EP0357649A1 - Pressure-relief and filter device for pressurized water reactors - Google Patents
Pressure-relief and filter device for pressurized water reactorsInfo
- Publication number
- EP0357649A1 EP0357649A1 EP88903768A EP88903768A EP0357649A1 EP 0357649 A1 EP0357649 A1 EP 0357649A1 EP 88903768 A EP88903768 A EP 88903768A EP 88903768 A EP88903768 A EP 88903768A EP 0357649 A1 EP0357649 A1 EP 0357649A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- filter
- container
- filter device
- pressure relief
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 230000014759 maintenance of location Effects 0.000 claims abstract description 7
- 239000000443 aerosol Substances 0.000 claims abstract description 5
- 230000004992 fission Effects 0.000 claims abstract description 4
- 238000007789 sealing Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- XMBWDFGMSWQBCA-RNFDNDRNSA-M iodine-131(1-) Chemical compound [131I-] XMBWDFGMSWQBCA-RNFDNDRNSA-M 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 claims description 2
- 231100000719 pollutant Toxicity 0.000 claims description 2
- 239000011150 reinforced concrete Substances 0.000 claims 3
- 238000011144 upstream manufacturing Methods 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract 1
- 239000007943 implant Substances 0.000 abstract 1
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/004—Pressure suppression
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to a pressure relief and filter device for nuclear plants, in particular for the containment of pressurized water reactors, according to the preamble of claim 1.
- Such a pressure relief and filter device is known, e.g. from the magazine "Nuclear Engineering International", March 1987, page 37, upper picture in the right column.
- the filter section is staggered three times: a prefilter for grain sizes from 1 to 10 ⁇ m is followed by a stainless steel mesh filter for grain sizes of 0.2 ⁇ m and then an iodine filter, which contains radio iodine with a degree of separation of 99 to 99.9% holds back. None more is said about the filter construction.
- the invention is intended to optimally create a pressure relief and filter device which bears this RSK requirement and which requires only a small construction volume and is therefore also accommodated within the containment, i.e. in particular can also be retrofitted.
- Other features of the task are: Universal usability for steam-gas mixtures and also dry gases, high degree of separation, if necessary
- Filter candles are used as filter elements, as have long been proven for the purification of waste water. These are reliable filter elements that are produced in large quantities.
- the filter candles consist of a steel tube with openings, on the outer surface of which several layers of pressed stainless steel wire mesh (stainless steel fiber fleece) with different wire diameters and sintered steel can be applied. Depending on the required compressive strength, additional support structures can be added.
- the filter candles can be combined in a tube plate within the pressure vessel to form batteries, the droplet water separator or water / mist separator integrated in the pressure vessel being particularly advantageous.
- the filter candle pressure vessel is ideally suited as part of the pressure relief and filter device according to the invention to meet the requirements that exist for the filtered pressure reduction in a DWR containment in the (in itself unlikely) postulated accident of the core meltdown.
- FIG. 1 shows in elevation a filter candle pressure vessel with an integrated droplet separator and condensate outlet.
- FIG. 2 shows the assignment of such a filter candle pressure vessel to a pressurized water nuclear reactor system including the associated pipelines and shut-off and expansion devices, the filter candle pressure vessel being arranged within the safety vessel.
- FIG. 3 shows a variant of the pressure relief and filter device according to FIG. 2, in which the filter candle pressure container is not arranged in the safety container, but in the reactor building annulus.
- 4 shows a second variant of the device according to FIG. 2, in which, in deviation from FIG. 2 and FIG. 3, the filter candle pressure container is not arranged in the safety container and not in the reactor building annular space, but in the auxiliary system building in the vicinity of the exhaust air chimney.
- FIG. 5 shows a single filter candle, screwed into a tube plate, enlarged and partly in section.
- the filter candle pressure vessel FKD hereinafter abbreviated as pressure vessel r, is shown in a highly simplified manner in FIG. 1? It " is a hollow cylindrical, elongated steel container, which is preferably provided with an austenitic internal plating.
- the pressure container FKD is divided into an upper container area 1 and a lower container part 2 by an axially normal parting joint aa in its upper container area. Both container parts 1, 2 are tightly clamped together by means of ring flanges 1.1 and 2.1 with the interposition of a tube plate 3, of which an outer ring section or a ring flange is clamped in. Indicated by dash-dotted lines
- Flange screws 4 are distributed over the circumference of the ring flanges 1.1., 2.1.
- the tube plate 3 has at least one ring of holes y which form a hole field, ie at least one hole circle is provided, but a plurality or a plurality of concentric hole circles can also be provided in the tube plate 3.
- the elongated filter candles 5 are inserted, and - as indicated for the one quadrant of the tube plate 3 by dashed lines by the lines 5 "- in the form of a bundle or a battery the
- FIG. 5 shows, for example, how an individual filter candle 5 can be constructed and held on the tube plate 3.
- the neck part 50 has an annular end plate 51 with an abutment ring shoulder 51.1 and a threaded connector 52 with an external thread, which extends upward from the end plate 51 and with which the filter candle 5 is screwed into the holes or bores 3.0 of the tube plate 3 which have a corresponding internal thread, that the ring shoulder 51.1 lies sealingly against the tube plate underside, wherein an O-ring 53, as shown, can be inserted into an annular groove on the upper side of the end plate 51, which results in a further sealing system under elastic deformation.
- the threaded connector 52 also has an internal polygon 52.1 for attaching screwing tools.
- the inner perforated tube 50 can, as shown, also be axially normal in two sections be divided, which are rigidly connected to one another by an intermediate ring 54, for example welded to one another.
- two axially one behind the other cylinder sections of the two noble metal fiber fleece layers 55.1, 55.2 and 56.1, 56.2 are provided, which are applied externally to the circumference of the two perforated tube sections 50.1 and 50.2 and with their front ends in Ring ⁇ grooves 57, 58 (in the region of the two ends of the filter candle 5) and 59.1, 59.2 are gripped and held on the intermediate ring 54.
- the annular groove 58 is located on the inside of a lower end cap, which forms the lower end 5u of the filter candle 5.
- This lower end cap is screwed to the lower end wall 50.3 of the inner perforated tube 50 or to the lower section 50.2 of this perforated tube, for example by means of a bolt 60 which is fastened to the lower end wall 50.3 and penetrates it, onto which the lower end cap 5u with a central bore is pushed and then by screwing on the nut (sealing inserts and spring washers, not shown, can be provided) is attached.
- a bolt 60 which is fastened to the lower end wall 50.3 and penetrates it, onto which the lower end cap 5u with a central bore is pushed and then by screwing on the nut (sealing inserts and spring washers, not shown, can be provided) is attached.
- so-called metal membrane filter layers could also be used, in which sintered, porous stainless steel serves as filter material. The production of the latter filter material is described, for example, in US Pat
- the container lower part 2 is below the filter candles 5 and above the inlet connection 2.2 with a droplet water separator 6, consisting of a (not shown) stainless steel wire network with holder, also as a wire designated esh-Type, provided that, as the flow arrows fl illustrate, in
- the flow path of the mixture stream lies between inlet nozzle 2.2 and filter candles 5.
