EP0336651A2 - Thickened pourable aqueous abrasive cleanser - Google Patents
Thickened pourable aqueous abrasive cleanser Download PDFInfo
- Publication number
- EP0336651A2 EP0336651A2 EP89303175A EP89303175A EP0336651A2 EP 0336651 A2 EP0336651 A2 EP 0336651A2 EP 89303175 A EP89303175 A EP 89303175A EP 89303175 A EP89303175 A EP 89303175A EP 0336651 A2 EP0336651 A2 EP 0336651A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cleanser
- abrasive
- weight
- present
- colloidal alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 70
- 239000000344 soap Substances 0.000 claims abstract description 56
- 239000004094 surface-active agent Substances 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 40
- 239000003960 organic solvent Substances 0.000 claims abstract description 35
- 239000004033 plastic Substances 0.000 claims abstract description 28
- 229920003023 plastic Polymers 0.000 claims abstract description 28
- 239000000872 buffer Substances 0.000 claims abstract description 26
- 239000003792 electrolyte Substances 0.000 claims abstract description 23
- 230000009969 flowable effect Effects 0.000 claims abstract description 23
- 238000004140 cleaning Methods 0.000 claims abstract description 20
- 238000009991 scouring Methods 0.000 claims abstract description 18
- 239000002562 thickening agent Substances 0.000 claims description 54
- 239000007844 bleaching agent Substances 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 30
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 22
- 239000000194 fatty acid Substances 0.000 claims description 22
- 229930195729 fatty acid Natural products 0.000 claims description 22
- 150000004665 fatty acids Chemical class 0.000 claims description 21
- 239000003945 anionic surfactant Substances 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 17
- -1 alkali metal fatty acid Chemical class 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 16
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 11
- 125000000129 anionic group Chemical group 0.000 claims description 11
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 11
- 239000002736 nonionic surfactant Substances 0.000 claims description 10
- 239000002888 zwitterionic surfactant Substances 0.000 claims description 9
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 claims description 8
- 239000002280 amphoteric surfactant Substances 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 7
- 150000002430 hydrocarbons Chemical class 0.000 claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010665 pine oil Substances 0.000 claims description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 2
- 239000000725 suspension Substances 0.000 abstract description 5
- 239000003082 abrasive agent Substances 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 238000000518 rheometry Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 17
- 239000000126 substance Substances 0.000 description 14
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 229910001593 boehmite Inorganic materials 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 239000000084 colloidal system Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000004115 Sodium Silicate Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 230000009974 thixotropic effect Effects 0.000 description 5
- 241000640882 Condea Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N methyl undecanoic acid Natural products CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 4
- 229910001948 sodium oxide Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000004996 alkyl benzenes Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 229940082004 sodium laurate Drugs 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- BAVONGHXFVOKBV-UHFFFAOYSA-N Carveol Chemical compound CC(=C)C1CC=C(C)C(O)C1 BAVONGHXFVOKBV-UHFFFAOYSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910019093 NaOCl Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical group 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 229940077388 benzenesulfonate Drugs 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010431 corundum Substances 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 235000011167 hydrochloric acid Nutrition 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- UODXCYZDMHPIJE-UHFFFAOYSA-N menthanol Chemical compound CC1CCC(C(C)(C)O)CC1 UODXCYZDMHPIJE-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 2
- XOKSLPVRUOBDEW-UHFFFAOYSA-N pinane Chemical compound CC1CCC2C(C)(C)C1C2 XOKSLPVRUOBDEW-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 235000015096 spirit Nutrition 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical compound C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Natural products C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- BAVONGHXFVOKBV-ZJUUUORDSA-N (-)-trans-carveol Natural products CC(=C)[C@@H]1CC=C(C)[C@@H](O)C1 BAVONGHXFVOKBV-ZJUUUORDSA-N 0.000 description 1
- KAKVFSYQVNHFBS-UHFFFAOYSA-N (5-hydroxycyclopenten-1-yl)-phenylmethanone Chemical compound OC1CCC=C1C(=O)C1=CC=CC=C1 KAKVFSYQVNHFBS-UHFFFAOYSA-N 0.000 description 1
- 239000001306 (7E,9E,11E,13E)-pentadeca-7,9,11,13-tetraen-1-ol Substances 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- YRIZYWQGELRKNT-UHFFFAOYSA-N 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione Chemical compound ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O YRIZYWQGELRKNT-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- PIEXCQIOSMOEOU-UHFFFAOYSA-N 1-bromo-3-chloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Br)C(=O)N(Cl)C1=O PIEXCQIOSMOEOU-UHFFFAOYSA-N 0.000 description 1
- XETQTCAMTVHYPO-UHFFFAOYSA-N 2,3,3-trimethylbicyclo[2.2.1]heptane Chemical compound C1CC2C(C)(C)C(C)C1C2 XETQTCAMTVHYPO-UHFFFAOYSA-N 0.000 description 1
- PLFJWWUZKJKIPZ-UHFFFAOYSA-N 2-[2-[2-(2,6,8-trimethylnonan-4-yloxy)ethoxy]ethoxy]ethanol Chemical compound CC(C)CC(C)CC(CC(C)C)OCCOCCOCCO PLFJWWUZKJKIPZ-UHFFFAOYSA-N 0.000 description 1
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- INIOTLARNNSXAE-UHFFFAOYSA-N 4,8-dimethyl-2-propan-2-ylidene-3,3a,4,5,6,8a-hexahydro-1h-azulen-6-ol Chemical compound CC1CC(O)C=C(C)C2CC(=C(C)C)CC12 INIOTLARNNSXAE-UHFFFAOYSA-N 0.000 description 1
- WWJLCYHYLZZXBE-UHFFFAOYSA-N 5-chloro-1,3-dihydroindol-2-one Chemical compound ClC1=CC=C2NC(=O)CC2=C1 WWJLCYHYLZZXBE-UHFFFAOYSA-N 0.000 description 1
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical class [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N Eucalyptol Chemical compound C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- KGEKLUUHTZCSIP-UHFFFAOYSA-N Isobornyl acetate Natural products C1CC2(C)C(OC(=O)C)CC1C2(C)C KGEKLUUHTZCSIP-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical class CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- FUVGZDDOHNQZEO-UHFFFAOYSA-N NS(=O)(=O)NCl Chemical compound NS(=O)(=O)NCl FUVGZDDOHNQZEO-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 101100364870 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SAS5 gene Proteins 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000001940 [(1R,4S,6R)-1,7,7-trimethyl-6-bicyclo[2.2.1]heptanyl] acetate Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 125000005227 alkyl sulfonate group Chemical group 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Natural products C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229930007646 carveol Natural products 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 description 1
