement identiques. Le procédé selon l'invention permet donc bien de réaliser des produits finals très comparables à ceux de l'art mais qui peuvent l'être selon une production en deux étapes différées, en rendant ainsi l'étape de moulage indépendante de l'étape de préparation des fibres.
  • Un autre aspect du dispositif selon l'invention est celui de recyclage des fibres. En effet, il est connu de préparer des produits isolants à partir de déchets de feutre de fibres de verre textiles. Les fibres dites textiles sont pour cela récupérées par cardage d'un feutre à l'aide d'une cardeuse utilisée traditionnellement par l'industrie textile. Les feutres à base de fibres dites d'isolation telles que celles envisagées par la présente invention ne conviennent pas car la cardeuse transforme ces fibres plus fragiles en poussière. Avec une cardeuse selon l'invention, il est possible de remplacer une partie des fibres textiles par des fibres d'isolation. On a ainsi réalisé sans difficulté particulière un feutre reconstitué d'un grammage de 1,2 kg/m³, pour une densité de 25 kg/m³, constitué pour 12 % de "flocons" selon l'invention, de 74 % de fibres de verre textile et de 14 % d'un liant phénolique. La proportion de fibres minérales d'isolation peut être éventuellement accrue pour atteindre 20 ou 25 % ce qui est tout particulièrement intéressant lorsque la quantité disponible de déchets de fibres textiles est insuffisante pour couvrir la demande de produits isolants reconstitués.
  • Les performances du produit selon l'invention ressortent plus particulièrement de l'étude des 3 courbes annexées.
  • La première de ces courbes (figure 3) est une représentation de la conductivité thermique Lambda mesurée en mW/m.°K, en fonction de la densité du produit préparé (fibres et liants). Cette courbe se rattache directement à la capacité d'isolation d'un produit en effet la conductivité thermique est définie comme égale au ratio de l'épaisseur du produit sur sa résistance thermique. La courbe A est la courbe caractéristique d'un produit standard obtenu par le procédé centrifuge avec étirage gazeux exposé précédemment, la finesse des fibres étant caractérisée par un micronaire de 3 pour 5 g. Le micronaire F est défini de façon normalisée comme le débit d'un courant gazeux mesuré après que ce courant gazeux émis dans des conditions de pressions bien fixes ait traversé un échantillon très comprimé de 5 g de fibres. Notons que le micronaire donne donne une indication du freinage du courant gazeux par les fibres de verre et est de ce fait caractéristique de la finesse des fibres. Un tel micronaire de 3 pour 5 g est caractéristique de fibres de verre d'une très grande finesse.
  • La courbe B est celle obtenue avec des produits reconstitués selon l'invention, alors que les courbes C et D sont respectivement obtenues pour des produits reconstitués obtenus conformément à l'enseignement de FR 2 591 621 et pour de la laine de verre soufflée obtenue de façon classique. La comparaison de ces 4 courbes montre que pour une isolation équivalente (Lambda = 40 mW/m.°K par exemple), il faut environ 1 point de plus de densité avec des produits selon l'invention (soit environ 6,6 % de produit en plus) alors que 2 points sont nécessaires (soit environ 13 % de produit en plus) avec des produits selon FR 2 591 621, des produits traditionnels nécessitant eux plus de 50 % de produits supplémentaires pour une isolation comparable. Il doit être également noté que les courbes A et B sont pratiquement parallèles et qu'en conséquence, la différence entre le produit initial (suivant la courbe A) et le produit reconstitué selon l'invention est pour tout le domaine de densité considéré comprise entre 5 et 7%. Autrement dit, le produit composite selon l'invention peut très facilement se substituer au produit standard, sans qu'une détérioration des qualités soit pratiquement constatable ; on peut notamment fabriquer des produits très légers, typiquement de 10 kg/m³ ou moins alors que les produits en fibres soufflées présentent toujours une densité supérieure à 15 kg/m³ (et avec dans ce cas un pouvoir isolant très faible comparativement aux feutres standards), et que la limite inférieure est voisine de 12-13 kg/m³ pour des produits suivant FR 2 591 621.