- the lower part 2 is closed at the bottom by a bottom cap 2.3 with condensate outlet plugs 8;
- the condensate dripping downward from the water separator 6 collects at the bottom of the calotte chamber 2a and flows through the outlet connection 8 to a condensate collecting container (not shown).
- the illustrated acute-angled beveling of the mouth of the inlet connection 2.2 results in a (desired) steam deflection which increases centrifugal force and which is favorable for pre-separation.
- a rupture disk can be arranged inside the inlet connection 2.2 or the adjacent inlet line 9 (compare FIGS. 2 to 4), which closes the inside of the pressure vessel FKD to the outside and only tears or bursts at a response pressure difference of, for example, 5 bar, so that the interior of the pressure vessel can be kept on standby without any attack of particle-laden flows until the response.
- a pressure vessel For a pressurized water nuclear power plant of the 1300 MW class, such a pressure vessel to be kept ready would be sufficient. Since it is relatively compact, it can be accommodated in the containment, as shown in FIG. 2 in principle.
- the spherical safety container made of steel, which surrounds and encloses the containment C is referred to as SBI and the wall of the reactor building surrounding this safety container SB, with the release of a reactor building annulus RR, as SBII.
- This reactor building RG with its walls in cell or chamber construction, surrounds the safety container SBI as a secondary shield; it is designated as a whole as RG.
- the auxiliary plant building HAG is adjacent to the wall SBII of the reactor building RG, and an exhaust air chimney AK is shown schematically adjacent to it.
- the discharge line 7 of the pressure vessel FKD is from containment C through the reactor building annulus RR and the auxiliary plant building HAG laid to the lower area of the exhaust air chimney AG and ends in an expansion device EE, which can be, for example, an expansion throttle or a combination of at least two expansion valves connected in parallel.
- an expansion device EE which can be, for example, an expansion throttle or a combination of at least two expansion valves connected in parallel.
- the outflow line 7 sealingly penetrates the wall of the safety container SBI (passage point D1), the wall SBII of the reactor building RG (passage point D2) and the outer wall of the auxiliary plant building HAG (passage point D3).
- the section 7.2 of the outflow line 7 which runs within the reactor building annulus RR is provided with a shut-off valve arrangement consisting of the two motor-operated shut-off valves VI, V2 connected in series with one another.
- V1-V2 may also be a rupture disk arrangement BS be connected in parallel, which provides for an automatic opening E 'of the Abströmpfades at a predetermined response differential pressure, both shut-off valves should clamp in its closed position unexpectedly.
- the rupture disc arrangement is shown in dashed lines.
- the variant of the filter and relief device according to FIG. 2 shown in FIG. 3 differs from that according to FIG. 2 in that the pressure vessel FKD is accommodated in the reactor building annular space RR and the shut-off valve arrangement V1-V2 also in the reactor building annular space RR, however, is arranged within the inflow line 9, specifically in the line section 9.2, which extends from the wall of the safety container SBI to the pressure container FKD, only a section 9.1 of the inflow line 9 having to be accommodated within the containment C.
- the second variant of the pressure relief and filter device according to FIG. 4 differs from the first variant according to FIG. 3 in that the pressure vessel FKD has been moved further outwards, namely from the reactor building annular space RR into the auxiliary plant building HAG.
- the pressure vessel FKD has been moved further outwards, namely from the reactor building annular space RR into the auxiliary plant building HAG.
- the third line bushing D3 belongs to the outflow line 7.
- the outflow line 7 of the pressure vessel (expediently via a suitable expansion path) via a to increase radio-iodine retention and to further improve the degree of retention of other pollutants
- Post-filter section consisting of an activated carbon and possibly a suspended matter filter section
- the auxiliary filter building of the nuclear power plant is generally housed in the auxiliary system building, and so one could use some of the modules of this auxiliary filter system as a post-filter section for the mixture flows in the outflow line 7, before these are then passed into the exhaust air stack AK .
- shut-off valve arrangement V1-V2 could be provided with a rupture disk valve BS, as shown in principle in FIG. Tear membranes or bursting disks in the inflow line 9 mentioned in connection with FIG. 1 are not shown in FIGS. 2 to 4.
- the shut-off valve arrangement V1-V2 in the reactor building annulus RR, either in the course of the outflow line 7 (FIG. 2) or in the course of the inflow line 9 (FIG. 3 , FIG4).
- the outflow line is longest with its three sections 7.1 in the containment, 7.2. in the reactor building annulus RR and 7.3 in
- the inflow line 9 is approximately as long as the outflow line in FIG. 2, with its sections 9.1, 9.2 and 9.3. 3 shows a combination solution in which Section 9.2 of the inflow line and Section 7.2 of the outflow line are both laid in the reactor building annulus because the pressure vessel FKD is also arranged there.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Le problème technique à résoudre est la rétention de produits de fission, notamment d'aérosols chargés de matière fissile, contenus dans des mélanges brûlants vapeur/gas en surpression qui sont censés se produire en cas de panne et sont présents à l'intérieur de l'enceinte de confinement, ainsi que la détente des flux de mélange gazeux purifiés rejetés dans l'atmosphère. A cet effet, une enceinte pressurisée (FDK) renferme au moins un implant de filtres en forme de bougie (5, 3), une tubulure d'admission (2.2) pour le flux de mélange gazeux à filtrer, située du côté admission des filtres en forme de bougie (5), une tubulure de sortie (1.2) destinée au flux de mélange gazeux purifié et située du côté écoulement des filtres en forme de bougie (5), et des canalisations pourvues de systèmes d'arrêt et de détente et raccordées aux tubulures d'admission et de sortie du flux de mélange gazeux. A l'intérieur de l'enceinte, un séparateur d'eau du type à goutellettes (6) est avantageusement disposé dans la trajectoire d'écoulement du flux de mélange gazeux entre la tubulure d'admission (2.2) et le côté admission des filtres (5), et un collecteur de condensat pourvu d'une tubulure de sortie de condensat (8) est avantageusement agencé au-dessous dudit séparateur (6).The technical problem to be solved is the retention of fission products, in particular aerosols laden with fissile material, contained in hot steam / gas mixtures under overpressure which are supposed to occur in the event of a breakdown and are present inside the tank. 'containment enclosure, as well as the expansion of the purified gas mixture streams discharged into the atmosphere. For this purpose, a pressurized enclosure (FDK) contains at least one candle-shaped filter implant (5, 3), an inlet pipe (2.2) for the flow of the gas mixture to be filtered, located on the inlet side of the filters candle-shaped (5), an outlet pipe (1.2) for the flow of purified gas mixture and located on the flow side of the candle-shaped filters (5), and pipelines provided with shut-off and expansion systems and connected to the inlet and outlet pipes of the gas mixture flow. Inside the enclosure, a water separator of the droplet type (6) is advantageously arranged in the flow path of the gas mixture flow between the intake manifold (2.2) and the intake side of the filters. (5), and a condensate collector provided with a condensate outlet pipe (8) is advantageously arranged below said separator (6).
