Wärmestrahlungssensor Thermal radiation sensor
Stand der TechnikState of the art
Die Erfindung geht aus von einem Wärmestrahlungssensor nach der Gattung des Hauptanspruchs. Aus der DE-OS 35 36 133 ist eine Wärmestrahlungssensor bekannt, welcher zwei der Strahlung ausgesetzte Empfängerflächen aufweist, von denen die eine bezüglich der Wärmestrahlung ein hohes Absorptionsvermögen, zum Beispiel durch Schwarzfärbung, und die andere ein geringes Absorptionsvermögen, zum Beispiel durch eine die Wärmestrahlung reflektierende Abdeckung aufweist. Diese beiden Empfängerflächen bestehen aus einem NTC-Widerstandsmaterial und sind zusammen mit zwei temperaturunabhängigen Cermetwiderständen in einer Brückenschaltung zusammengefaßt. Die vier Widerstände sind auf ein Keramiksubstrat aufgebracht und mit Leiterbahnen verbunden, die ihrerseits in den notwendigen Anschlüssen enden. Bedingt durch den konvektiven Wärmeübergang an den Sensoroberflächen hat diese Anordnung jedoch den Nachteil, daß das Ausgangssignal stark von der Umgebungstemperatur abhängt. So erzielt man bei ein und demselben Wärmestrahlungssensor, wie er oben angegeben ist, bei einer Bestrahlungsstarke von 1000 W/m2 bei -30 °C eine Ausgangsspannung von 900 mV, bei 0 °C 700 mV und bei 30 °C eine solche von 550 mV. Eine derartige Abhängigkeit der Meßergebnisse von der Umgebungstemperatur ist in vielen Fällen ungünstig.
Vorteile der ErfindungThe invention is based on a thermal radiation sensor according to the preamble of the main claim. From DE-OS 35 36 133 a heat radiation sensor is known which has two receiving surfaces exposed to the radiation, one of which has a high absorption capacity, for example due to blackening, and the other has a low absorption capacity, for example due to heat radiation has reflective cover. These two receiver surfaces consist of an NTC resistor material and are combined in a bridge circuit together with two temperature-independent cermet resistors. The four resistors are applied to a ceramic substrate and connected with conductor tracks, which in turn end in the necessary connections. Due to the convective heat transfer on the sensor surfaces, this arrangement has the disadvantage, however, that the output signal is strongly dependent on the ambient temperature. With one and the same thermal radiation sensor, as stated above, an output voltage of 900 mV is achieved at an irradiance of 1000 W / m 2 at -30 ° C, 700 mV at 0 ° C and 550 at 30 ° C mV. Such a dependency of the measurement results on the ambient temperature is unfavorable in many cases. Advantages of the invention
Der erfindungsgemäße Wärmestrahlungssensor mit den kennzeichnenden" Merkmalen des Hauptanspruchs hat den Vorteil, daß die Meßsignale keine Abhängigkeit mehr von der Umgebungstemperatur zeigen, so daß man bei gleicher Bestrahlungsstärke unabhängig von der Temperatur immer den gleichen Meßwert erhält.The heat radiation sensor according to the invention with the characterizing features of the main claim has the advantage that the measurement signals no longer show a dependence on the ambient temperature, so that the same measured value is always obtained with the same irradiance regardless of the temperature.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Strahlungssensors möglich. Besonders vorteilhaft ist es, wenn die Heizschichten aus einer Cermet-Dickschicht mit Platin bestehen und die Form eines Mäanders aufweisen, so daß sie sich leicht abgleichen lassen.Advantageous further developments and improvements of the radiation sensor specified in the main claim are possible through the measures listed in the subclaims. It is particularly advantageous if the heating layers consist of a thick cermet layer with platinum and have the shape of a meander, so that they can be easily adjusted.
Es läßt sich physikalisch-mathematisch zeigen, daß bei einer Differenzbildung zwischen den beiden Sensoren, von denen der eine bezüglich der Wärmestrahlung eine hohes und der andere ein geringes Absorptionsvermögen aufweist, das Meßergebnis für die auftreffende Strahlungsleistung in der Tat von der Umgebungstemperatur unabhängig wird.It can be shown physically and mathematically that if a difference is formed between the two sensors, one of which has a high absorption capacity and the other a low absorption capacity, the measurement result for the incident radiation power is in fact independent of the ambient temperature.