  • Ce premier test a permis de démontrer que les produits reconstitués selon l'invention présentent un pouvoir isolant très analogue à celui des produits initiaux servant à leur fabrication. De plus, le mode d'obtention et de réception des flocons conduit à une diminution fort importante de l'anisotropie du matériau. Ceci ressort par exemple des valeurs de la résistance spécifique au passage de l'air d'un produit, mesurées pour différentes densités de produits. Contrairement à la mesure du micronaire qui est effectuée sur un échantillon de taille très réduite et surtout très fortement comprimé, la mesure de la résistance spécifique au passage de l'air caractérise beaucoup mieux l'arrangement des fibres dans le produit et notamment leur orientation. Ce test est en effet effectué sur un produit réel, et sur un échantillon dont la dimension est de 20 x 20 cm, aussi autant le micronaire est-il une donnée caractéristique des fibres, autant la résistance spécifique au passage de l'air est elle caractéristique du produit fini.
  • Les mesures, exprimées en [Rayl/cm Rs] dont les résultats sont repris à la figure 4 ont été effectuées dans un plan parallèle au plan de dépôt des fibres (résistance spécifique parallèle ou Rs //) et dans un plan perpendiculaire à celui-ci (résistance spécifique perpendiculaire ou R┴). Si le produit est parfaitement isotrope, les courbes de résistances parallèle et perpendiculaire sont confondues; si par contre les fibres sont orientées préférentiellement selon un de ces plans, parallèlement à celui-ci, l'air traverse le produit dans des "couloirs" parallèles aux fibres tandis que perpendiculairement à celui-ci il doit systématiquement contourner les fibres pour se frayer un chemin. Les courbes 21 et 22 sont obtenues avec le produit standard défini préalablement. On note bien que pour une densité donnée, la résistance spécifique parallèle est nettement inférieure a la résistance spécifique perpendiculaire. Pour le produit reconstitué selon l'invention, la courbe 24 de la résistance spécifique parallèle est pratiquement confondue avec la courbe 22 du produit standard; par contre, la résistance spécifique perpendiculaire (courbe 23) est un peu plus faible. Ceci explique l'affaiblissement des performances d'isolation du produit (voir courbe de conductivité thermique) mais montre de plus que l'anisotropie du produit a diminué.
  • L'importance de cette diminution est plus particulièrement mise en relief par la courbe de la figure 5 où sont indiquées en abscisse les contraintes exercées sur un produit (en kN/m²) et en ordonnées les déformations relatives correspondantes.
  • La courbe 31 correspond a un produit standard, toujours au sens défini précédemment, dont la densité est de 45 kg/m³. Pratiquement verticale au départ - ce qui correspond à une augmentation importante de la déformation relative même pour une contrainte faible, la courbe s'infléchit légèrement pour des contraintes plus importantes mais reste en permanence concave. De plus, on constate qu'un taux de 50 % de déformation relative est atteint pour une contrainte de 18 kg/m².
  • Avec les produits selon l'invention et de même densité, on constate par contre que dans un premier temps, la courbe 32 est relativement plate, autrement dit l'augmentation de la déformation relative est moins rapide que celle de la contrainte exercée. Ceci correspond en fait à la présence de fibres disposées verticalement qui ont la possibilité de fléchir alors que dans le plan horizontal la déformation relative est directement la résultante de la déformation des fibres elles-mêmes sous l'effet des contraintes.
  • Une fois atteinte, la valeur de la contrainte qui correspond au point de flambage des fibres verticales, la courbe de la déformation relative devient identique à celle du produit standard, mais en partant d'une valeur initiale non nulle. On note en effet que pour une déformation relative donnée, la contrainte à exercer est d'environ 12 kN/m² plus élevée avec un produit reconstitué.
  • Ces différents tests mettent ainsi en évidence le fait que l'opération de cardage pratiquée dans les conditions de l'invention permet de reconstituer des produits très performants du point de vue de l'isolation thermique et présentant des propriétés mécaniques valorisantes.