Description
Druckentlastungs- und Filtereinrichtung für Druckwasserreakto Pressure relief and filter device for pressurized water reactor
Die Erfindung bezieht sich auf eine Druckentlastungs- und Filtereinrichtung für kerntechnische Anlagen, insbesondere für den Sicherheitsbehälter von Druckwasserreaktoren, gemäß Ober- begriff des Patentanspruchs 1.The invention relates to a pressure relief and filter device for nuclear plants, in particular for the containment of pressurized water reactors, according to the preamble of claim 1.
Eine solche Druckentlastungs- und Filtereinrichtung ist bekannt, z.B. aus der Zeitschrift "Nuclear Engineering International", März 1987, Seite 37, oberes Bild in der rechten Spalte. Die Filterstrecke ist dabei dreifach gestaffelt: Auf ein Vorfilter für Korngrößen von 1 bis 10,um folgt ein rostfreies Stahl¬ gewebefilter für Korngrößen um 0,2,um und darauf ein Jodfilter, welches das Radiojod mit einem Abscheidegrad von 99 bis 99,9 % zurückhält. Über die Filterkonstruktion ist nichts Näheres ausgesagt.Such a pressure relief and filter device is known, e.g. from the magazine "Nuclear Engineering International", March 1987, page 37, upper picture in the right column. The filter section is staggered three times: a prefilter for grain sizes from 1 to 10 µm is followed by a stainless steel mesh filter for grain sizes of 0.2 µm and then an iodine filter, which contains radio iodine with a degree of separation of 99 to 99.9% holds back. Nothing more is said about the filter construction.
Aus der DE-PS 32 12 265 läßt sich weiterhin eine gattungsgemäße Druckentlastungs- und Filtereinrichtung entnehmen, die allerdings für den Einsatz bei gasgekühlten Kernkraftanlagen vorgesehen ist. Hier sind auf dem Wege des zu filternden Gemischstromes Regenerativ-Wär etauscher zur Kühlung, eine Ablagerungsstrecke für feste Spaltprodukte, eine Rekombinations¬ anlage für brennbare Gase und ferner ein Filtersystem für gasförmige Spaltprodukte wie Jod und Schwebstoffe vorgesehen.. Auch hier ist über die konstruktive Ausbildung des Filtersystems nichts Näheres gesagt. Eng im Zusammenhang mit den vorgenannten beiden Literaturstellen steht die Phase B der Deutschen Risiko¬ studie Kernkraftwerke, aufgrund deren Ergebnisse die Reaktor¬ sicherheitskommission (RSK) in ihrer Sitzung im Dezember 1986 zur Reduzierung der Aktivitätsabgabe eine gefilterte Druckent¬ lastung des Reaktorsicherheitsbehälters bei Störfällen mit langsamem Druckaufbau im Reaktorsicherheitsbehälter vorge¬ schlagen hat.From DE-PS 32 12 265 a generic pressure relief and filter device can also be seen, which is, however, intended for use in gas-cooled nuclear power plants. Here, on the way of the mixture flow to be filtered, regenerative heat exchangers for cooling, a deposition section for solid fission products, a recombination system for combustible gases and also a filter system for gaseous fission products such as iodine and suspended matter are provided. . Here too, nothing is said about the design of the filter system. Phase B of the German Risk Study Nuclear Power Plants is closely related to the aforementioned two references, based on the results of which the Reactor Safety Commission (RSK) at its meeting in December 1986 to reduce the activity charge with a filtered pressure relief of the reactor containment in the event of accidents proposed slow pressure build-up in the reactor containment.
Durch die Erfindung soll eine dieser RSK-Forderung auf optimale Weise rechnungtragende Druckentlastungs- und Filtereinrichtung geschaffen werden, welche nur ein kleines Bauvolumen benötigt und sich deshalb auch innerhalb des Containments unterbringen, d.h. insbesondere auch nachrüsten läßt. Weitere Merkmale der Aufgabe sind: Universelle Verwendbarkeit für Dampf-Gas-Gemische und auch trockene Gase, hoher Abscheidegrad, im BedarfsfalleThe invention is intended to optimally create a pressure relief and filter device which bears this RSK requirement and which requires only a small construction volume and is therefore also accommodated within the containment, i.e. in particular can also be retrofitted. Other features of the task are: Universal usability for steam-gas mixtures and also dry gases, high degree of separation, if necessary
Auswechselbarkeit der Filterelemente und Kombinationsmöglichkeit mit einem Wasserabscheider sowie einem Reko binator bzw. einer Verbrennungseinrichtung für Wasserstoff.Interchangeability of the filter elements and possible combinations with a water separator and a reco binator or a combustion device for hydrogen.
Erfindungsgemäß wird die gestellte Aufgabe mit einer gattungs¬ gemäßen Druckentlastungs- und Filtereinrichtung durch die im Kennzeichen des Patentanspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen sind in den Patentansprüche 2 bis 11 angegeben«,According to the invention, the object is achieved with a generic pressure relief and filter device by the features specified in the characterizing part of patent claim 1. Advantageous further developments are specified in claims 2 to 11,
Die mit der Erfindung erzielbaren Vorteile sind vor allem in Folgendem zu sehen_- Es werden als Filterelemente Filterkerzen verwendet, wie sie sich für die Reinigung von Abwasser seit langem schon bewährt haben. Es handelt sich damit um zuver- lässige, in hoher Stückzahl produzierte Filterelemente. Die Filterkerzen bestehen aus einem Stahlrohr mit Durchbrüchen, auf dessen äußerer Oberfläche mehrere Lagen von gepreßtem Edelstahldrahtgeflecht (Edelstahl-Faservlies) mit unterschied¬ lichen Drahtdurchmessern und gesintertem Stahl aufgebracht werden können. Je nach der verlangten Druckfestigkeit können zusätzliche Stützkonstruktionen hinzugefügt werden. Gemäß Anspruch 3 können die Filterkerzen in einer Rohrplatte innerhalb des Druckbehälters zu Batterien kombiniert werden, wobei der in Druckbehälter integrierte Tropfchen-Wasserabscheider bzw. Wasser-/Nebelabscheider besonders vorteilhaft ist. DerThe advantages which can be achieved with the invention can be seen above all in the following. Filter candles are used as filter elements, as have long been proven for the purification of waste water. These are reliable filter elements that are produced in large quantities. The filter candles consist of a steel tube with openings, on the outer surface of which several layers of pressed stainless steel wire mesh (stainless steel fiber fleece) with different wire diameters and sintered steel can be applied. Depending on the required compressive strength, additional support structures can be added. According to claim 3, the filter candles can be combined in a tube plate within the pressure vessel to form batteries, the droplet water separator or water / mist separator integrated in the pressure vessel being particularly advantageous. The
Abscheidegrad eines solchen Druckbehälters mit eingesetzter Filterkerzen-Batterie ist für Aerosole 99,9 % . Der Betriebs¬ druck ist im allgemeinen 15 bar, es ist aber Ertüchtigung des Druckbehälters bis zu 180 bar möglich. Der Druckverlust beträgt lediglich 45 mbar. Die maximale Temperatur der zu filternden Gemischströme und damit der Filterkerzen kann bis zu 650° C betragen. Die relative Feuchte kann, bezogen auf den Abscheide¬ grad für Aerosole, 100 % betragen. Die Einbaumaße eines solchen Filterkerzen-Druckbehälters sind, wenn man eine Filterkerzen¬ länge von 1 m und einem Durchmesser von 100 mm zugrundelegt, ca. 1,5 m im Durchmesser x 3 m in der Höhe. Aufgrund dieser ausgezeichneten Eigenschaften ist der Filterkerzen-Druckbeh lter im Rahmen der Druckentlastungs- und Filtereinrichtung nach der Erfindung zur Erfüllung der Anforderungen, wie sie zum gefilterten Druckabbau bei einem DWR-Containment im (an sich unwahrscheinlichen) postulierten Störfall des Kernschmelzens bestehen, bestens geeignet.Degree of separation of such a pressure vessel with an inserted one Filter cartridge battery is 99.9% for aerosols. The operating pressure is generally 15 bar, but the pressure vessel can be upgraded up to 180 bar. The pressure loss is only 45 mbar. The maximum temperature of the mixture flows to be filtered and thus the filter candles can be up to 650 ° C. The relative humidity, based on the degree of separation for aerosols, can be 100%. The installation dimensions of such a filter candle pressure vessel are, if one assumes a filter candle length of 1 m and a diameter of 100 mm, approximately 1.5 m in diameter x 3 m in height. Because of these excellent properties, the filter candle pressure vessel is ideally suited as part of the pressure relief and filter device according to the invention to meet the requirements that exist for the filtered pressure reduction in a DWR containment in the (in itself unlikely) postulated accident of the core meltdown.