- 235000000484 citronellol Nutrition 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- WMWXXXSCZVGQAR-UHFFFAOYSA-N dialuminum;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3] WMWXXXSCZVGQAR-UHFFFAOYSA-N 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 229940093858 ethyl acetoacetate Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- DUNCVNHORHNONW-UHFFFAOYSA-N myrcenol Chemical compound CC(C)(O)CCCC(=C)C=C DUNCVNHORHNONW-UHFFFAOYSA-N 0.000 description 1
- 229930008383 myrcenol Natural products 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229930006728 pinane Natural products 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229940114930 potassium stearate Drugs 0.000 description 1
- ANBFRLKBEIFNQU-UHFFFAOYSA-M potassium;octadecanoate Chemical compound [K+].CCCCCCCCCCCCCCCCCC([O-])=O ANBFRLKBEIFNQU-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000010458 rotten stone Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000008149 soap solution Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 229940080350 sodium stearate Drugs 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229950009390 symclosene Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 150000004026 tertiary sulfonium compounds Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- ASTWEMOBIXQPPV-UHFFFAOYSA-K trisodium;phosphate;dodecahydrate Chemical class O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[O-]P([O-])([O-])=O ASTWEMOBIXQPPV-UHFFFAOYSA-K 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0013—Liquid compositions with insoluble particles in suspension
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/1213—Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2
Definitions
- the present invention relates to thickened aqueous hard surface abrasive scouring cleansers and more particularly to such cleansers which are characterized by being pourable at room temperature, exhibiting little or no syneresis over time and also having improved cleaning efficacy.
- thickened aqueous scouring cleansers exhibit various characteristics.
- thickened aqueous abrasive cleansers which use colloidal alumina thickeners to provide abrasive cleansers which exhibit little or no syneresis over time.
- abrasive cleansers are disclosed in U.S. Patent 4,676,920 to Culshaw and published patent applications EP 126545 to Buzzaccarini and EP 216416 to Iding, which contain clay type thickeners. While these cleansers contain hydrocarbon solvents, the clay thickeners do not provide the desired properties in terms of pourability and resistance to syneresis. The disclosure of Iding indicates that including solvents in abrasive cleanser compositions contributes to the instability and syneresis of these cleansers.
- abrasive cleansers are disclosed in U.S. Patent 4,158,553 and 4,240,919 to Chapman; 4,396,525 and 4,129,423 to Rubin; 4,005,027 to Hartman; 4,457,856 to Mitchell; and Japanese Patent Application 60-108499 to Watanabe et al. None of the cleansers disclosed in these references provide the desired cleaning efficacy for certain applications together with the superior resistance to syneresis and the desired flowable or plastic consistency as exhibited by the Choy et al. cleansers.
- a specialized emulsion type skin cleaner composition for removing paint is disclosed in U.S. 4,508,634 to Elepa ⁇ o et al. as containing surfactants, solvents, an optional mild abrasive and a thickener as a protective colloid thickener for stabilizing the emulsion, which colloid can be colloidal alumina.
- plastic means that the cleanser is of a consistency which can undergo continuous deformation without rupture or relaxation of that consistency
- pourable means that the cleanser is of a consistency which can be poured from an open container without the need for application of any force other than gravity
- stably abrasive-suspending means that the abrasive in the cleanser is and remains over long periods of time totally and fully suspended in the cleanser system, thus eliminating any need to shake, agitate or stir the cleanser before use to resuspend the abrasive mixture.
- liquid separation i.e., syneresis
- the cleanser is considered to be abrasive-suspending stable.
- such liquid separation is not detrimental to dispensing or using the cleanser so long as the abrasive remains fully and totally suspended.
- a thickened aqueous abrasive cleanser having such desired increased cleansing efficacy can be made including a hydrocarbon solvent and, when used in combination with a fatty acid soap and a colloidal alumina thickener together with conventional electrolyte/buffers and surfactants, a cleanser is provided which also has the above mentioned desirable properties of being smoothly flowable or plastic, preferably pourable, consistency and being stably abrasive-suspending.
- This improved cleanser may also contain bleach when desired. This improved cleanser is described below in detail.
- the hard surface abrasive scouring cleanser of the present invention as summarized above provides excellent suspension of abrasive particles.
- the cleanser of the present invention has also been found to surprisingly demonstrate a substantial absence of phase separation of the abrasive.
- the stably abrasive-suspending cleanser provided by the present invention has also been found to be stable over time and even at relatively elevated temperatures. Because of the resulting physical stability, cleansers provided by the present invention do not require shaking before use in order to re-suspend or re-mix the formulation of abrasives. Rather, the cleansers of the present invention maintain a uniform rheology and have a smoothly flowable or plastic consistency and preferably a pourable consistency even after extended periods of shelf life. Accordingly, the cleansers of the present invention have substantial esthetic appeal while being useful in the sense of being easy to dispense, maintaining solid abrasives and other components in uniform suspension and giving good coverage by preferably flowing down while clinging to vertical surfaces
- this invention provides a method for preparing a thickened aqueous hard surface abrasive scouring cleanser having a smoothly flowable or plastic consistency, preferably a pourable consistency, and being stably abrasive-suspending comprising the step of combining:
- this invention provides a method for cleaning a surface with a thickened, aqueous cleanser characterized by a smoothly flowable or plastic consistency, preferably pourable, and being stably abrasive-suspending comprising contacting the surface having a stain thereon with the thickened, aqueous cleanser comprising:
- the present invention has surprisingly demonstrated the ability of the surfactant, alumina colloid, soap and solvent to provide an abrasive cleanser which is not only smoothly flowable or plastic, preferably pourable, and is stably abrasive-suspending but also provides superior cleaning properties.