Claims (13)

  1. Dispositif de fabrication d'un produit reconstitué formé à partir de flocons imprégnés d'un liant réactivable à base de fibres minérales d'isolation, caractérisé en ce qu'il comporte une unité d'alimentation en feutre, une unité de cardage (4) comprenant une brosse (5) munie de poils souples métalliques, de préférence ondulés, un peigne (7) et une unité d'alimentation (11, 12, 13) en liant sous forme liquide ou pulvérulente.
  2. Dispositif selon la revendication 1, caractérisé en ce que les poils de la brosse (5) ont un diamètre voisin de 0,5 mm.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'écartement des poils de la brosse (5) à sa périphérie est compris entre 2 et 5 mm.
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte un dispositif de maintien du feutre (1).
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que l'unité d'alimentation en feutre et/ou le dispositif de maintien dudit feutre sont constitués par un cylindre associé à un contre-cylindre (2, 3).
  6. Procédé de mise en oeuvre du dispositif suivant l'une des revendications 1 à 5, caractérisé en ce qu'on alimente l'unité de cardage (4) avec un feutre (1) à base de fibres minérales, on déchiquète ledit feutre en flocons à l'aide d'une brosse (5) et d'un peigne (7) sans l'aide de forces pneumatiques, on projette un liant réactivable sur les flocons pendant ou après l'opération de déchiquetage puis on collecte par gravité les flocons imprégnés de liant.
  7. Produit reconstitué formé à partir de flocons imprégnés de liant réactivable à partir d'un feutre (1) à base de fibres minérales d'isolation obtenu par le procédé suivant la revendication 6, caractérisé en ce que moins de 10 % desdits flocons comportent un nodule dense, nodule dont le diamètre reste inférieur à 10 mm et en ce que ses performances thermiques rapportées à une masse de produit indentique sont au moins égales à 93 % de celles du feutre (1) initial, qu'il présente un caractère isotrope plus marqué que le feutre (1) initial.
  8. Produit reconstitué formé à partir de flocons imprégnés de liant réactivable obtenu à partir d'un feutre (1) à base de fibres minérales selon le procédé suivant la revendication 6, caractérisé en ce que moins de 10 % desdits flocons comportent un nodule dense, nodule dont le diamètre reste inférieur à 7 mm, et en ce que, pour une déformation relative donnée, la valeur de contrainte à exercer sur ledit produit est d'environ 12 kN/m² plus élevée que celle à exercer sur le feutre initial (1), qu'il présente un caractère isotrope plus marqué que le feutre (1) initial.
  9. Produit selon l'une des revendications 7, 8, caractérisé en ce que la longueur des fibres dans les flocons est d'environ 2 cm.
  10. Produit selon l'une des revendications 7 à 9, caractérisé en ce que le liant réactivable est thermodurcissable ou thermoplastique, et notamment choisi parmi les résines époxy, phénolique, polypropylène.
  11. Application du produit selon l'une des revendications 7 à 10 en tant que matériau d'isolation thermique.
  12. Application du produit selon l'une des revendications 7 à 10 en tant que primitif pour le moulage de pièces composites.
  13. Application du produit selon l'une des revendications 7 à 10 à la préparation d'un feutre reconstitué à partir de 12 à 25 % dudit produit à base de flocons, de 60 à 74 % de fibres textile recyclées et d'environ 15 % de liant phénolique.
EP89403181A 1988-12-01 1989-11-20 Matériau composite à base de fibres minérales, dispositif d'obtention et application du matériau composite Expired - Lifetime EP0371847B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89403181T ATE90118T1 (de) 1988-12-01 1989-11-20 Verbundmaterial aus mineralfasern, anlage fuer die erzeugung und verwendung des verbundmaterials.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8815735A FR2639868B1 (fr) 1988-12-01 1988-12-01 Materiau composite a base de fibres minerales. dispositif d'obtention et application du materiau composite
FR8815735 1988-12-01