Im folgenden werden anhand mehreren, in der Zeichnung dargestellter Ausführungsbeispiele die Druckentlastungs- und Filtereinrichtung nach der Erfindung sowie ihre Wirkungsweise und ihre Vorteile noch näher erläutert. In der Zeichnung zeigt in schematischer, vereinfachter Darstellung:In the following, the pressure relief and filter device according to the invention, its mode of operation and its advantages are explained in more detail with reference to several exemplary embodiments shown in the drawing. The drawing shows in a schematic, simplified representation:
FIG 1 im Aufriß einen Filterkerzen-Druckbehalter mit integriertem Tröpfchenabscheide und Kondensataustritt.1 shows in elevation a filter candle pressure vessel with an integrated droplet separator and condensate outlet.
FIG 2 die Zuordnung eines solchen Filterkerzen-Druckbehälters zu einer Druckwasser-Kernreaktoranlage einschließlich der zu¬ gehörigen Rohrleitungen und Absperr- und Entspannnungs- Einrichtungen, wobei der Filterkerzen-Druckbehalter innerhalb des Sicherheitsbehälters angeordnet ist.2 shows the assignment of such a filter candle pressure vessel to a pressurized water nuclear reactor system including the associated pipelines and shut-off and expansion devices, the filter candle pressure vessel being arranged within the safety vessel.
FIG 3 eine Variante der Druckentlastungs- und Filtereinrichtung nach FIG 2, bei der der Filterkerzen-Druckbehalter nicht im Sicherheitsbehälter, sondern im Reaktorgebäude-Ringraum angeordnet ist. FIG 4 eine zweite Variante zur Einrichtung nach FIG 2, bei der abweichend von FIG 2 und FIG 3 der Filterkerzen-Druckbehalter nicht im Sicherheitsbehälter und nicht im Reaktorgebäude- Ringraum, sondern im Hilfsanlagengebäude in Nähe des Abluft- kamins angeordnet ist.3 shows a variant of the pressure relief and filter device according to FIG. 2, in which the filter candle pressure container is not arranged in the safety container, but in the reactor building annulus. 4 shows a second variant of the device according to FIG. 2, in which, in deviation from FIG. 2 and FIG. 3, the filter candle pressure container is not arranged in the safety container and not in the reactor building annular space, but in the auxiliary system building in the vicinity of the exhaust air chimney.
FIG 5 eine einzelne Filterkerze, eingeschraubt in eine Rohrplatte, vergrößert und zum Teil im Schnitt.5 shows a single filter candle, screwed into a tube plate, enlarged and partly in section.
Der Filterkerzen-Druckbehalter FKD, nachfolgend abgekürzt als Druckbehälte-r bezeichnet, ist in FIG 1 stark vereinfacht dargestellt? er "ist ein hohlzylindrischer langgestreckter Stahlbehälter, der vorzugsweise mit einer austenitischen Innen- platierung versehen ist. Der Druckbehälter FKD ist durch eine achsnormale Teilfuge a-a in seinem oberen Behälterbereich in ein Behälter-Oberteil 1 und ein Behälter-Unterteil 2 unterteilt. Beide Behälterteile 1, 2 sind mittels Ringflanschen 1.1 bzw. 2.1 dichtend unter Zwischenlage einer Rohrplatte 3 zusammen¬ gespannt, von der eine äußere Ringpartie bzw. ein Ringflansch eingespannt ist. Durch strichpunktierte Linien angedeuteteThe filter candle pressure vessel FKD, hereinafter abbreviated as pressure vessel r, is shown in a highly simplified manner in FIG. 1? It " is a hollow cylindrical, elongated steel container, which is preferably provided with an austenitic internal plating. The pressure container FKD is divided into an upper container area 1 and a lower container part 2 by an axially normal parting joint aa in its upper container area. Both container parts 1, 2 are tightly clamped together by means of ring flanges 1.1 and 2.1 with the interposition of a tube plate 3, of which an outer ring section or a ring flange is clamped in. Indicated by dash-dotted lines
Flanschschrauben 4 sind über den Umfang der Ringflanschen 1.1., 2.1 verteilt angeordnet. Die Rohrplatte 3 weist mindestens einen Kranz von Löchern aufy die ein Lochfeld bilden, d.h., es ist mindestens ein Lochkreis vorgesehen, es können jedoch auch eine Mehrzahl oder Vielzahl konzentrischer Lochkreise in der Rohrplatte 3 vorgesehen sein. In die Löcher 3.0, von denen eines näher erkennbar ist, sind die langgestreckten Filter¬ kerzen 5 eingefügt, und - wie es für den einen Quadranten der Rohrplatte 3 strichpunktiert durch die Linien 5" angedeutet ist - in Form eines Bündels oder einer Batterie hängend an derFlange screws 4 are distributed over the circumference of the ring flanges 1.1., 2.1. The tube plate 3 has at least one ring of holes y which form a hole field, ie at least one hole circle is provided, but a plurality or a plurality of concentric hole circles can also be provided in the tube plate 3. In the holes 3.0, one of which can be seen in more detail, the elongated filter candles 5 are inserted, and - as indicated for the one quadrant of the tube plate 3 by dashed lines by the lines 5 "- in the form of a bundle or a battery the
Rohrplatte 3 gehaltert, so daß sie in das Behälter-Unterteil 2 hineinragen. Die hängende Halterung ist unter dichtender Auflage an entsprechenden Sitzflächen der Rohrplatte 3 vorgenommen. Da die Filterkerzen 5 innen hohl sind und ihre Mantelflächen aus einem gasdurchlässigen Edelstahl-Faservlies bestehen sowie ihre untere Stirnfläche 5u dicht ist, so strömen die zu reinigenden Gemischströme gemäß Richtung der Pfeile fl im Ansprechfalle des Druckbehälters FKD durch den Eintritts¬ stutzen 2.2, das Netzwerk eines noch zu erläuternden Wasser¬ abscheiders 6, dann weiter aufwärts durch die Mantelflächen 5m der Filterkerzen 5 unter Rückhaltung der Aerosole bzw. Spalt- stoffpartikel in dem Edelstahl-Faservlies der Mantelflächen 5m, wobei dann das Dampf-Gas-Gemisch durch den hohlen Innenraum 5i der Filterkerzen 5 nach oben strömt und durch einen Auslaßkanal 5.1 im oberen Halsteil 50 in den Kammerraum la des kalotten- förmigen Behälter-Oberteils 1 einströmt und von hier dann nach oben durch den Auslaßstutzen 1.2 in die nachgeschaltete (in Fig 1 nicht dargestellte) Abströmleitung 7 (vergleiche FIG 2 bis 4).Pipe plate 3 held so that they protrude into the lower part 2 of the container. The hanging bracket is made with a sealing pad on corresponding seating surfaces of the tube plate 3. Since the filter candles 5 are hollow on the inside and their outer surfaces consist of a gas-permeable stainless steel fiber fleece and their lower end surface 5u is tight, flow the mixture flows to be cleaned in the direction of the arrows fl in the response case of the pressure vessel FKD through the inlet connection 2.2, the network of a water separator 6 to be explained, then further upward through the outer surfaces 5m of the filter candles 5 with retention of the aerosols or gap Material particles in the stainless steel fiber fleece of the outer surfaces 5m, the steam / gas mixture then flowing upwards through the hollow interior 5i of the filter candles 5 and through an outlet duct 5.1 in the upper neck part 50 into the chamber space la of the spherical cap top part 1 flows in and from here upwards through the outlet port 1.2 into the downstream (not shown in FIG. 1) outflow line 7 (compare FIGS. 2 to 4).