- the present invention provides a thickened aqueous abrasive cleanser characterized by being pourable and having a smooth flowable consistency, these characteristics being retained by the cleanser even over long periods of time. More preferably, the invention provides a hard surface abrasive scouring cleanser having properties of the type described above while also being stably abrasive-suspending, thereby stably suspending the abrasive solids over time.
- a thickened, aqueous cleanser having desirable characteristics of a pourable and smooth flowing consistency and being stably abrasive-suspending, comprises:
- Essential ingredients in the abrasive composition of the invention as summarized above particularly include the colloidal alumina thickener, the surfactant, the soap and the solvent, particularly where the colloidal alumina thickener tends to demonstrate the smoothly flowable or plastic (preferably pourable) and not thixotropic characteristics upon combination with the surfactant, abrasive, soap and organic solvent.
- Abrasives are used in the invention to promote cleaning action by providing a scouring action when the cleansers of the invention are used on hard surfaces.
- Preferred abrasives include silica sand, but other hard abrasives such as a perlite, which is an expanded silica, and various other insoluble particulate abrasives can be used, such as quartz, pumice, calcium carbonate, feldspar, talc, tripoli and calcium phosphate.
- Abrasives can be present in amounts ranging from about 5% to about 70% by weight based on the total weight of the cleanser, preferably from about 10% to about 60%, and more preferably between about 20% and about 40%.
- Useful abrasives are generally sold as grades based on U.S. Mesh Sieve sizes.
- the U.S. Sieve sizes are inversely related to measurements in microns, wherein 80 mesh sieves correspond to about 180 microns, and 325 mesh sieves correspond to about 45 microns.
- the particles should have an average size of at least about 10 microns, preferably from about 20 to about 200 microns, more preferably from about 30 to about 100 microns, and usually a preferred useful abrasive will have an average particle size of around 45 microns.
- Particle hardness of the abrasives can range from Mohs hardness of about 1-10, more preferably 3-8.
- Abrasives are generally insoluble inorganic materials, although there are some organic abrasives, to wit, melamine granules, urea formaldehyde, corn cobs, rice hulls, etc., which are useful in the cleansers of the present invention.
- Some thickeners are also insoluble inorganic materials, for instance, the colloidal aluminum oxide thickeners used in this invention.
- the colloidal alumina thickeners used in this invention distinguish from the above aluminum oxide abrasives in many aspects. Colloidal alumina thickeners are dispersable in an aqueous system and have a dispersed average particle size of smaller than one micron and usually much smaller. Aluminum oxide abrasives on the other hand will be much larger, such as up to 500 microns, and even in aqueous dispersion, will not thicken the cleansers of this invention. As mentioned below, the colloidal alumina thickeners must be initially dispersed in acidic media to provide thickening. Further, without the colloidal thickeners of this invention, abrasives, even aluminum oxide abrasives, cannot be stably suspended.
- the surfactants suitable for use in this invention are selected from anionic, nonionic, amphoteric, zwitterionic surfactants and mixtures thereof, which are in general the non-soap type of surfactants. It is especially preferred to use a combination of anionics and bleach-stable nonionics, which are usually more saturated to provide stability in the presence of the bleach. However, when the cleansers of this invention are used as non-bleach formulations, more unsaturation may be present in the surfactants selected.
- the anionic surfactants useful in this invention can be selected from surfactants such as alkali metal alkyl sulfates, secondary alkane sulfonates, linear alkyl benzene sulfonates, and mixtures thereof. These anionic surfactants will preferably have alkyl chain groups averaging about 8 to about 20 carbon atoms. In practice, it is frequently desirable to have a bleach present in the cleanser. When the bleach is present, the surfactant can be any other anionic surfactant which does not degrade chemically when in contact with a hypohalite, e.g., hypochlorite, bleaching species.
- HOSTAPUR SAS manufactured by Farbwerke Hoeschst A.G., Frankfurt, West Germany.
- Another example of an alkane sulfonate is Mersolat, which has an alkyl group of about 13-15 carbon atoms and is sold by Mobay Chemical Company.
- An example of typical alkali metal alkyl sulfates is Conco Sulfate WR, which has an alkyl group of about 16 carbon atoms, and is sold by Continental Chemical Company.
- the electrolyte used is an alkali metal silicate
- the surfactant a soluble alkali metal soap of a fatty acid, such as a C6 ⁇ 18, more preferably C10 ⁇ 16, fatty acid soap.
- a soluble alkali metal soap of a fatty acid such as a C6 ⁇ 18, more preferably C10 ⁇ 16, fatty acid soap.
- sodium and potassium soaps of lauric and myristic acid are especially preferred.
- Examples of preferred bleach-stable nonionic surfactants are amine oxides, especially trialkyl amine oxides.
- a representative structure is set forth below:
- R′ and R ⁇ can be alkyl of 1 to 3 carbon atoms, and are most preferably methyl, and R is alkyl of about 10 to about 20 carbon atoms.
- R′ and R ⁇ are both CH3- and R is alkyl averaging about 12 carbon atoms
- the structure for dimethyldodecylamine oxide, a particularly preferred amine oxide is obtained.
- These amine oxides can be straight or branched chain structures (see U.S.
- Patent 4,299,313 to Joy can be functionalized when desired with various substituent groups, such as hydroxyethyl groups, ethoxylate groups and the like, which are compatible with the cleanser system and will provide the properties desired.