Für den ersten Sensor gilt (pro Flächeneinheit)The following applies to the first sensor (per unit area)
Q1el + M = ε 1 . δ . T1 + r1 . M + A (T1 - Tu) (1)Q 1 el + M = ε 1 . δ. T 1 + r 1 . M + A (T 1 - T u ) (1)
Qe1 = el. zugeführte LeistungQe1 = el. Supplied power
M = auftreffende Strahlungsleistung ε = Emissionsgrad der Sensoroberfläche δ = BoltzmannkonstanteM = incident radiation power ε = emissivity of the sensor surface δ = Boltzmann constant
T = SensortemperaturT = sensor temperature
A = Konstante des Wärmeübergangs an die umgebende LuftA = constant of heat transfer to the surrounding air
Tu = Lufttemperatur r = ReflexionskoeffizientT u = air temperature r = reflection coefficient
Werte mit Indexziffer 1 beziehen sich auf den 1. Sensor.
Analog gilt für den 2. Sensor:Values with index number 1 refer to the 1st sensor. The same applies to the second sensor:
Q2el M = ε2 . δ T2 + r2 . M + A (T2 - Tu) (2)Q 2 el M = ε 2 . δ T 2 + r 2 . M + A (T 2 - T u ) (2)
Werte mit Indexziffer 2 beziehen sich auf den 2. Sensor.Values with index number 2 refer to the 2nd sensor.
Aus der Differenz von (1) und (2) folgt:From the difference between (1) and (2) it follows:
Q1el - Q2el = δ ( ε1 T1 - ε 2T2 ) + (r1-r2) M + A (T1 - T2) (3)Q 1 el - Q 2 el = δ (ε 1 T 1 - ε 2 T 2 ) + (r 1 -r 2 ) M + A (T 1 - T 2 ) (3)
Für T1 = T2 = T vereinfacht sich die BeziehungThe relationship is simplified for T 1 = T 2 = T
d. h. die Meßgröße M wird unabhängig von der Umgebungstemperatur. ie the measurand M becomes independent of the ambient temperature.
Zeichnungdrawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Schnitt durch den Schichtaufbau eines erfindungsgemäßen Sensors und Figur 2 eine elektrische Schaltung, die angibt, wie die einzelnen Schichten des Sensors elektrisch miteinander verknüpft sind.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. FIG. 1 shows a section through the layer structure of a sensor according to the invention and FIG. 2 shows an electrical circuit which indicates how the individual layers of the sensor are electrically connected to one another.
Beschreibung des AusführungsbeispielsDescription of the embodiment
Gemäß Figur 1 besteht der Sensor aus einem Keramiksubstrat in Form eines dünnen Plättchens 5, das vorzugsweise aus Aluminiumoxid besteht. Aüf
dieses Substrat werden zunächst die Heizleiterschichten 6 und 7, die aus einer Platindickschicht, gegebenenfalls mit einem Anteil von 20 Vol.-% eines keramischen Stützgerüstmaterials wie Aluminiumoxid, in Form eines Mäanders aufgedruckt und bei etwa 1530 °C eingebrannt. Diese Heizwiderstände weisen im Fertigzustand einen Widerstand von etwa 30Ω auf. Auf die Heizschichten 6 und 7 werden sodann die Isolationsschichten 8 und 9, die aus einem kristallisierenden Glas, zum Beispiel der Type 9105HT der Firma Heraeus bestehen, aufgedruckt und bei 950 °C eingebrannt. Es folgt dann das Aufdrucken des für die Beschaltung der einzelnen Schichten notwendigen, nicht dargestellten Leiterbahnmusters mit anschließendem Einbrennen bei 850 °C. Danach werden die NTC-Widerstände 1 und 2 aufgedruckt, wobei ein Material in Form einer Paste verwendet wird, das Widerstände ergibt, die einen Quadratwiderstand von 5 kΩ uad eine Regelkonstante B von 2200 Kelvin ergeben. Hierzu eignet sich zum Beispiel die Widerstandspaste NTC 135 der Firma Heraeus. Dann folgt das Aufbringen der temperaturunabhängigen Widerstände 3 und 4 durch Aufdrucken eines Cermetmaterials, das einen Quadratwiderstand von 10 kΩ ergibt, zum Beispiel von der Firma Dupont das Material mit der Nummer 1441, und zwar in einer solchen Dicke, daß nach dem Einbrennen eine Schichtdicke von 8 um verbleibt. Die vier Widerstände 1, 2, 3 und 4 werden gemeinsam bei 850 °C an Luft eingebrannt. Schließlich werden noch die Leiterbahnanschlusse zu den beiden NTC-Widerständen aufgebracht, wobei bei dem Layout natürlich dafür Sorge getragen werden muß, daß die Leiterbahnen sich nur an solchen Stellen kreuzen, an denen dies aus elektrischen Gründen auch beabsichtigt ist. Zuletzt wird das Ganze bei etwa 850 °C nochmals gebrannt.According to Figure 1, the sensor consists of a ceramic substrate in the form of a thin plate 5, which preferably consists of aluminum oxide. On The heat conductor layers 6 and 7, which consist of a platinum thick layer, optionally with a proportion of 