FIG 5 zeigt beispielsweise, wie eine einzelne Filterkerze 5 aufgebaut und an der Rohrplatte 3 gehaltert sein kann. Auf ein inneres Lochrohr 50 aus Edelstahl, welches am unteren Ende einen dichten Boden 50.3 aufweist, ist am oberen Ende der eine obere Endkappe bildende Halsteil 5o befestigt, z.B. angeschweißt. Der Halsteil 5o weist eine ringförmige Endplatte 51 mit Anlageringschulter 51.1 sowie einen sich von der Endplatte 51 nach oben erstreckenden Gewindestutzen 52 mit Außengewinde auf, mit welchem die Filterkerze 5 in die ein entsprechendes Innengewinde aufweisenden Löcher bzw. Bohrungen 3.0 der Rohrplatte 3 so eingeschraubt ist, daß sich die Ring¬ schulter 51.1 dichtend gegen die Rohrplatten-Unterseite legt, wobei in eine Ringnut an der Oberseite der Endplatte 51 noch ein O-Ring 53, wie dargestellt, eingelegt sein kann, der unter elastischer Deformation eine weitere dichtende Anlage ergibt. Im Inneren des Halsteils 5.0 bzw. der Endplatte 51 und des Gewindestutzens 52 verläuft der Auslaßkanal 5.1 für die gefilterten Gemischströme, der Gewindestutzen 52 hat außerdem einen Innenmehrkant 52.1 zum Ansetzen von Schraubwerkzeug.5 shows, for example, how an individual filter candle 5 can be constructed and held on the tube plate 3. On an inner perforated tube 50 made of stainless steel, which has a dense bottom 50.3 at the lower end, the neck part 5o forming an upper end cap is fastened to the upper end, e.g. welded on. The neck part 50 has an annular end plate 51 with an abutment ring shoulder 51.1 and a threaded connector 52 with an external thread, which extends upward from the end plate 51 and with which the filter candle 5 is screwed into the holes or bores 3.0 of the tube plate 3 which have a corresponding internal thread, that the ring shoulder 51.1 lies sealingly against the tube plate underside, wherein an O-ring 53, as shown, can be inserted into an annular groove on the upper side of the end plate 51, which results in a further sealing system under elastic deformation. In the interior of the neck part 5.0 or the end plate 51 and the threaded connector 52, the outlet channel 5.1 for the filtered mixture flows, the threaded connector 52 also has an internal polygon 52.1 for attaching screwing tools.
Bei größerer Länge der Filterkerzen 5 kann, wie dargestellt, das innere Lochrohr 50 auch achsnormal in zwei Teilstücke unterteilt sein, welche durch einen Zwischenring 54 starr miteinander verbunden, z.B. miteinander verschweißt sind. Bei dieser geteilten Ausführung sind auch zwei axial hintereinander liegende Zylinderabschnitte der beiden Edelmetall-Faservlies- Schichten 55.1, 55.2 bzw. 56.1, 56.2 vorgesehen, welche außen auf den Umfang der beiden Lochrohrabschnitte 50.1 bzw. 50.2 aufgebracht und mit ihren stirnseitigen Enden jeweils in Ring¬ nuten 57, 58 (im Bereich der beiden Enden der Filterkerze 5) und 59.1, 59.2 am Zwischenring 54 gefaßt und gehaltert sind. Die Ringnut 58 befindet sich an der Innenseite einer unteren Endkappe, welche das untere Ende 5u der Filterkerze 5 bildet. Diese untere Endkappe ist an der unteren Stirnwand 50.3 des inneren Lochrohres 50 bzw. am unteren Abschnitt 50.2 dieses Lochrohres festgeschraubt, z.B. mittels eines an der unteren Stirnwand 50.3 befestigten, diese durchdringenden Bolzens 60, auf welchen die untere Endkappe 5u mit einer zentralen Bohrung aufgeschoben und dann durch Aufschrauben der Mutter (es können nicht dargestellte dichtende Beilagen und Federscheiben vorgesehen sein) befestigt ist. Anstelle der erwähnten Edelstahl-Faservlies-Filterschichten 55.1 bis 56.2, welche den Filtermantel 5m bilden, könnten auch sogenannte Metall-Membran- Filterschichten verwendet werden, bei welchen gesinterter, poröser Edelstahl als Filtermaterial dient. Die Herstellung des letzterwähnten Filtermaterials ist z.B. in der US-PS 4 562 039 beschrieben. Mit solchen Filterschichten kann man Partikel zurückhalten, deren Korngröße sogar unter ein,um liegt.With a greater length of the filter candles 5, the inner perforated tube 50 can, as shown, also be axially normal in two sections be divided, which are rigidly connected to one another by an intermediate ring 54, for example welded to one another. In this divided design, two axially one behind the other cylinder sections of the two noble metal fiber fleece layers 55.1, 55.2 and 56.1, 56.2 are provided, which are applied externally to the circumference of the two perforated tube sections 50.1 and 50.2 and with their front ends in Ring¬ grooves 57, 58 (in the region of the two ends of the filter candle 5) and 59.1, 59.2 are gripped and held on the intermediate ring 54. The annular groove 58 is located on the inside of a lower end cap, which forms the lower end 5u of the filter candle 5. This lower end cap is screwed to the lower end wall 50.3 of the inner perforated tube 50 or to the lower section 50.2 of this perforated tube, for example by means of a bolt 60 which is fastened to the lower end wall 50.3 and penetrates it, onto which the lower end cap 5u with a central bore is pushed and then by screwing on the nut (sealing inserts and spring washers, not shown, can be provided) is attached. Instead of the stainless steel fiber fleece filter layers 55.1 to 56.2 mentioned, which form the filter jacket 5m, so-called metal membrane filter layers could also be used, in which sintered, porous stainless steel serves as filter material. The production of the latter filter material is described, for example, in US Pat. No. 4,562,039. With such filter layers, particles can be retained, the grain size of which is even less than one µm.