- substituent groups such as hydroxyethyl groups, ethoxylate groups and the like.
- Representative examples of these particular type of bleach-stable nonionic surfactants include the dimethyldodecylamine oxides sold under the trademark Ammonyx LO by Stepan Chemical Company, Chicago, ILL.
- Yet other preferred amine oxides are those sold under the trademark Barlox, by Baird Chemical Industries, Inc.
- Still others include the Conco XA series, sold by Continental Chemical Company, the Aromax series sold by Armour Industrial Chemical Company, the Schercamox series, sold by Scher Brothers, Inc., the Synprolam series sold by ICI Americas Inc., and specialty amine oxides sold by Ethyl Corporation. These amine oxides preferably have main alkyl chain groups averaging about 10 to 20 carbon atoms.
- suitable surfactants include amphoteric surfactants, exemplary of which are betaines, imidazolines and certain quaternary phosphonium and tertiary sulfonium compounds.
- betaines such as N-carboxymethyl-N-dimethyl-N-(9- octadecenyl)ammonium hydroxide and N-carboxymethyl-N-cocoalkyl-N-dimethyl ammonium hydroxide, the latter of which is sold under the trademark Lonzaine by Lonza Corporation.
- Other acceptable surfactants are the zwitterionic surfactants exemplified in U.S. Pat. No. 4,005,029, to Jones, (see columns 11-15) the disclosure of which patent is incorporated herein by reference.
- the surfactant is generally present in the cleanser in a range of about 0.1 to about 15% by weight, based on the total weight of the cleanser, more preferably about 0.5 to about 10% and most preferably about 1 to about 5%.
- electrolytes/buffers employed within the present invention are generally the salts of various inorganic acids, including the alkali metal phosphates, polyphosphates, pyrophosphates, triphosphates, tetrapyrophosphates, silicates, metasilicates, polysilicates, carbonates, hydroxides, chlorides, sulfates, and mixtures of the above.
- Certain divalent salts for example, alkaline earth phosphate, carbonate, hydroxide, etc., salts can function singly as buffers. If such compounds were used, they normally would be combined with at least one other of the previous electrolytes/buffers to provide the appropriate pH adjustment. It may also be desirable to use as a buffer such materials as aluminosilicates (zeolites), borates, aluminates and bleach-stable organic materials such as gluconates, succinates, maleates, and their alkali metal salts. These electrolytes/buffers function to maintain the pH range of the inventive cleanser compounds preferably above 7.0, more preferably above 8.0 or 9.0 and most preferably at between about 10.0 and 13.0.
- the amount of electrolyte/buffer employed with the composition of the present invention can vary from about 0.1% to about 15% by weight of the cleanser, preferably from about 0.5 to about 10% and more preferably from about 1 to about 5%.
- the silicate electrolyte/buffers useful in the present invention are formed by a combination of sodium oxide and silicon dioxide and may preferably be a sodium silicate having a weight ratio of silicon dioxide to sodium oxide of about 3.75/1 and about 1/1, preferably between about 3/1 and about 1.5/1. More preferably, the electrolyte/buffer is in the form of sodium silicate having a weight ratio of silicon dioxide to sodium oxide of about 2.4/1.
- a silicate as described above is available, for example, from the PQ Corporation, Philadelphia, PA.
- the colloidal alumina thickener component of the present invention is preferably a hydrated aluminum oxide having qualifying characteristics such as particle size to cause it to function as a colloidal thickener.
- the colloidal alumina thickener used in the invention is to be contrasted from abrasive alumina materials having substantially larger particle sizes, for example substantially greater than one micron. Accordingly, the particle size of the colloidal alumina thickener is a particularly important feature for that component of the invention.
- colloidal alumina being a thickener
- a critically important function of the colloidal alumina is to act, in combination with the surfactants and soaps in the cleanser compositions of the present invention, as a suspension or suspending agent for the abrasives and particularly to stably suspend the abrasives to prevent the abrasive from settling out or separating in storage over long periods of time.
- Preferred hydrated aluminas within the present invention are derived from synthetic Boehmites.
- the hydrated colloidal alumina thickener of the present invention is chemically insoluble, that is, it should not dissolve in reasonably acidic, basic or neutral media.
- colloidal alumina will dissolve in strongly alkaline media, for example, 50% NaOH.
- a typical alumina is distributed by Remet Chemical Corp., Chadwicks, N.Y., under the trademark DISPERAL (formerly DISPURAL) and manufactured by Condea Chemie, Brunsbuettel, West Germany.
- DISPERAL is an aluminum oxide monohydrate which commonly forms stable colloidal aqueous dispersions.
- Alumina products of this type commonly exist as dry powders which can form thixotropic gels, bind silica and other ceramic substrates, while possessing a positive charge and being substantive to a variety of surfaces.
- DISPERAL has a typical chemical composition of 90% alpha aluminum oxide monohydrate (Boehmite) 9% water, 0.5% carbon (as primary alcohol), 0.008% silicon dioxide, 0.005% ferric oxide, 0.004% sodium silicate, and 0.05% sulfur. It has a surface area (BET) of about 320 m2/gm, an undispersed average particle size (as determined by sieving) of 15% by weight being greater than 45 microns and 85% being less than 45 microns, an average particle size, in dispersion, of 0.0048 microns as determined by X-ray diffraction, and a bulk density of 45 pounds per cubic foot (loose bulk) and 50 pounds per cubic foot (packed bulk).
- BET surface area
- CATAPAL has a typical chemical composition of 74.2% aluminum oxide (Boehmite), 25.8% water, 0.36% carbon, 0.008% silicon dioxide, 0.005% ferric oxide, 0.004% sodium oxide and less than 0.01% sulfur. It has a surface area (BET) of 280 m2/gm, an undispersed average particle size (as determined by sieving) of 38% by weight being less than 45 microns and 19% being greater than 90 microns.
