EP0355781A2 - Submersible motor pump - Google Patents

Submersible motor pump Download PDF

Info

Publication number
EP0355781A2
EP0355781A2 EP89115430A EP89115430A EP0355781A2 EP 0355781 A2 EP0355781 A2 EP 0355781A2 EP 89115430 A EP89115430 A EP 89115430A EP 89115430 A EP89115430 A EP 89115430A EP 0355781 A2 EP0355781 A2 EP 0355781A2
Authority
EP
European Patent Office
Prior art keywords
fluid
hollow shaft
shaft
heat
pump unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89115430A
Other languages
German (de)
French (fr)
Other versions
EP0355781A3 (en
Inventor
Niels Due Jensen
Jorgen Christensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos AS
Original Assignee
Grundfos International AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos International AS filed Critical Grundfos International AS
Publication of EP0355781A2 publication Critical patent/EP0355781A2/en
Publication of EP0355781A3 publication Critical patent/EP0355781A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/10Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/5893Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps heat insulation or conduction

Definitions

  • the invention relates to a submersible pump unit according to the preamble of claim 1.
  • Submersible pump units are machine sets that are temporarily or permanently in a liquid to be pumped. When installed in wells and when pumping water, they are also called submersible pumps. The use of the present invention is particularly advantageous in the latter field.
  • Submersible motor pumps in the power range of up to 10 kW are now mass products that are used, for example, in the water supply sector. Basically, the manufacturers of such pumps strive to reduce the manufacturing costs of the units. The following two options are available:
  • the second option is to build pump units with an integrated frequency converter, which are then operated at a higher speed in order to increase their hydraulic performance.
  • a pump unit is known for example from DE-OS 36 42 727.
  • the unit has the same problems, namely with regard to its cooling.
  • it is difficult to dissipate the heat loss generated in the motor of the unit.
  • these difficulties result from the heat insulation of the plastic encapsulation.
  • they are a direct consequence of a reduction in the heat-emitting surface and an additional load due to current heat losses from the frequency converter integrated in the motor of the unit.
  • the invention is based on the object of developing a generic submersible pump unit in such a way that sufficient heat removal from the heat loss sources of the unit is always ensured.
  • a heat pipe can be seen as a superconductor that transports heat from the hot wall of an enclosed space to colder wall surfaces through material movement and phase change.
  • the shaft of the unit is designed as a rotating heat pipe, in which different conditions occur than in the case of a stationary heat pipe. To these relationships discussed in more detail below.
  • the heat dissipation of the heat loss from the motor and / or frequency converter through the rotating heat pipe is sufficiently large.
  • the proposed solution is particularly advantageous if water is used as the fluid in the hollow shaft for heat transport due to the large heat of vaporization, which corresponds to the heat of condensation.
  • the hollow shaft With an absorbent inner lining in order to guide the fluid from the heat sink to the heat source with great certainty.
  • the submersible pump unit according to Figure 1 consists of a wet rotor motor 2, the pump part 3 and the frequency converter 1. These three components are combined in the illustrated embodiment by a common jacket 4 to form a structural unit.
  • a canned pot 5 is connected to the inner circumference of the casing 4 in a liquid-tight and pressure-tight manner, so that the stator 6 of the motor 2 and the frequency converter 1 are in a dry space 6a.
  • this space 6a can be filled with a mineral-plastic mixture or filled with a plastic.
  • the common shaft 7 for the motor and the pump carries the rotor 8 located in the canned pot 5 and is fixed radially and axially in the bearings 9, 10.
  • the rotor space 13, which is filled with liquid, is closed off from the pump body 3 by a bearing plate 11 with the seal 12.
  • the pump sucks the liquid to be pumped through the slots 14 in the jacket 4.
  • the liquid flows through the pump stages 15 one after the other and is pressed through the pressure connection 16 to the consumer.
  • the shaft 7 is designed as a hollow shaft which can be closed by a closure 18 and which is partly filled with a fluid 17, as is indicated in FIG. 1.
  • the closure 18 Before the pump unit is started up, the closure 18 must be removed and the fluid 17 filled into the hollow shaft 7. After that is the one remaining in the hollow shaft To largely remove air and to close the cavity in the shaft by the closure 18 liquid and airtight.
  • the shaft prepared in this way, together with the fluid 17, forms a heat pipe system in its cavity for the removal of heat loss from the rotor space 13 of the motor 2.
  • the major part of the heat loss generated in the motor 2 and in the frequency converter 1 will flow into the rotor space 13 and the temperature of the fluid 17 located in the hollow shaft 7 will increase in the area of the shaft section 7a.
  • part of the fluid evaporates and reaches the shaft section 7b in the region of the pump body 3. Because of the position of the shaft section 7b in the pump body 3, this shaft section 7b can emit the heat to the pumped medium.
  • the shaft section 7a located in the rotor chamber 13 thus forms the heat source and shaft section 7b the heat sink of the heat pipe.
  • the choice of the fluid 17 in the hollow shaft 7 depends on the absolute temperatures. As far as the temperatures allow, the use of water is particularly simple and inexpensive. In the range of lower temperatures, however, it can be expedient to use a hydrocarbon as the fluid. The use of a hydrocarbon has the advantage over the use of water that the degassing of the fluid is much easier to handle. In any case, care must be taken that the pressure in the hollow shaft 7 approximately corresponds to the vapor pressure associated with the temperature of the fluid used in each case.
  • the inner diameter of the hollow shaft 7 in the engine compartment is larger than in the pump area.
  • an absorbent inner lining (not shown) should be provided in the hollow shaft 7. When this inner lining is wicked, care is taken in a horizontal or inclined operating position of the pump unit to ensure that fluid 17 is always available for evaporation in the area of the heat source.