Zurück zum Behälter FKD nach FIG 1: Der Behälter-Unterteil 2 ist unterhalb der Filterkerzen 5 und oberhalb des Eintritts- Stutzens 2.2 mit einem Tröpfchen-Wasserabscheider 6, bestehend aus einem (nicht näher dargestellten) Edelstahldraht-Netzwerk mit Halterung, auch als wire- esh-Type bezeichnet, versehen, der also, wie es die Strömungspfeile fl verdeutlichen, imBack to the container FKD according to FIG. 1: The container lower part 2 is below the filter candles 5 and above the inlet connection 2.2 with a droplet water separator 6, consisting of a (not shown) stainless steel wire network with holder, also as a wire designated esh-Type, provided that, as the flow arrows fl illustrate, in
Strömungsweg des noch nicht gefilterten Gemischstromes zwischen Eintrittsstutzen 2.2 und Filterkerzen 5 liegt. Das Unterteil 2 ist nach unten durch eine Bodenkalotte 2.3 mit Kondensat- austrittsstuzen 8 abgeschlossen; das von dem Wasserabscheider 6 nach unten abtropfende Kondensat sammelt sich am Boden des Kalottenraumes 2a und fließt durch den Austrittsstutzen 8 zu einem (nicht dargestellten) Kondensatsammelbehälter. Durch die dargestellte spitzwinklige Abschrägung der Mündung des Eintrittsstutzens 2.2 ergibt sich eine (gewünschte) fliehkraft¬ vergrößernde Dampfumlenkung, welche zur Vorabscheidung günstig ist. Der Eiπströmraum des Dampf-Gas-Gemisches unterhalb des Wasserabscheiders 6 ist mit 2b, der die Filterkerzen 5 aufnehmende, oberhalb des Wasserabscheiders 6 gelegene Raum des Unterteils 2 mit 2c bezeichnet. Innerhalb des Einströmstutzens 2.2 oder der daran angrenzenden Einströmleitung 9 (vergleiche FIG 2 bis 4) kann eine Berstscheibe angeordnet sein, die das Innere des Druckbehälters FKD nach außen abschließt und nur bei einer Ansprech-Druckdifferenz von z.B. 5 bar reißt bzw. birst, so daß das Innere des Druckbehälters bis zum Ansprechfalle ohne jeden Angriff partikelbeladener Ströme in Bereitschaft gehalten werden kann. Für ein Druckwasser-Kernkraftwerk der 1300 MW-Klasse würde ein solcher in Bereitschaft zu haltender Druckbehälter ausreichen. Da er verhältnismäßig kompakt ist, ist eine Unterbringung im Containment möglich, wie es FIG 2 prinzipiell zeigt.The flow path of the mixture stream, which has not yet been filtered, lies between inlet nozzle 2.2 and filter candles 5. The lower part 2 is closed at the bottom by a bottom cap 2.3 with condensate outlet plugs 8; The condensate dripping downward from the water separator 6 collects at the bottom of the calotte chamber 2a and flows through the outlet connection 8 to a condensate collecting container (not shown). The illustrated acute-angled beveling of the mouth of the inlet connection 2.2 results in a (desired) steam deflection which increases centrifugal force and which is favorable for pre-separation. The inflow space of the steam-gas mixture below the water separator 6 is denoted by 2b, the space of the lower part 2 receiving the filter candles 5 and located above the water separator 6 is denoted by 2c. A rupture disk can be arranged inside the inlet connection 2.2 or the adjacent inlet line 9 (compare FIGS. 2 to 4), which closes the inside of the pressure vessel FKD to the outside and only tears or bursts at a response pressure difference of, for example, 5 bar, so that the interior of the pressure vessel can be kept on standby without any attack of particle-laden flows until the response. For a pressurized water nuclear power plant of the 1300 MW class, such a pressure vessel to be kept ready would be sufficient. Since it is relatively compact, it can be accommodated in the containment, as shown in FIG. 2 in principle.
Darin ist der das Containment C nach außen umgebende und einschließende kugelförmige Sicherheitsbehälter aus Stahl mit SBI bezeichnet und die Wand des diesen Sicherheitsbehälter SB unter Freilassung eines Reaktorgebäude-Ringraumes RR umgebenden Reaktorgebäudes mit SBII. Dieses Reaktorgebäude RG umgibt mit seinen Wänden in Zellen- oder Kammer-Bauweise als Sekundär¬ abschirmung den Sicherheitsbehälter SBI, es ist als Ganzes als RG bezeichnet. An die Wand SBII des Reaktorgebäudes RG grenzt das Hilfsanlagengebäude HAG an, und benachbart zu diesem ist schematisch ein Abluft-Kamin AK eingezeichnet. Die Abström- leitung 7 des Druckbehälters FKD ist vom Containment C durch den Reaktorgebäude-Ringraum RR und das Hilfsanlagengebäude HAG bis zum unteren Bereich des Abluftkamins AG verlegt und endet in einer Entspannungseinrichtung EE, welch letztere z.B. eine Entspannungsdrossel sein kann oder eine Kombination von mindestens zwei zueinander parallel geschalteten Entspannungs- ventilen. Auf ihrem Weg durchdringt die Abströmleitung 7 dichtend die Wand des sich Sicherheitsbehälters SBI (Durch¬ führungsstelle Dl), die Wand SBII des Reaktorgebäudes RG (Durchführungsstelle D2) und die Außenwand des Hilfsanlagen- gebäudes HAG (Durchführungsstelle D3). Der innerhalb des Reaktorgebäude-Ringraumes RR verlaufende Abschnitt 7.2 der Abströmleitung 7 ist mit einer Absperrarmaturen-Anordnung, bestehend aus den beiden in Reihe zueinander geschalteten, motorgetriebenen Absperrventilen VI, V2 versehen. Parallel zu dieser Reihenschaltung V1-V2 kann auch eine Berstscheiben- anordnung BS parallelgeschaltet sein, welche für eine automatische Ö'ffnung des Abströmpfades bei einem vorgegebenen Ansprech-Differenzdruck sorgt, sollten beide Absperrventile in ihrer Schließstellung unerwarteter Weise klemmen. Die Berstscheiben-Anordnung ist gestrichelt dargestellt.In it, the spherical safety container made of steel, which surrounds and encloses the containment C, is referred to as SBI and the wall of the reactor building surrounding this safety container SB, with the release of a reactor building annulus RR, as SBII. This reactor building RG, with its walls in cell or chamber construction, surrounds the safety container SBI as a secondary shield; it is designated as a whole as RG. The auxiliary plant building HAG is adjacent to the wall SBII of the reactor building RG, and an exhaust air chimney AK is shown schematically adjacent to it. The discharge line 7 of the pressure vessel FKD is from containment C through the reactor building annulus RR and the auxiliary plant building HAG laid to the lower area of the exhaust air chimney AG and ends in an expansion device EE, which can be, for example, an expansion throttle or a combination of at least two expansion valves connected in parallel. On its way, the outflow line 7 sealingly penetrates the wall of the safety container SBI (passage point D1), the wall SBII of the reactor building RG (passage point D2) and the outer wall of the auxiliary plant building HAG (passage point D3). The section 7.2 of the outflow line 7 which runs within the reactor building annulus RR is provided with a shut-off valve arrangement consisting of the two motor-operated shut-off valves VI, V2 connected in series with one another. In parallel to this series circuit V1-V2 may also be a rupture disk arrangement BS be connected in parallel, which provides for an automatic opening E 'of the Abströmpfades at a predetermined response differential pressure, both shut-off valves should clamp in its closed position unexpectedly. The rupture disc arrangement is shown in dashed lines.