- BET surface area
- colloidal alumina thickeners used in dispersed form in the invention, generally have exceedingly small average particle size in dispersion (i.e., generally less than one micron).
- the average particle size diameter of these thickeners when dispersed is likely to be around 0.0048 micron.
- a preferred average particle size range in dispersion is preferably less than one micron, more preferably less than about 0.5 micron and most preferably less than 0.1 micron. Due to their small particle size, little or substantially no abrasive action is provided by these types of thickeners even though they are chemically insoluble, inorganic particles. Additionally, these colloidal aluminas are chemically quite different from aluminum oxide abrasives, such as corundum.
- Colloidal aluminas are produced from synthetic Boehmite. In general, they are synthesized by hydrolyzing aluminum alcoholates, with the resulting reaction products being hydrated aluminum (colloidal alumina) and three fatty alcohols.
- the reaction equation is set forth below:
- Boehmite which is the actual mineral, has a Mohs hardness of about 3. It thus may be expected that the synthetic Boehmite would not have a hardness greater than the naturally occurring Boehmite. Corundum, on the other hand, appears to have a Mohs hardness of at least 8 and perhaps higher. Thus, any abrasive action provided by colloidal aluminum oxides may be severely mitigated due to their relative softness.
- hydrated aluminas used herein should be chemically insoluble, i.e., should not dissolve in acidic, basic or neutral media in order to have effective thickening as well as stability properties.
- colloidal Boehmite aluminas will dissolve in highly basic media, e.g., 50% NaOH.
- colloidal alumina thickeners in order to be useful as thickeners in the cleansers of this invention, must be initially dispersed in aqueous dispersion by means of strong acids.
- Preferable acids used to disperse these colloidal aluminas include, but are not limited to, acetic, nitric and hydrochloric acids. Sulfuric or phosphoric acids are not preferred.
- the colloidal alumina may be added to water sufficient to make up the desired percent dispersion and then the acid may be added thereto. Or, the acid may be first added to the water and then the colloidal alumina is dispersed in the dilute acid solution. In either case, a substantial amount of shearing (i.e. mixing in a mixing vat) is required to obtain the proper rheology.
- a relatively small amount of concentrated acid is added. For instance, for a 25 wt.% dispersion material, 25% alumina monohydrate is combined with 1.75% concentrated (12M) hydrochloric acid and then dispersed in 73.75% water.
- the colloidal alumina thickener itself is generally present in the cleanser in the range of about 1 to about 15% by weight based on the total weight of the cleanser, preferably about 1 to about 10%, more preferably about 1 to 6%, and most preferably, about 1 to about 4.7.
- Many useful formulations will contain from about 2.5 to about 3.5% colloidal alumina according to the present invention.
- the acidified, diluted colloid is neutralized, preferably by sodium hydroxide (e.g., a 50% solution), although if the electrolyte/buffer is sodium carbonate or sodium silicate, it may be possible to forego the sodium hydroxide as a separate component.
- sodium hydroxide e.g., a 50% solution
- the electrolyte/buffer is sodium carbonate or sodium silicate, it may be possible to forego the sodium hydroxide as a separate component.
- a halogen bleach may be added, if desired, to the cleansers of this invention, and such bleaches are unstable in the presence of acid, neutralization is also desirable when a bleach is used.
- a thixotropic rheology is also not particularly desirable in this invention since in the thixotropic state, a liquid at rest also thickens dramatically, but, theoretically, should flow upon shearing. If the thixotrope has a high yield stress value, as typcially found in clay-thickened liquid media, the fluid at rest may not re-achieve flowability without shaking or agitation. As a matter of fact, if colloidal alumina alone is used to thicken the liquid cleansers of this invention, a thixotrope with high yield stress values appears to result.
- a thixotrope will flow from a dispenser only upon shaking or squeezing.
- An example of a typical thixotrope is catsup, which sometimes requires quite a bit of shaking and pounding of the bottom of the bottom containing it to induce flow.
- the type of rheology desired in this invention is a plastic, flowable rheology. This sort of rheology does not require shearing to promote fluidity. Thus, a product made in accordance with the present invention will not require, in its preferred form, squeezing (assuming a deformable plastic squeeze bottle), shaking or agitation to flow out of the container or dispenser, but will have a pourable consistency. In a non-preferred form, the cleansers of the present invention may not be pourable from a particular container, but nevertheless are a smoothly flowable, plastic consistency and are not thixotropes.
- colloidal alumina as a protective colloid thickener to stabilize an emulsion of surfactants, solvents and an optional mild abrasive, but did not recognize or disclose that a stable suspension of abrasives could be attained with the colloidal alumina in the combination of surfactants, soaps and organic solvents.
- the soap useful in the present invention can be straight chain or branched chain fatty acids having 6 to 24 carbon groups with univalent or multivalent cations which render the soap soluble or dispersible in the aqueous cleanser.
- the soap may be an alkali metal salt of such a fatty acid, such as Li, Na or K, or may be ammonium or alkylammonium salts thereof. Soaps which are conventionally used as suds suppressors will generally be useful in the present invention.
- soaps are selected for use in prior art cleansers for either suds control or for bleach stability, it is also important in the present invention that the soap be compatible with and solubilize the organic solvent in the cleanser of the present invention, and also be compatible with the colloidal alumina thickener in the cleanser of the present invention.
- the soap which may be saturated or unsaturated, provides in combination with the alumina colloid thickener and hydrocarbon solvent, the characteristics of improved cleansing properties and the improved resistance to syneresis, while still maintaining the plastic consistency or plastic consistency or pourable flow characteristics of the cleanser of this invention.
- a saturated soap is usually preferred when a bleach is present in order to maintain bleach stability, but an unsaturated soap may be preferred in some instances when a bleach is not included in the cleanser of the present invention.