Abstract

Es ist ein Tauchpumpenaggregat beschrieben, das aus einer Pumpe (1,3) und einem die Pumpe (1, 3) antreibenden Naßläufer-Motor (2) besteht. Der Motor (2) und die Pumpe (1, 3) weisen eine gemeinsame Welle (7) auf. Zum Abtransport von Verlustwärme aus dem Rotorraum (13) des Motors (2) in die Wärmesenke der durch die Pumpe (1, 3) zu fördernden Flüssigkeit ist die gemeinsame Welle (7) als verschließbare Hohlwelle ausgebildet, die zum Teil mit einem Fluid (17) gefüllt ist. Die Welle (7) bildet mit dem Fluid (17) ein rotierendes Heat-Pipe-System.A submersible pump unit is described which consists of a pump (1,3) and a wet-rotor motor (2) driving the pump (1, 3). The motor (2) and the pump (1, 3) have a common shaft (7). The common shaft (7) is designed as a closable hollow shaft, which is partially filled with a fluid (17 ) is filled. The shaft (7) forms a rotating heat pipe system with the fluid (17).

Description

Die Erfindung betrifft ein Tauchpumpenaggregat gemäß dem Oberbegriff des Anspruches 1.The invention relates to a submersible pump unit according to the preamble of claim 1.

Tauchpumpenaggregate sind Maschinensätze, die zeitweise oder ständig in einer zu fördernden Flüssigkeit liegen. Beim Ein­bau in Bohrbrunnen und bei der Förderung von Wasser werden sie auch Unterwassermotorpumpen genannt. Auf dem letztgenannten Gebiet ist der Einsatz der vorliegenden Erfindung besonders vorteilhaft.Submersible pump units are machine sets that are temporarily or permanently in a liquid to be pumped. When installed in wells and when pumping water, they are also called submersible pumps. The use of the present invention is particularly advantageous in the latter field.

Unterwassermotorpumpen im Leistungsbereich von bis zu 10 kW sind heute Massenprodukte, die beispielsweise im Wasserver­sorgungsbereich eingesetzt werden. Grundsätzlich sind die Hersteller derartiger Pumpen bestrebt, die Herstellungskosten der Aggregate zu senken. Hierzu bieten sich die beiden fol­genden Möglichkeiten an:Submersible motor pumps in the power range of up to 10 kW are now mass products that are used, for example, in the water supply sector. Basically, the manufacturers of such pumps strive to reduce the manufacturing costs of the units. The following two options are available:

Denkbar ist die Vereinfachung der Konstruktion der üblichen Pumpen beispielsweise durch Eingießen des Stators in Kunst­stoff, wie dies beispielsweise aus der US-PS 4,546,130 bekannt ist.It is conceivable to simplify the construction of conventional pumps, for example by pouring the stator into plastic, as is known, for example, from US Pat. No. 4,546,130.

Die zweite Möglichkeit besteht darin, Pumpenaggregate mit einem integrierten Frequenzumrichter zu bauen, welche dann mit einer höheren Drehzahl betrieben werden, um ihre hydrauli­sche Leistung zu steigern. Ein derartiges Pumpenaggregat ist beispielsweise aus der DE-OS 36 42 727 bekannt.The second option is to build pump units with an integrated frequency converter, which are then operated at a higher speed in order to increase their hydraulic performance. Such a pump unit is known for example from DE-OS 36 42 727.

Der zweiten aufgeführten Möglichkeit ist der Vorzug zu geben, wie dies anhand der bekannten Modellgesetze erläutert wird.The second option listed should be given preference, as will be explained using the known model laws.

Bekanntlich gelten die folgenden Beziehungen:
Q∼n.D³
H∼n².D
P∼n³ D⁵,
wobei Q für den Förderstrom, H für die Förderhöhe, P für die elektrische Leistung, n für die Drehzahl des Aggregates und D für den Laufraddurchmesser steht.
As you know, the following relationships apply:
Q∼n.D³
H∼n².D
P∼n³ D⁵,
where Q stands for the flow rate, H for the head, P for the electrical power, n for the speed of the unit and D for the impeller diameter.