Die in FIG 3 dargestellte Variante der Filter- und Entlastungs- Einrichtung nach FIG 2 unterscheidet sich von derjenigen nach FIG 2 dadurch, daß der Druckbehälter FKD im Reaktorgebäude- Ringraum RR untergebracht und die Absperrarmaturen-Anordnung V1-V2 ebenfalls im Reaktorgebäude-Ringraum RR, jedoch innerhalb der Einströmleitung 9 angeordnet ist, und zwar im Leitungs¬ abschnitt 9.2, der von der Wand des Sicherheitsbehälters SBI bis zum Druckbehälter FKD reicht, wobei innerhalb des Containments C lediglich ein Abschnitt 9.1 der Einströmleitung 9 untergebracht werden muß.The variant of the filter and relief device according to FIG. 2 shown in FIG. 3 differs from that according to FIG. 2 in that the pressure vessel FKD is accommodated in the reactor building annular space RR and the shut-off valve arrangement V1-V2 also in the reactor building annular space RR, however, is arranged within the inflow line 9, specifically in the line section 9.2, which extends from the wall of the safety container SBI to the pressure container FKD, only a section 9.1 of the inflow line 9 having to be accommodated within the containment C.
Die zweite Variante der Druckentlastungs- und Filtereinrichtung nach FIG 4 unterscheidet sich von der ersten Variante nach FIG 3 dadurch, daß der Druckbehälter FKD noch weiter nach außen, und zwar vom Reaktorgebäude-Ringraum RR in das Hilfsanlagen¬ gebäude HAG, verlagert worden ist. Infolgedessen ergeben sich drei Abschnitte 9.1., 9.2, 9.3 der Einströmleitung 9 im Conatainment C, im Reaktorgebäude-Riπgraum R bzw. im Hilfs¬ anlagengebäude HAG mit entsprechenden druckdichten Leitungs¬ durchführungen Dl und D2. Die dritte Leitungsdurchführung D3 gehört zur Abströmleitung 7. Diese Variante nach FIG 4 ist besonders vorteilhaft, wenn zur verstärkten Radio-Jod-Rück¬ haltung und zur weiteren Verbesserung des Rückhaltegrades sonstiger Schadstoffe die Abströmleitung 7 des Druckbehälters (zweckmäßig über eine geeignete Entspannungsstrecke) über eine Nachschalt-Filterstrecke, bestehend aus einer Aktivkohle- und gegebenenfalls einer Schwebstoff-Filter-Strecke, geführt ist. Im Hilfsanlagengebäude ist im allgemeinen die Bedarfsfilter- Anlage des Kernkraftwerkes untergebracht, und so könnte man einen Teil der Module dieser Bedarfsfilter-Anlage als Nachschalt-Filterstrecke für die Gemischströme in der Abström¬ leitung 7, bevor diese dann in den Abluftkamin AK geleitet werden, mitbenutzen.The second variant of the pressure relief and filter device according to FIG. 4 differs from the first variant according to FIG. 3 in that the pressure vessel FKD has been moved further outwards, namely from the reactor building annular space RR into the auxiliary plant building HAG. As a result three sections 9.1., 9.2, 9.3 of the inflow line 9 in Conatainment C, in the reactor building ring room R or in the auxiliary plant building HAG with corresponding pressure-tight line bushings D1 and D2. The third line bushing D3 belongs to the outflow line 7. This variant according to FIG. 4 is particularly advantageous if the outflow line 7 of the pressure vessel (expediently via a suitable expansion path) via a to increase radio-iodine retention and to further improve the degree of retention of other pollutants Post-filter section, consisting of an activated carbon and possibly a suspended matter filter section, is guided. The auxiliary filter building of the nuclear power plant is generally housed in the auxiliary system building, and so one could use some of the modules of this auxiliary filter system as a post-filter section for the mixture flows in the outflow line 7, before these are then passed into the exhaust air stack AK .
Für die Beispiele nach FIG 3 und FIG 4 gilt ebenso, daß man die Absperrarmaturen-Anordnung V1-V2 mit einer Berstscheiben- Armatur BS, wie in FIG 2 prinzipiell dargestellt, versehen könnte. Im Zusammenhang mit FIG 1 erwähnte Reißmembranen oder Berstscheiben in der Einströmleitung 9 sind in den Figuren 2 bis 4 nicht dargestellt. Es ist, wie in den drei Beispielen nach FIG 2 bis 4 gezeigt, günstig, die Absperrarmaturen- Anordnung V1-V2 im Reaktorgebäude-Ringraum RR unterzubringen, entweder im Zuge der Abströmleitung 7 (FIG 2) oder im Zuge der Einströmleitung 9 (FIG 3, FIG4). In FIG 2 ist die Abström¬ leitung am längsten mit ihren drei Abschnitten 7.1 im Containment, 7.2. im Reaktorgebäude-Ringraum RR und 7.3 imIt also applies to the examples according to FIG. 3 and FIG. 4 that the shut-off valve arrangement V1-V2 could be provided with a rupture disk valve BS, as shown in principle in FIG. Tear membranes or bursting disks in the inflow line 9 mentioned in connection with FIG. 1 are not shown in FIGS. 2 to 4. As shown in the three examples according to FIGS. 2 to 4, it is advantageous to accommodate the shut-off valve arrangement V1-V2 in the reactor building annulus RR, either in the course of the outflow line 7 (FIG. 2) or in the course of the inflow line 9 (FIG. 3 , FIG4). In FIG. 2, the outflow line is longest with its three sections 7.1 in the containment, 7.2. in the reactor building annulus RR and 7.3 in
Hilfsanlagengebäude. In FIG 4 ist die Einströmleitung 9 etwa so lang wie die Abströmleitung in FIG 2, mit ihren Abschnitten 9.1, 9.2 und 9.3. FIG 3 zeigt eine Kombinationslösung, bei der der Abschnitt 9.2 der Einströmleitung und der Abschnitt 7.2 der Abströmleitung beide im Reaktorgebäude-Ringraum verlegt sind, weil dort auch der Druckbehälter FKD angeordnet ist. Auxiliary building. In FIG. 4, the inflow line 9 is approximately as long as the outflow line in FIG. 2, with its sections 9.1, 9.2 and 9.3. 3 shows a combination solution in which Section 9.2 of the inflow line and Section 7.2 of the outflow line are both laid in the reactor building annulus because the pressure vessel FKD is also arranged there.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3715466 | 1987-05-08 | ||
DE19873715466 DE3715466A1 (en) | 1987-05-08 | 1987-05-08 | PRESSURE RELIEF AND FILTER DEVICE FOR NUCLEAR ENGINEERING, IN PARTICULAR FOR PRESSURE WATER REACTORS |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0357649A1 true EP0357649A1 (en) | 1990-03-14 |