- the soap useful in the present invention is generally limited to a molecular weight range characterized by having from about 8 to about 20 carbon groups, either in a straight or branched chain configuration. More preferably, the soap is of a type having from about 10 to about 18 carbon groups, even more preferably about 12 to about 14 carbon groups.
- the amount of soap employed in a cleanser according to the present invention will be from an effective amount to about 5% by weight of the cleanser, preferably from about 0.1 to about 5%, more preferably from about 0.5 to about 4% and most preferably up to about 3%.
- Suitable fatty acid soaps useful in the present invention may be selected from the class consisting of potassium laurate, sodium laurate, sodium stearate, potassium stearate, sodium oleate, etc. Similar soaps containing ammonium ion as a cation may also be used particularly if the cleanser does not contain a bleach. Suitable soaps for use within the present invention are disclosed in Chemical Publishing Co., Inc., Encyclopedia Of Surface-Active Agents, Vol. I (1952), page 39 etc., Kirk-Othmer, Encyclopedia of Chemical Technology 3d, Vol. 21 pp. 162-181 re "Soaps" and Vol. 22, re “Surfactants”. Accordingly, those references are incorporated herein as though set out in full.
- soaps herein appear, overall, to be more hydrophobic in nature than other anionic surfactants. While not being entirely understood, this more hydrophobic nature of the soaps surprisingly appears to help maintain in the organic solvent containing system of this invention the uniform smoothly flowable characteristics and advantageously promotes the smoothly flowable plastic rheology, as well as the preferred pourable consistency, of the cleansers of the present invention.
- the soap has been particularly effective in combination with colloidal alumina thickener where the cleanser also contains a silicate based material as an electrolyte/buffer.
- the silicate and alumina may function to form a network, possibly through the formation of bridging oxygens, in order to produce a very thixotropic composition similar to compositions employing clay as a thickening agent.
- soap having a carboxyl group which is hydrophilic in combination with a hydrophobic alkyl chain functions to break up the network formed between the silicate and alumina in order to render the composition smoothly flowable, as realized by the present invention.
- the soap also aids in solubilizing the organic solvent present in the cleansers of the present invention because it probably helps to mix or emulsify the solvent therein.
- the organic solvents useful in the present invention are alkyl or aryl hydrocarbons containing at least 2 carbon atoms, preferably about 4 to about 18 carbon atoms, and can include ethers, alcohols, esters, ketones and other hydrocarbons which are compatible with the fatty acid soap surfactant and colloidal aluminum present in the composition of the cleanser of the present invention.
- organic solvents examples include d-limonene, terpinolene, pine oil, glycol ethers such as butoxyethanol (butyl "Cellosolve"), straight or branched chain C4 glycol ethers; glycols, such as polyethylene glycol; alcohols such as phenol, ethyl alcohol, benzyl alcohol, geraniol, citronellol, santalol, menthol, borneol, carveol, ethylhexelcarbonyl, vetiverol, linalol, terpineol, myrcenol, cetrol; and esters such as linalyl acetate, benzyl acetate, isobornyl acetate, ethyl acetoacetate and isoamylacetate.
- glycol ethers such as butoxyethanol (butyl "Cellosolve"), straight or branched chain C4 glycol ethers
- glycols such as polyethylene
- saturated organic solvents should be used when a bleach is included in the cleansers of this invention to promote bleach stability as recognized by those skilled in the art.
- unsaturated organic solvents may be selected for use in the non-bleach formulations of the cleansers of this invention.
- the organic solvent is selected to be compatible with the soap and surfactant useful in the present invention as outlined above.
- the amount of organic solvent employed in the cleanser according to the present invention will be from an effective amount up to about 10% by weight of the cleanser, preferably from about 0.1 to about 8%, more preferably from about 0.1 to about 6%, and most preferably up to about 4%.
- the ratio of organic solvent to the combined amount of soap and surfactant generally be within certain ranges for most practical formulation.
- the weight ratio of organic solvent to soap plus surfactant should be less than about 1:40, and usually between about 10:1 and about 1:20, preferably between about 2:1 and about 1:10, more preferably between about 1:1.5 and about 1:9, still more preferably between about 1:2 and about 1:8, and most preferably between about 1:3 and about 1:7.
- the cleansers of the present invention can, when desired, contain a bleach.
- a source of bleach is selected from various halogen bleaches.
- halogen bleaches are particularly favored.
- the bleach can be selected from the group consisting essentially of the alkali metal and alkaline earth salts of hypohalite, hypohalite addition products, haloamines, haloimines, haloimides and haloamides. These also produce hypohalous bleaching species in situ with hypochlorites being a preferred form of bleach.
- hypochlorite producing compounds include sodium, potassium, lithium and calcium hypochlorite, chlorinated trisodium phosphate dodecahydrate, potassium and sodium dichloroisocyanurate, trichloroisocyanuric acid, dichlorodimethyl hydantoin, chlorobromo dimethylhydantoin, N-chlorosulfamide, and chloramine.
- a preferred bleach employed in the present invention is sodium hypochlorite having the chemical formula NaOCl, in an amount ranging from about 0.1% to about 5%, more preferably about 0.25% to 4% and most preferably 0.5% to 2.0%.
- the purpose for the bleach is evident in forming an oxidizing cleaning agent which is very effective against oxidizable stains such as organic stains.
- a principal problem with the use of bleach in such compositions is its tendency to be unstable or to cause instability of other components, particularly certain surfactants if they are present in substantial amounts.
- colloidal alumina as a thickener in the present invention together with a fatty acid soap, a surfactant, and organic solvent together with only limited amounts of additional surfactant components
- the bleach stability of the composition of the present invention is surprisingly good resulting in a product capable of maintaining excellent flow characteristics and bleach strength even after considerable periods of shelf life.
- adjuncts may include bleach-stable dyes (for example, anthraquinone dyes), pigments (for example, phthalocyanine, TiO2, ultramarine blue), colorants and fragrances in relatively low amounts, for example, about 0.001% to 5.0% by weight of the cleanser composition.