Bei gleicher Leistung ist es durch Steigern der Drehzahl mög­lich, den Durchmesser des Pumpenaggregates und/oder die An­zahl der Pumpenstufen zu reduzieren. Im übrigen lassen sich hierdurch auch die Installationskosten senken, denn die Kosten eines beispielsweise für die Trinkwasserversorgung anzulegen­den Brunnens hängen entscheidend von dem Brunnendurchmesser ab.With the same output, increasing the speed makes it possible to reduce the diameter of the pump unit and / or the number of pump stages. Incidentally, the installation costs can also be reduced as a result, since the costs of a well, for example for the supply of drinking water, depend crucially on the diameter of the well.

Unabhängig von den aufgezeigten beiden Wegen zur Kosten­senkung ergeben sich für das Aggregat gleiche Probleme, nämlich hinsichtlich seiner Kühlung. In der Praxis berei­tet es Schwierigkeiten, die in dem Motor des Aggregates entstehende Verlustwärme abzuführen. Diese Schwierigkeiten resultieren im ersten Fall aus der Wärmeisolierung des Kunststoffvergusses. Im zweiten Fall sind sie eine direkte Folge einer Verminderung der Wärme abgebenden Oberfläche und einer zusätzlichen Belastung durch Stromwärmeverluste des im Motor des Aggregates integrierten Frequenzumrichters.Regardless of the two ways of reducing costs shown, the unit has the same problems, namely with regard to its cooling. In practice, it is difficult to dissipate the heat loss generated in the motor of the unit. In the first case, these difficulties result from the heat insulation of the plastic encapsulation. In the second case, they are a direct consequence of a reduction in the heat-emitting surface and an additional load due to current heat losses from the frequency converter integrated in the motor of the unit.

Vor dem aufgezeigten Hintergrund liegt der Erfindung nun die Aufgabe zugrunde, ein gattungsgemäßes Tauchpumpenaggregat so weiterzubilden, daß stets ein ausreichender Wärmeabtransport von den Verlustwärmequellen des Aggregates gewährleistet ist.Against the background shown, the invention is based on the object of developing a generic submersible pump unit in such a way that sufficient heat removal from the heat loss sources of the unit is always ensured.

Diese Aufgabe wird gelöst durch ein Tauchpumpenaggregat mit den Merkmalen des Anspruches 1.This object is achieved by a submersible pump unit with the features of claim 1.

Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.Further advantageous embodiments result from the subclaims.

Grundsätzlich kann eine Heat-Pipe quasi als ein Supraleiter angesehen werden, der durch Stoffbewegung und Phasenwechsel Wärme von der heißen Wand eines umschlossenen Raumes zu kälteren Wandflächen tansportiert. Im vorliegenden Fall ist die Welle des Aggregates als eine rotierende Heat-Pipe aus­gebildet, bei der sich andere Verhältnisse einstellen als bei einer ruhenden Heat-Pipe. Auf diese Verhältnisse wird im einzelnen weiter unten näher eingegangen. In jedem Falle ist der Wärmeabtransport der Verlustwärme aus dem Motor und/oder Frequenzumrichter durch die rotierende Heat-Pipe hinreichend groß. Besonders vorteilhaft ist die vorgeschlagene Lösung dann, wenn als Fluid in der Hohlwelle für den Wärmetransport aufgrund der großen Verdampfungswärme, die der Kondensations­wärme entspricht, Wasser verwendet wird.Basically, a heat pipe can be seen as a superconductor that transports heat from the hot wall of an enclosed space to colder wall surfaces through material movement and phase change. In the present case, the shaft of the unit is designed as a rotating heat pipe, in which different conditions occur than in the case of a stationary heat pipe. To these relationships discussed in more detail below. In any case, the heat dissipation of the heat loss from the motor and / or frequency converter through the rotating heat pipe is sufficiently large. The proposed solution is particularly advantageous if water is used as the fluid in the hollow shaft for heat transport due to the large heat of vaporization, which corresponds to the heat of condensation.

Im Bereich tieferer Temperaturen kann es jedoch zweckmäßig sein, als Fluid in der Hohlwelle einen Kohlenwasserstoff mit einer gegenüber der Dampfdruckkurve von Wasser höher liegenden Dampf­druckkurve zu verwenden.In the range of lower temperatures, however, it can be expedient to use a hydrocarbon as the fluid in the hollow shaft with a vapor pressure curve that is higher than the vapor pressure curve of water.