20% by volume of a ceramic supporting framework material such as aluminum oxide, are first printed on this substrate in the form of a meander and baked at approximately 1530 ° C. In the finished state, these heating resistors have a resistance of approximately 30Ω. Then the insulation layers 8 and 9, which consist of a crystallizing glass, for example the Type 9105HT from Heraeus, are printed on the heating layers 6 and 7 and baked at 950 ° C. This is followed by printing on the conductor track pattern (not shown) necessary for wiring the individual layers, followed by baking at 850 ° C. The NTC resistors 1 and 2 are then printed on, using a material in the form of a paste which gives resistors which have a square resistance of 5 kΩ and a control constant B of 2200 Kelvin. The NTC 135 resistor paste from Heraeus is suitable for this. The temperature-independent resistors 3 and 4 are then applied by printing on a cermet material which gives a square resistance of 10 kΩ, for example from Dupont, the material with the number 1441, and in such a thickness that, after baking, a layer thickness of 8 µm remains. The four resistors 1, 2, 3 and 4 are burned together in air at 850 ° C. Finally, the conductor connections to the two NTC resistors are attached, whereby care must of course be taken in the layout that the conductor paths only cross at those points where this is also intended for electrical reasons. Finally, the whole thing is fired again at about 850 ° C.
Der weitere Einbau in einen nicht dargestellten Rahmen sowie die Abdeckung der beiden NTC-Widerstände erfolgt in der gleichen Weise, wie dies in der DE-OS 35 36 133 beschrieben ist.The further installation in a frame, not shown, and the covering of the two NTC resistors is carried out in the same way as described in DE-OS 35 36 133.
In Figur 2 ist die elektrische Schaltung zum Betreiben des erfindungsgemäßen Sensors dargestellt. Zwischen den Punkten 18 und 20 wird eine Spannung von beispielsweise 12 V angelegt, welche durch die Widerstände
10 und 11 so geteilt wird, daß an dem Kreuzungspunkt 12 ein Bezugspotential von beispielsweise 6 V auftritt. Der entsprechende Abgriff zwischen dem NTC-Widerstand 1 und dem Widerstand 3 wird auf einen Differenzverstärker 13 gegeben, während der Abgriff zwischen dem NTC-Widerstand 2 und dem Widerstand 4 auf einen weiteren Differenzverstärker 14 gegeben wird. Die Ausgänge der Differenzverstärker 13 und 14 führen zu Stromverstärkern 15 und 16, von denen aus die Heizungen 6 bzw. 7 so geregelt werden, daß sie. gleiche, konstante Temperatur aufweisen. Die Ausgänge der Stromverstärker 15 und 16 führen zu einem weiteren Differenzverstarker 17, der die ankommenden Signale analog so verarbeitet, daß zwischen den Punkten 18 und 19 eine der Bestrahlungsstärke proportionale Ausgangsspannung abgegriffen werden kann, die unabhängig von der Umgebungstemperatur ist und im Bereich zwischen 0 und etwa 600 mV liegt, wenn die Bestrahlungsstarke von 0 auf etwa 1000 W/m2 steigt und die Widerstände 1, 2, 3 und 4 bei Raumtemperatur ca. 10 kΩ haben sowie die Regelkonstante B bei 2200 Kelvin liegt.
FIG. 2 shows the electrical circuit for operating the sensor according to the invention. A voltage of, for example, 12 V is applied between points 18 and 20, which is caused by the resistors 10 and 11 is divided so that a reference potential of, for example, 6 V occurs at the crossing point 12. The corresponding tap between the NTC resistor 1 and the resistor 3 is given to a differential amplifier 13, while the tap between the NTC resistor 2 and the resistor 4 is given to a further differential amplifier 14. The outputs of the differential amplifiers 13 and 14 lead to current amplifiers 15 and 16, from which the heaters 6 and 7 are regulated so that they. have the same constant temperature. The outputs of the current amplifiers 15 and 16 lead to a further differential amplifier 17, which processes the incoming signals analogously so that an output voltage proportional to the irradiance can be tapped between the points 18 and 19, which is independent of the ambient temperature and in the range between 0 and about 600 mV is when the irradiance increases from 0 to about 1000 W / m 2 and the resistors 1, 2, 3 and 4 have about 10 kΩ at room temperature and the control constant B is 2200 Kelvin.