- bleach-stable dyes for example, anthraquinone dyes
- pigments for example, phthalocyanine, TiO2, ultramarine blue
- colorants and fragrances in relatively low amounts, for example, about 0.001% to 5.0% by weight of the cleanser composition.
- Water is the medium used as the continuous phase in which the various components of the cleanser of the present invention are dissolved, dispersed or suspended. Some of these components may be added to the cleanser in a water base, thus contributing to the total water present in the cleanser. While water and the miscellaneous minor ingredients or additives make up the remainder of the composition, water is generally present in amounts ranging from 10-80% by weight of the cleanser.
- the method of preparing the liquid cleanser of this invention comprises combining:
- alumina is charged into a vat or suitable mixing vessel which has been provided with a suitable mixing means, such as an impeller, which is in constant agitation with suitable angular velocity.
- a suitable mixing means such as an impeller, which is in constant agitation with suitable angular velocity.
- the alumina is acidified and diluted with about 50% of the total water used.
- An alkyl benzene sulfonate phase stabilizer can be optionally added at this point.
- a neutralizer such as a 50% NaOH solution can be added, with the remainder of the water.
- halogen bleach and abrasives can be added. Thereafter, the anionic surfactants are added.
- the electrolyte/buffer When silicate is used as the electrolyte/buffer, it is necessary to have a fatty acid soap as one of the anionic surfactants since, as explained in U.S. Patent 4,695,394, the soap appears to surprisingly break up any network which could form between the silicate and the colloidal alumina.
- the bleach-stable nonionic surfactant is added, which is generally a trialkyl amine oxide (although a betaine or other surfactant would likely be suitable). At this point any alkyl benzene sulfonate is most preferably, although optionally, added.
- the electrolyte/buffer is then added and finally, the organic solvent is added.
- the organic solvent can be premixed with the surfactants if desired in some methods of making the cleansers of the present invention.
- the optional minor ingredients such as fragrance and pigments could be added.
- fragrance is an organic component which may be more susceptible to oxidation by the halogen bleach, it is preferable to add it last.
- the 1F/T values were determined by storing samples at 0°F for 24 hrs. (freezing), thawing them at room temperature over 72 hrs. and measuring syneresis. This test gives an indication of physical stability when samples are transported or stored in low temperature conditions. e. Brookfield RVT, spindle No. 4, 5 RPM, room temperature. f. From Condea Chemie, Brunsbuettel, West Germany.
- the following embodiments illustrate formulations containing low and high levels of abrasive.
- Material Formula 17 Low Abrasive Wt. % Formula 18 High Abrasive Wt. % Water 66.06 22.66 HCl (38%) 0.21 0.09 Disperal1 4.50 2.00 Calcium Carbonate Abrasive2 5.00 55.00 Pigment 0.75 0.75 Tergitol3 2.70 1.71 LAS4 2.80 1.78 SAS5 2.65 1.68 Soap Solution6 7.33 7.33 Sodium Chloride 2.00 2.00 Terpinolene7 3.00 2.00 Silicate RU8 3.00 3.00 100.00 100.00 Viscosity (cps)9 1,720 5,920 1. Alumina (Al2O3.H2O) from Condea Chemie. 2. Abrasive from Georgia Marble. 3.
- Tergitol TMN-6 from Union Carbide. 4. Biosoft LAS 40-S(40%) from Stepan Chemical Company. 5. Hostapur SAS, secondary alkane sulfonate from Hoechst A.G. 6. Soap solution prepared from 13.62 parts by weight lauric acid, 13.62 parts 50% NaOH and 72.75 parts water. 7. From SCM Aroma and Flavor Chemicals. 8. Sodium silicate RU from PQ Corporation. 9. Brookfield RVT, spindle No. 4, 5 RPM, room temperature.
- the present invention also contemplates methods for forming cleansers including compositions such as those described above and illustrated by the various examples. Generally, such a method comprises the steps of combining the various components to form the cleanser composition.
- the present invention also contemplates methods for cleaning hard surfaces or removing soil in a manner believed obvious from the preceding description. However, to assure a complete understanding of the invention, such a method is carried out by contacting the surface, stain or soil with a composition according to the present invention. Thereafter, the composition together with the suspended stain is preferably removed from the surface by rinsing.
- a thickened aqueous abrasive cleanser particularly characterized by a smoothly flowable or plastic consistency while demonstrating the ability to suspend solids, preferably in the form of abrasives. While preferred embodiments and examples of the invention have been illustrated and described above, it is to be understood that these embodiments are capable of further variation and modification; therefore, the present invention is not to be limited to precise details of the embodiments set forth above but is to be taken with such changes and variations as fall within the purview of the following claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- The present invention relates to thickened aqueous hard surface abrasive scouring cleansers and more particularly to such cleansers which are characterized by being pourable at room temperature, exhibiting little or no syneresis over time and also having improved cleaning efficacy.
- A variety of thickened aqueous scouring cleansers are known in the art and these cleansers exhibit various characteristics. For example, in U.S. Patents 4,599,186, 4,657,692 and 4,695,394 to Choy et al. and in copending U.S. application Serial No. 07/146,519 of Reboa et al. filed January 21, 1988, thickened aqueous abrasive cleansers are disclosed which use colloidal alumina thickeners to provide abrasive cleansers which exhibit little or no syneresis over time.
- Other abrasive cleansers are disclosed in U.S. Patent 4,676,920 to Culshaw and published patent applications EP 126545 to Buzzaccarini and EP 216416 to Iding, which contain clay type thickeners. While these cleansers contain hydrocarbon solvents, the clay thickeners do not provide the desired properties in terms of pourability and resistance to syneresis. The disclosure of Iding indicates that including solvents in abrasive cleanser compositions contributes to the instability and syneresis of these cleansers.