Um bei der rotierenden Heat-Pipe die Sicherheit zu erhöhen, daß im Bereich der Wärmequelle stets Flüssigkeit vorhanden ist, deren Verdampfung schließlich die Kühlung bewirken soll, ist es vorteilhaft, den Innendurchmesser der Welle im Bereich der Wärmequelle größer als im Bereich der Wärmesenke auszubilden.In order to increase the security of the rotating heat pipe that there is always liquid in the area of the heat source, the evaporation of which is ultimately intended to effect cooling, it is advantageous to make the inner diameter of the shaft larger in the area of the heat source than in the area of the heat sink.

Bei einer liegenden Montage des Pumpenaggregates und/oder niedriger Drehzahl ist es vorteilhaft, die Hohlwelle mit einer saugfähigen Innenauskleidung zu versehen, um das Fluid von der Wärmesenke mit großer Sicherheit zur Wärmequelle zu leiten.When the pump unit is mounted horizontally and / or at a low speed, it is advantageous to provide the hollow shaft with an absorbent inner lining in order to guide the fluid from the heat sink to the heat source with great certainty.

Die Erfindung wird anhand eines Ausführungsbeispiels gemäß der Zeichnungen näher erläutert. Hierbei zeigt:

  • Figur 1: einen Längsschnitt durch das Tauchpumpen­aggregat im Ruhezustand, und
  • Figur 2: eine schematische Darstellung zur Veran­ schaulichung der Vorgänge in einer rotierenden Heat-Pipe.
The invention is explained in more detail using an exemplary embodiment according to the drawings. Here shows:
  • Figure 1: a longitudinal section through the submersible pump unit in the idle state, and
  • Figure 2: a schematic representation of the event visualization of the processes in a rotating heat pipe.

Das Tauchpumpenaggregat gemäß Figur 1 besteht aus einem Naß­läufer-Motor 2, dem Pumpenteil 3 sowie dem Frequenzumrichter 1. Diese drei Bestandteile sind beim dargestellten Ausführungsbeispiel durch einen gemeinsamen Mantel 4 zu einer baulichen Einheit zu­sammengefaßt. Mit dem Innenumfang des Mantels 4 ist ein Spalt­rohrtopf 5 flüssigkeitsdicht und druckfest verbunden, so daß der Stator 6 des Motors 2 und der Frequenzumrichter 1 in einem trockenen Raum 6a liegen. Aus Stabilitätsgründen kann dieser Raum 6a mit einem Mineral-Kunststoffgemisch ausgefüllt oder mit einem Kunststoff ausgeschäumt sein.The submersible pump unit according to Figure 1 consists of a wet rotor motor 2, the pump part 3 and the frequency converter 1. These three components are combined in the illustrated embodiment by a common jacket 4 to form a structural unit. A canned pot 5 is connected to the inner circumference of the casing 4 in a liquid-tight and pressure-tight manner, so that the stator 6 of the motor 2 and the frequency converter 1 are in a dry space 6a. For reasons of stability, this space 6a can be filled with a mineral-plastic mixture or filled with a plastic.

Die für den Motor und die Pumpe gemeinsame Welle 7 trägt den im Spaltrohrtopf 5 befindlichen Rotor 8 und wird in den La­gern 9,10 radial und axial festgelegt. Durch eine Lagerplatte 11 mit der Dichtung 12 ist der mit Flüssigkeit gefüllte Rotorraum 13 zum Pumpenkörper 3 hin abgeschlossen.The common shaft 7 for the motor and the pump carries the rotor 8 located in the canned pot 5 and is fixed radially and axially in the bearings 9, 10. The rotor space 13, which is filled with liquid, is closed off from the pump body 3 by a bearing plate 11 with the seal 12.

Die Pumpe saugt die zu fördernde Flüssigkeit durch die Schlitze 14 im Mantel 4 an. Die Flüssigkeit durchströmt nacheinander die Pumpenstufen 15 und wird durch den Druckstutzen 16 zum Verbraucher gedrückt.The pump sucks the liquid to be pumped through the slots 14 in the jacket 4. The liquid flows through the pump stages 15 one after the other and is pressed through the pressure connection 16 to the consumer.

Erfindungsgemäß ist die Welle 7 als durch einen Verschluß 18 verschließbare Hohlwelle ausgebildet, die zum Teil mit einem Fluid 17 gefüllt ist, wie dies in Figur 1 andeutungsweise dar­gestellt ist. Vor der Inbetriebnahme des Pumpenaggregates ist der Verschluß 18 zu entfernen und das Fluid 17 in die Hohl­welle 7 zu füllen. Danach ist die in der Hohlwelle verbleibende Luft weitgehend zu entfernen und der Hohlraum in der Welle durch den Verschluß 18 flüssigkeits- und luftdicht abzu­schließen. Die so präparierte Welle bildet mit dem Fluid 17 in ihrem Hohlraum ein Heat-Pipe-System zum Abtransport von Verlustwärme aus dem Rotorraum 13 des Motors 2.According to the invention, the shaft 7 is designed as a hollow shaft which can be closed by a closure 18 and which is partly filled with a fluid 17, as is indicated in FIG. 1. Before the pump unit is started up, the closure 18 must be removed and the fluid 17 filled into the hollow shaft 7. After that is the one remaining in the hollow shaft To largely remove air and to close the cavity in the shaft by the closure 18 liquid and airtight. The shaft prepared in this way, together with the fluid 17, forms a heat pipe system in its cavity for the removal of heat loss from the rotor space 13 of the motor 2.