Publications (2)

Publication Number Publication Date
EP0371847A1 EP0371847A1 (fr) 1990-06-06
EP0371847B1 true EP0371847B1 (fr) 1993-06-02

Family

ID=9372470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403181A Expired - Lifetime EP0371847B1 (fr) 1988-12-01 1989-11-20 Matériau composite à base de fibres minérales, dispositif d'obtention et application du matériau composite

Country Status (17)

Country Link
EP (1) EP0371847B1 (fr)
JP (1) JPH02182956A (fr)
KR (1) KR970009655B1 (fr)
AR (1) AR243942A1 (fr)
AT (1) ATE90118T1 (fr)
AU (1) AU631150B2 (fr)
CA (1) CA2004360A1 (fr)
DE (1) DE68906863T2 (fr)
DK (1) DK604989A (fr)
ES (1) ES2042043T3 (fr)
FI (1) FI895742A0 (fr)
FR (1) FR2639868B1 (fr)
IE (1) IE63564B1 (fr)
NO (1) NO894725L (fr)
NZ (1) NZ231549A (fr)
PT (1) PT92480B (fr)
ZA (1) ZA898987B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648466B1 (fr) * 1989-06-15 1992-12-11 Saint Gobain Isover Produit composite a base de fibres minerales, utile pour la fabrication de pieces moulees
FR2670220A1 (fr) * 1990-12-06 1992-06-12 Saint Gobain Isover Matelas fibreux destine au pressage.
FR2677987B1 (fr) * 1991-06-20 1994-07-08 Orgel Renforcement de polymeres par de la laine minerale.
FR2682403B1 (fr) * 1991-10-09 1996-06-07 Saint Gobain Isover Materiau isolant a souffler.
FR2682973A1 (fr) * 1991-10-23 1993-04-30 Saint Gobain Isover Panneau acoustique et application en tant que baffle absorbant acoustique.
DK116192D0 (da) * 1992-09-18 1992-09-18 Rockwool Int Mineralfiberelement omfattende et overfladelag
KR100683806B1 (ko) * 2006-05-30 2007-02-16 삼우기업 주식회사 절단무기섬유 매트 및 그 제조방법
DE102007036346A1 (de) 2007-02-23 2008-08-28 Deutsche Rockwool Mineralwoll Gmbh + Co Ohg Verfahren und Vorrichtung zur Herstellung eines Formteils sowie Formteil als Wärme- und/oder Schalldämmelement
PL2670901T3 (pl) * 2011-01-31 2020-02-28 Rockwool International A/S Sposób wytwarzania elementu zawierającego włókno mineralne
DE102013212699A1 (de) * 2013-06-28 2014-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dreidimensionale, poröse Struktur aus Nanofaservlies-Fragmenten und Verfahren zu deren Herstellung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT245359B (de) * 1964-02-05 1966-02-25 Fehrer Maschf Dr Ernst Vorrichtung fur Herstellung eines Haar- oder Faservlieses
CH539505A (fr) * 1971-07-28 1973-07-31 Matec Holding Elément autoporteur de garnissage et procédé de fabrication de cet élément
FR2316364A1 (fr) * 1975-06-30 1977-01-28 Rudloff Bernard Procede de nappage de non-tisses et dispositif pour la mise en oeuvre de ce procede
FR2504159A1 (fr) * 1981-04-17 1982-10-22 Guillot Paul Machine a carder les materiaux isolants
US4385955A (en) * 1981-09-08 1983-05-31 Detroit Gasket Method of forming contoured fiberglass sheet
DE8623445U1 (de) * 1986-09-01 1987-08-27 Menzolit GmbH, 76703 Kraichtal Vorrichtung zur Herstellung eines Wirrfaserstoffs aus Glasfaserbündeln