Family
ID=6327147
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88107256A Withdrawn EP0290028A1 (en) | 1987-05-08 | 1988-05-05 | Pressure release apparatus and filter assembly for nuclear installations, particularly for pressurized-water reactors |
EP88903768A Pending EP0357649A1 (en) | 1987-05-08 | 1988-05-05 | Pressure-relief and filter device for pressurized water reactors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88107256A Withdrawn EP0290028A1 (en) | 1987-05-08 | 1988-05-05 | Pressure release apparatus and filter assembly for nuclear installations, particularly for pressurized-water reactors |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP0290028A1 (en) |
DE (1) | DE3715466A1 (en) |
WO (1) | WO1988009039A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3806872C3 (en) * | 1988-03-03 | 1995-05-04 | Rwe Energie Ag | Arrangement for the pressure relief of the safety container of a nuclear power plant |
US5318606A (en) * | 1989-04-04 | 1994-06-07 | Pall Corporation | Filtration system |
EP0498016B1 (en) * | 1991-02-07 | 1995-04-26 | Siemens Aktiengesellschaft | Method and installation for the pressure relief of a nuclear power plant containment vessel |
FR2682214A1 (en) * | 1991-10-03 | 1993-04-09 | Trepaud Sa | Nuclear power station with radioactive material separator |
DE59205111D1 (en) * | 1992-03-05 | 1996-02-29 | Sulzer Thermtec Ag | Device for removing aerosols from the air of a nuclear reactor containment |
US5358552A (en) * | 1992-07-30 | 1994-10-25 | Pall Corporation | In situ filter cleaning system for gas streams |
FR2751116B1 (en) * | 1996-07-12 | 1998-11-13 | Framatome Sa | METHOD AND DEVICE FOR ELIMINATION OF HYDROGEN CONTAINED IN A FLUID PRESENT IN THE CONTAINMENT CONTAINMENT OF A NUCLEAR REACTOR AFTER AN ACCIDENT |
DE19743333C2 (en) * | 1997-09-30 | 2002-02-28 | Framatome Anp Gmbh | Blow-off device and method for blowing off steam |
DE10163615B4 (en) * | 2001-12-21 | 2004-02-05 | Siemens Ag | Method and device for detecting leaks in water-cooled electrical machines |
CN103325427B (en) * | 2012-03-19 | 2016-06-01 | 中科华核电技术研究院有限公司 | A kind of Passive containment cooling system and method |
US11612847B2 (en) * | 2018-01-31 | 2023-03-28 | Global Nuclear Fuel-Americas, Llc | Systems and methods for removing particulates of a fissile material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4050638A (en) * | 1974-04-24 | 1977-09-27 | Ngk Insulators, Ltd. | Radioactive matter containing waste gas treating installation |
DE3177046D1 (en) * | 1981-01-25 | 1989-06-01 | Jahn Hermann | Hazard avoiding or diminishing method for an installation and its environment due to reacting mixtures |
DE3212265C2 (en) * | 1982-04-02 | 1984-05-10 | Hochtemperatur-Reaktorbau GmbH, 5000 Köln | Process and device for the targeted derivation of activity from the reactor protection building of a gas-cooled nuclear power plant |
DE3234674A1 (en) * | 1982-09-18 | 1984-03-22 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | FILTER HOUSING FOR CLEANING GAS OR AIR FLOWS |
US4562039A (en) * | 1984-06-27 | 1985-12-31 | Pall Corporation | Porous metal article and method of making |
DE3628855A1 (en) * | 1986-08-25 | 1988-03-10 | Peter Dr Ing Niedner | Process and device for safeguarding the surroundings of nuclear power stations in the case of core meltdowns |
-
1987
- 1987-05-08 DE DE19873715466 patent/DE3715466A1/en active Granted
-
1988
- 1988-05-05 EP EP88107256A patent/EP0290028A1/en not_active Withdrawn
- 1988-05-05 WO PCT/DE1988/000270 patent/WO1988009039A1/en not_active Application Discontinuation
- 1988-05-05 EP EP88903768A patent/EP0357649A1/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO8809039A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP0290028A1 (en) | 1988-11-09 |
WO1988009039A1 (en) | 1988-11-17 |
DE3715466C2 (en) | 1992-01-16 |
DE3715466A1 (en) | 1988-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102019121342B4 (en) | Filter element for use as a particle filter in a cooling circuit of an electrochemical energy converter and use of the filter element in an arrangement with an electrochemical energy converter and a cooling circuit | |
EP0269847B1 (en) | Nuclear power plant with a security confinement | |
EP0357649A1 (en) | Pressure-relief and filter device for pressurized water reactors | |
DE3005146C2 (en) | Compressed gas connection for dust gas filters | |
DE19854951C2 (en) | System separator | |
DE2942224A1 (en) | DRAINAGE FILTER | |
DE60008593T2 (en) | TUBULAR OR HONEYCOMB FILTER ELEMENTS OF METAL AS SAFETY DEVICES FOR CLEANING FILTERS | |
EP0263993A2 (en) | Pressure suppression system for a security confinement of a nuclear reactor | |
DE3030321A1 (en) | CASSETTE FILTER FOR SEPARATING RADIOACTIVE PARTICLES FROM THE REACTOR COOLING WATER OF NUCLEAR POWER PLANTS. | |
DE3715467A1 (en) | PRESSURE RELIEF AND FILTER DEVICE FOR NUCLEAR TECHNICAL PLANTS, ESPECIALLY FOR BOILING WATER REACTORS | |
EP0025584B1 (en) | Filter for fission products from hot reactor cooling gas | |
DE69715005T2 (en) | MULTI MEMBRANE FILTER | |
EP0357931B1 (en) | Pressurized gas filter | |
DE3245548C2 (en) | ||
DE69408164T2 (en) | CENTRIFUGAL SEPARATOR IN PRESSURE VESSEL | |
DE19614445C2 (en) | Gas valve | |
EP0307909A1 (en) | Seperator device for reactors | |
EP0469277A1 (en) | Filter device | |
DE4127313C2 (en) | Containment of a nuclear reactor | |
DE2658225A1 (en) | Nuclear reactor safety valve - has membrane burst by pointed device before reaching maximum deflection | |
DE3036933A1 (en) | Heavy water moderated cooled reactor - has pressure relief valves admitting moderator into coolant circuit if pressure drops | |
DE69412617T2 (en) | Dust removal apparatus | |
EP1105202A2 (en) | Annular gap injector | |
DE2346638C3 (en) | Pressurized water nuclear reactor plant | |
DE2903567A1 (en) | FLUID BED COMBUSTION CHAMBER UNDER PRESSURE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 19891016 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
XX | Miscellaneous |
Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 88107256.5/0290028 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 08.02.91. |