Im Betrieb des Pumpenaggregates wird der überwiegende Teil der im Motor 2 und im Frequenzumrichter 1 entstehenden Verlustwärme in den Rotorraum 13 fließen und die Temperatur des in der Hohlwelle 7 befindlichen Fluids 17 im Bereich des Wellenabschnittes 7a erhöhen. Dadurch verdampft ein Teil des Fluids und gelangt in den Wellenabschnitt 7b im Bereich des Pumpenkörpers 3. Aufgrund der Lage des Wellenabschnittes 7b im Pumpenkörper 3 kann dieser Wellenabschnitt 7b die Wärme an das Fördermedium abgeben. Der im Rotorraum 13 befindliche Wellenabschnitt 7a bildet also die Wärmequelle und Wellen­abschnitt 7b die Wärmesenke der Heat-Pipe.During operation of the pump unit, the major part of the heat loss generated in the motor 2 and in the frequency converter 1 will flow into the rotor space 13 and the temperature of the fluid 17 located in the hollow shaft 7 will increase in the area of the shaft section 7a. As a result, part of the fluid evaporates and reaches the shaft section 7b in the region of the pump body 3. Because of the position of the shaft section 7b in the pump body 3, this shaft section 7b can emit the heat to the pumped medium. The shaft section 7a located in the rotor chamber 13 thus forms the heat source and shaft section 7b the heat sink of the heat pipe.

Anhand der Figur 2 werden die Verhältnisse in der rotierenden Heat-Pipe erläutert. Vor Inbetriebnahme ist die Hohlwelle 7 - wie bereits erwähnt - etwa bis zu der Linie A-A mit einem Fluid gefüllt worden, wonach die im Hohlraum verbleibende Luft weitgehend entfernt worden ist und der Hohlraum mittels eines Verschlusses 18 flüssigkeits- und luftdicht verschlossen wurde.The conditions in the rotating heat pipe are explained with reference to FIG. Before start-up, the hollow shaft 7 - as already mentioned - was filled with fluid up to line A-A, after which the air remaining in the cavity was largely removed and the cavity was closed in a liquid-tight and air-tight manner by means of a closure 18.

Im Betrieb des Aggregates, das heißt also bei der Rotation der Hohlwelle 7, stellt sich die Oberfläche des Fluids stets senkrecht zu dem auf sie wirkenden Kraftfeld ein. Dabei wirken die folgenden Kräfte auf ein in der Oberfläche des Fluids liegendes Flüssigkeitsteilchen ein:
die Fliehkraft FF∼r.ω²,
die Schwerkraft Fs∼ g,
die Widerstandskraft Fw∼ c²,
wobei r der Abstand der Fluidoberfläche von der Drehachse, ω die Winkelgeschwindigkeit, g die Erdbeschleunigung und c die Dampfgeschwindigkeit im betrachteten Querschnitt bedeutet. Die Resultierende aus diesen drei Kräften ist mit R bezeichnet, zu der im betreffenden Punkt die Fluidoberfläche senkrecht steht. Insgesamt wird sich die Oberflächenform einem Parabel­abschnitt annähern.
During operation of the unit, that is to say during the rotation of the hollow shaft 7, the surface of the fluid is always perpendicular to the force field acting on it. The following forces act on a liquid particle lying in the surface of the fluid:
the centrifugal force F F ∼r.ω²,
gravity F s ∼ g,
the resistance F w ∼ c²,
where r is the distance of the fluid surface from the axis of rotation, ω is the angular velocity, g is the acceleration due to gravity and c is the vapor velocity in the cross section under consideration. The resultant of these three forces is denoted by R, to which the fluid surface is perpendicular at the point in question. Overall, the surface shape will approach a parabolic section.

Im Bereich des Motorraumes wird dem Wellenabschnitt 7a Wärme zugeführt, wodurch ein Teil des Fluids verdampft und in den kühleren Wellenabschnitt 7b strömt, wo der Dampf schließlich kondensiert. Das Kondensat fließt daraufhin aufgrund des Kraftfeldes zum Wellenabschnitt 7a zurück.In the area of the engine compartment, heat is supplied to the shaft section 7a, whereby some of the fluid evaporates and flows into the cooler shaft section 7b, where the steam finally condenses. The condensate then flows back to the shaft section 7a due to the force field.