Also Published As

Publication number Publication date
PT92480B (pt) 1995-08-09
IE63564B1 (en) 1995-05-17
DK604989D0 (da) 1989-11-30
CA2004360A1 (fr) 1990-06-01
KR900010113A (ko) 1990-07-06
NO894725D0 (no) 1989-11-27
AR243942A1 (es) 1993-09-30
NZ231549A (en) 1992-09-25
IE893798L (en) 1990-06-01
AU631150B2 (en) 1992-11-19
FR2639868A1 (fr) 1990-06-08
KR970009655B1 (ko) 1997-06-17
ATE90118T1 (de) 1993-06-15
ZA898987B (en) 1990-08-29
PT92480A (pt) 1990-06-29
FR2639868B1 (fr) 1991-05-31
DE68906863D1 (de) 1993-07-08
FI895742A0 (fi) 1989-11-30
AU4478189A (en) 1990-06-07
EP0371847A1 (fr) 1990-06-06
DK604989A (da) 1990-06-02
NO894725L (no) 1990-06-05
DE68906863T2 (de) 1994-01-13
ES2042043T3 (es) 1993-12-01
JPH02182956A (ja) 1990-07-17

Similar Documents

Publication Publication Date Title
EP0504368B1 (fr) Nontisse lie hydrauliquement et son procede de fabrication
EP0459916B1 (fr) Eléments de friction en matériau composite carbone-carbone à texture différentielle, procédés et dispositifs pour les fabriquer
EP0371847B1 (fr) Matériau composite à base de fibres minérales, dispositif d'obtention et application du matériau composite
CA1304569C (fr) Procede et dispositif pour la formation de feutre de fibres contenant unproduit additionnel
LU86057A1 (fr) Procede de formation a sec de tabac reconstitue et produit obtenu par ce procede
EP1689924A1 (fr) Mat de verre aiguillete
EP2467524B1 (fr) Armature textile a fils de verre continus
FR2561577A1 (fr) Matelas fibreux moulable et son procede de fabrication
CA2212921C (fr) Procede de fabrication d'un mat de verre et produit en resultant
EP2204483A2 (fr) Mélange de ouate de cellulose et de fibres végétales ou animales, procédé de fabrication et matériau isolant thermique
EP0816707A1 (fr) Matériau de frottement destiné à équiper un dispositif mettant en oeuvre un frottement à sec, ainsi que le procédé de réalisation d'un tel matériau de frottement et du dispositif qui en est équipé, notamment pour véhicule automobile
EP2004564B1 (fr) Mat de verre aiguillete
CA2268795A1 (fr) Procede de fabrication d'un fil et produits comprenant ce fil
CA2088296A1 (fr) Procede d'obtention d'un produit composite par moulage
EP0403347B1 (fr) Produit composite à base de fibres minérales, utile pour la fabrication de pièces moulées
EP0539290A1 (fr) Panneau acoustique et application en tant que baffle absorbant acoustique
BE894826A (fr) Procede et appareil pour la fabrication de torons coupes et comprimes
FR2759384A1 (fr) Procede de recyclage de revetements de sol ou muraux textiles et nappes fibreuses obtenues par la mise en oeuvre de ce procede
FR2468676A1 (fr) Perfectionnements a la fabrication de feutres d'isolation et de rembourrage par agglomeration de fibres textiles a l'aide de liants synthetiques
FR2682403A1 (fr) Materiau isolant a souffler.
FR2885144A1 (fr) Structure fibreuse a liant charge
FR2674587A1 (fr) Elements de friction en materiau composite carbone-carbone a texture differentielle, procedes et dispositifs pour les fabriquer.
JPH0454695B2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19901004

17Q First examination report despatched

Effective date: 19920225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 90118

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68906863

Country of ref document: DE

Date of ref document: 19930708

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930810

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042043

Country of ref document: ES

Kind code of ref document: T3

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89403181.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961115

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19971119

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971120

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971121

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971128

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19971130

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 89403181.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

BERE Be: lapsed

Owner name: ISOVER SAINT-GOBAIN

Effective date: 19981130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991021

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991117

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19981212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051120