Die Wahl des Fluids 17 in der Hohlwelle 7 hängt ab von den absoluten Temperaturen. Soweit die Temperaturen es zulassen, ist der Einsatz von Wasser besonders einfach und kostengünstig. Im Bereich tieferer Temperaturen kann es jedoch zweckmäßig sein, einen Kohlenwasserstoff als Fluid zu verwenden. Der Ein­satz eines Kohlenwasserstoffes hat gegenüber dem Einsatz von Wasser den Vorteil, daß die Entgasung des Fluids wesentlich einfacher zu handhaben ist. In jedem Fall ist darauf zu achten, daß der Druck in der Hohlwelle 7 annähernd dem zur Temperatur des jeweils verwendeten Fluids gehörenden Dampfdruck entspricht.The choice of the fluid 17 in the hollow shaft 7 depends on the absolute temperatures. As far as the temperatures allow, the use of water is particularly simple and inexpensive. In the range of lower temperatures, however, it can be expedient to use a hydrocarbon as the fluid. The use of a hydrocarbon has the advantage over the use of water that the degassing of the fluid is much easier to handle. In any case, care must be taken that the pressure in the hollow shaft 7 approximately corresponds to the vapor pressure associated with the temperature of the fluid used in each case.

In Abweichung vom dargestellten Ausführungsbeispiel kann es darüber hinaus vorteilhaft sein, daß der Innendurchmesser der Hohlwelle 7 im Motorraum größer ist als im Pumpenbereich.In deviation from the illustrated embodiment, it may also be advantageous that the inner diameter of the hollow shaft 7 in the engine compartment is larger than in the pump area.

Dadurch wird sichergestellt, daß immer ein Flüssigkeits­vorrat im Bereich der Wärmequelle für den Abtransport der Verlustwärme zur Verfügung steht, und zwar selbst bei sehr hohen Drehzahlen und/oder einem hohen Temperaturniveau.This ensures that there is always a liquid supply in the area of the heat source for the removal of the heat loss, even at very high speeds and / or a high temperature level.

Wenn das Pumpenaggregat nicht vertikal eingesetzt werden soll, sollte in der Hohlwelle 7 eine saugfähige Innenausklei­dung (nicht dargestellt) vorgesehen werden. Unter einer Dochtwirkung dieser Innenauskleidung wird in einer horizontalen oder schrägen Betriebslage des Pumpenaggregates dafür Sorge getragen, daß stets Fluid 17 im Bereich der Wärmequelle zur Verdampfung bereitsteht.If the pump unit is not to be used vertically, an absorbent inner lining (not shown) should be provided in the hollow shaft 7. When this inner lining is wicked, care is taken in a horizontal or inclined operating position of the pump unit to ensure that fluid 17 is always available for evaporation in the area of the heat source.

Claims (5)

1. Tauchpumpenaggregat mit einer Pumpe und einem die Pumpe antreibenden Naßläufer-Motor und mit einer gemeinsamen Welle für den Motor und die Pumpe, dadurch gekennzeichnet, daß die Welle (7) als verschließbare Hohlwelle ausgebildet ist, welche zum Teil mit einem Fluid (17) gefüllt ist, so daß die Welle (7) mit dem Fluid (17) ein Heat-Pipe-­System zum Abtransport von Verlustwärme aus dem Rotor­raum (13) des Motors (2) in die Wärmesenke der durch die Pumpe (3) zu fördernden Flüssigkeit bildet.1. Submersible pump unit with a pump and a wet-rotor motor driving the pump and with a common shaft for the motor and the pump, characterized in that the shaft (7) is designed as a closable hollow shaft, which is partially with a fluid (17) is filled so that the shaft (7) with the fluid (17) is a heat pipe system for the removal of heat loss from the rotor space (13) of the motor (2) into the heat sink of the liquid to be pumped (3) forms. 2. Tauchpumpenaggregat nach Anspruch 1, dadurch gekennzeichnet, daß das Fluid (17) in der Hohlwelle (7) Wasser ist und daß der Druck in der Hohlwelle (7) annähernd dem zur Temperatur des Wassers gehörenden Dampfdruck entspricht.2. Submersible pump unit according to claim 1, characterized in that the fluid (17) in the hollow shaft (7) is water and that the pressure in the hollow shaft (7) approximately corresponds to the steam pressure associated with the temperature of the water. 3. Tauchpumpenaggregat nach Anspruch 1, dadurch gekennzeichnet, daß das Fluid (17) in der Hohlwelle (7) ein Kohlenwasser­stoff ist und der Druck in der Hohlwelle (17) annähernd dem zur Temperatur des Kohlenwasserstoffes gehörenden Dampfdruck entspricht.3. Submersible pump unit according to claim 1, characterized in that the fluid (17) in the hollow shaft (7) is a hydrocarbon and the pressure in the hollow shaft (17) approximately corresponds to the vapor pressure belonging to the temperature of the hydrocarbon. 4. Tauchpumpenaggregat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Innendurchmesser der Hohlwelle (7) im Bereich der Wärmequelle größer als im Bereich der Wärme­senke ist.4. Submersible pump unit according to one of claims 1 to 3, characterized in that the inner diameter of the hollow shaft (7) is larger in the region of the heat source than in the region of the heat sink. 5. Tauchpumpenaggregat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Hohlwelle (7) mit einer saugfähigen Innenauskleidung versehen ist.5. Submersible pump unit according to one of claims 1 to 4, characterized in that the hollow shaft (7) is provided with an absorbent inner lining.
EP89115430A 1988-08-23 1989-08-22 Submersible motor pump Withdrawn EP0355781A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3828512A DE3828512A1 (en) 1988-08-23 1988-08-23 SUBMERSIBLE PUMP UNIT
DE3828512 1988-08-23

Publications (2)

Publication Number Publication Date
EP0355781A2 true EP0355781A2 (en) 1990-02-28
EP0355781A3 EP0355781A3 (en) 1990-05-30

Family

ID=6361372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89115430A Withdrawn EP0355781A3 (en) 1988-08-23 1989-08-22 Submersible motor pump

Country Status (4)

Country Link
US (1) US4930996A (en)
EP (1) EP0355781A3 (en)
JP (1) JPH0275794A (en)
DE (1) DE3828512A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025989A1 (en) 2008-09-08 2010-03-11 Siemens Aktiengesellschaft Pump
CN104121037A (en) * 2014-07-18 2014-10-29 北京航空航天大学 Heat pipe turbine disc

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750854Y2 (en) * 1990-07-13 1995-11-15 株式会社荏原製作所 Structure of pump mounting part of canned submersible motor for deep well pump
JPH04296698A (en) * 1990-12-21 1992-10-21 Gebr Sulzer Ag Runner imparting pump action for high-temperature liquid of nuclear reactor
US5407323A (en) * 1994-05-09 1995-04-18 Sta-Rite Industries, Inc. Fluid pump with integral filament-wound housing
US5549447A (en) * 1995-08-21 1996-08-27 Mcneil (Ohio) Corporation System for cooling a centrifugal pump
US5700138A (en) * 1995-08-21 1997-12-23 Mcneil (Ohio) Corporation Centrifugal pump
DE19702723A1 (en) * 1997-01-27 1998-08-06 Grundfos As Wet running submersible motor for driving a centrifugal pump
DE19727202A1 (en) * 1997-06-26 1999-01-28 Grundfos As Submersible motor unit
JP3971018B2 (en) * 1998-02-24 2007-09-05 Smc株式会社 Immersion pump
DE19808602C1 (en) * 1998-02-28 1999-09-02 Grundfos As Device for external cooling of the electric drive motor of a centrifugal pump unit
US6120261A (en) * 1998-08-25 2000-09-19 Saudi Arabian Oil Company Electric submersible pump with hollow drive shaft
US6209626B1 (en) * 1999-01-11 2001-04-03 Intel Corporation Heat pipe with pumping capabilities and use thereof in cooling a device
US6398521B1 (en) 2001-01-30 2002-06-04 Sta-Rite Industries, Inc. Adapter for motor and fluid pump
US6884043B2 (en) 2002-02-28 2005-04-26 Standex International Corp. Fluid circulation path for motor pump
US20090246039A1 (en) * 2006-01-09 2009-10-01 Grundfos Pumps Corporation Carrier assembly for a pump
US8172523B2 (en) * 2006-10-10 2012-05-08 Grudfos Pumps Corporation Multistage pump assembly having removable cartridge
US7946810B2 (en) * 2006-10-10 2011-05-24 Grundfos Pumps Corporation Multistage pump assembly
US8696334B2 (en) * 2008-04-29 2014-04-15 Chevron U.S.A. Inc. Submersible pumping system with heat transfer mechanism
US8053941B2 (en) * 2008-12-16 2011-11-08 Nidec Motor Corporation Encapsulated outer stator isolated rotor stepper motor valve assembly
US10533578B2 (en) 2015-10-12 2020-01-14 Baker Hughes, A Ge Company, Llc Metal-to-metal sealing for diffusers of an electrical submersible well pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743384A (en) * 1953-05-12 1956-04-24 Singer Mfg Co Evaporative cooling systems for electric motors
FR2436896A1 (en) * 1978-09-22 1980-04-18 Borg Warner SUBMERSIBLE PUMP MOTOR
JPS63183382A (en) * 1987-01-26 1988-07-28 Ishikawajima Harima Heavy Ind Co Ltd Heat pipe device
JPS63183383A (en) * 1987-01-26 1988-07-28 Ishikawajima Harima Heavy Ind Co Ltd Heat pipe device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE614536C (en) * 1932-08-02 1935-06-12 Siemens Schuckertwerke Akt Ges Liquid cooling for the runners of electrical machines
US2461821A (en) * 1945-07-11 1949-02-15 Howard Giles Philip Eliot Centrifugal pump
US2601146A (en) * 1946-01-29 1952-06-17 Hayward Tyler & Co Ltd Means for reducing heat transfer along shafts
US4191240A (en) * 1977-04-04 1980-03-04 Rubel Peter A Heat conducting filler material for motor-containing devices
JPS6055834A (en) * 1983-09-06 1985-04-01 Mitsubishi Electric Corp Low wet permeable molding material for underwater motor stator
JPH0212299Y2 (en) * 1984-12-28 1990-04-06
DE3642727A1 (en) * 1986-12-13 1988-06-23 Grundfos Int Underwater motor-driven pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743384A (en) * 1953-05-12 1956-04-24 Singer Mfg Co Evaporative cooling systems for electric motors
FR2436896A1 (en) * 1978-09-22 1980-04-18 Borg Warner SUBMERSIBLE PUMP MOTOR
JPS63183382A (en) * 1987-01-26 1988-07-28 Ishikawajima Harima Heavy Ind Co Ltd Heat pipe device
JPS63183383A (en) * 1987-01-26 1988-07-28 Ishikawajima Harima Heavy Ind Co Ltd Heat pipe device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 12, Nr. 454 (M-769)[3301], 29. November 1988; & JP-A-63 183 382 (ISHIKAWAJIMA HARIMA HEAVY IND. CO. LTD) 28-07-1988 *
PATENT ABSTRACTS OF JAPAN, Band 12, Nr. 454 (M-769)[3301], 29. November 1988; & JP-A-63 183 383 (ISHIKAWAJIMA HARIMA HEAVY IND. CO. LTD) 28-07-1988 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025989A1 (en) 2008-09-08 2010-03-11 Siemens Aktiengesellschaft Pump
RU2479754C2 (en) * 2008-09-08 2013-04-20 Сименс Акциенгезелльшафт Pump
CN104121037A (en) * 2014-07-18 2014-10-29 北京航空航天大学 Heat pipe turbine disc

Also Published As

Publication number Publication date
DE3828512C2 (en) 1990-06-07
EP0355781A3 (en) 1990-05-30
DE3828512A1 (en) 1990-03-08
US4930996A (en) 1990-06-05
JPH0275794A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
EP0355781A2 (en) Submersible motor pump
DE4121430C1 (en)
EP0979356B1 (en) Device for the external cooling of the electric drive motor of a centrifugal pump unit
EP0346730B1 (en) Submersible pump assembly
DE202008002617U1 (en) Arrangement for conveying fluids
DE19843900A1 (en) Centrifugal pump with an integrated axial field motor
DE102006045178A1 (en) Electric machine, has winding system arranged in grooves of laminated core of stator, and laminated core of rotor arranged at shaft in torque-proof manner, where shaft is supported in two bearings in bearing flanges at housing
DE102016112251A1 (en) Electric machine with a cooling device
DE19628576A1 (en) Drive for motor vehicle radiator fan
EP2349768B1 (en) Hybrid drivetrain equipment
EP2805403B1 (en) Cooling device for a rotor of an electric machine
EP1913676B1 (en) Coolant pump for electric motors
DE2307800C3 (en) Brushless DC motor for high speeds
DE102005036347A1 (en) Electric motor for power plant system, has flywheel with heavy-metal insert, where heavy metal with specified density forms insert and is arranged in insert such that flywheel body has high-strength material
DE3601089A1 (en) Liquid-cooled electrical machine
DE7242113U (en) ELECTRIC MOTOR WITH COOLING DEVICE
DE2630513C2 (en) Cooling device for a pump unit
DE2026461C3 (en) Encapsulated pump unit, consisting of a centrifugal pump and a canned electric motor
DE942338C (en) Device for cooling the runner of water-filled underwater motors by means of an internal water cooling circuit
DE2460748A1 (en) Heating or hot water supply circulation pump - air can be removed from divided pump and motor section by filling with water from pump chamber
DE102017203156A1 (en) Electric machine for a motor vehicle
DE19913199A1 (en) Cooling device for electrical machine with stator and rotor has stator with sheet metal package and the rotor having groove/slots for the sheet metal package while an open tube is connected to supplier of a cooling medium
DE2331917A1 (en) Gear type hydraulic pump for lubricating oil - of unitary construction with driving motor and priming pump
DE3150724A1 (en) Device for liquid cooling of electrical machines
DE19819267A1 (en) Radial compressor with radially external vaned impeller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19901128