- Other abrasive cleansers are disclosed in U.S. Patent 4,158,553 and 4,240,919 to Chapman; 4,396,525 and 4,129,423 to Rubin; 4,005,027 to Hartman; 4,457,856 to Mitchell; and Japanese Patent Application 60-108499 to Watanabe et al. None of the cleansers disclosed in these references provide the desired cleaning efficacy for certain applications together with the superior resistance to syneresis and the desired flowable or plastic consistency as exhibited by the Choy et al. cleansers. A specialized emulsion type skin cleaner composition for removing paint is disclosed in U.S. 4,508,634 to Elepaño et al. as containing surfactants, solvents, an optional mild abrasive and a thickener as a protective colloid thickener for stabilizing the emulsion, which colloid can be colloidal alumina.
- The disclosures of the above references are incorporated herein by reference.
- In view of the above it has been found that there remains the need for a thickened aqueous abrasive cleanser having the characteristics of:
- (a) having a smoothly flowable or plastic consistency, preferably pourable, and maintaining these properties over long periods of time;
- (b) being stably abrasive-suspending, i.e., capable of suspending the abrasive so that it can be used without the need for prior shaking or agitation to resuspend the abrasive after standing for a period of time; and
- (c) having improved cleaning efficacy for certain applications.
- In the context of this invention the term "plastic" means that the cleanser is of a consistency which can undergo continuous deformation without rupture or relaxation of that consistency; the term "pourable" means that the cleanser is of a consistency which can be poured from an open container without the need for application of any force other than gravity; and the term "stably abrasive-suspending" means that the abrasive in the cleanser is and remains over long periods of time totally and fully suspended in the cleanser system, thus eliminating any need to shake, agitate or stir the cleanser before use to resuspend the abrasive mixture. In this regard, it should be noted that some liquid separation, i.e., syneresis, can occur in the cleanser, but so long as the abrasives remain fully and totally suspended, the cleanser is considered to be abrasive-suspending stable. Moreover, such liquid separation is not detrimental to dispensing or using the cleanser so long as the abrasive remains fully and totally suspended.
- It has now been determined that it is desirable to include in a thickened aqueous abrasive cleanser an organic solvent to increase the cleaning efficacy of the cleanser for certain applications. Contrary to the expectations that the addition of an organic solvent to these cleansers would increase syneresis, it has surprisingly been found that a thickened aqueous abrasive cleanser having such desired increased cleansing efficacy can be made including a hydrocarbon solvent and, when used in combination with a fatty acid soap and a colloidal alumina thickener together with conventional electrolyte/buffers and surfactants, a cleanser is provided which also has the above mentioned desirable properties of being smoothly flowable or plastic, preferably pourable, consistency and being stably abrasive-suspending. This improved cleanser may also contain bleach when desired. This improved cleanser is described below in detail.
- It is an object of the invention to provide a thickened aqueous abrasive cleanser characterized by a rheology and a consistency which remains smoothly flowable or plastic over long periods of time.
- It is another object of this invention to provide a thickened aqueous abrasive cleanser characterized by being stably abrasive-suspending over long periods of time.
- It is another object of this invention to provide a thickened aqueous abrasive cleanser characterized by having improved cleaning efficacy.
- This invention provides a thickened aqueous hard surface abrasive scouring cleanser characterized by being smoothly flowable or plastic and being stably abrasive-suspending comprising:
- (a) a particulate abrasive having an average particle size greater than about one micron to provide scouring action wherein the particulate abrasive comprises from about 5 to about 70% by weight of the cleanser;
- (b) at least one of an anionic, nonionic, amphoteric or zwitterionic surfactant being present in a cleaning-effective and abrasive-suspending amount;
- (c) an electrolyte/buffer forming about 0.1 to about 10% by weight of the cleanser;
- (d) a colloidal alumina thickener having an average particle size, in dispersion, of no more than about one micron, the colloidal alumina thickener forming from about 1 to about 15% by weight of the cleanser;
- (e) a fatty acid soap being present from an effective amount to about 5% by weight of the cleanser; and
- (f) an organic solvent present from an effective amount to about 10% by weight of the cleanser.
- The hard surface abrasive scouring cleanser of the present invention as summarized above provides excellent suspension of abrasive particles. In addition, the cleanser of the present invention has also been found to surprisingly demonstrate a substantial absence of phase separation of the abrasive. The stably abrasive-suspending cleanser provided by the present invention has also been found to be stable over time and even at relatively elevated temperatures. Because of the resulting physical stability, cleansers provided by the present invention do not require shaking before use in order to re-suspend or re-mix the formulation of abrasives. Rather, the cleansers of the present invention maintain a uniform rheology and have a smoothly flowable or plastic consistency and preferably a pourable consistency even after extended periods of shelf life. Accordingly, the cleansers of the present invention have substantial esthetic appeal while being useful in the sense of being easy to dispense, maintaining solid abrasives and other components in uniform suspension and giving good coverage by preferably flowing down while clinging to vertical surfaces.
- In another aspect, this invention provides a method for preparing a thickened aqueous hard surface abrasive scouring cleanser having a smoothly flowable or plastic consistency, preferably a pourable consistency, and being stably abrasive-suspending comprising the step of combining:
- (a) a particulate abrasive having an average particle size greater than about one micron to provide scouring action wherein the particulate abrasive comprises from about 5 to about 70% by weight of the cleanser;
- (b) at least one of an anionic, nonionic, amphoteric or zwitterionic surfactant being present in a cleaning-effective and abrasive-suspending amount;
- (c) an electrolyte/buffer forming about 0.1 to about 10% by weight of the cleanser;
- (d) a colloidal alumina thickener having an average particle size, in dispersion, of no more than about one micron, the colloidal alumina thickener forming from about 1 to about 15% by weight of the cleanser;
- (e) a fatty acid soap being present from an effective amount to about 5% by weight of the cleanser; and
- (f) an organic solvent present from an effective amount to about 10% by weight of the cleanser.
- In another aspect, this invention provides a method for cleaning a surface with a thickened, aqueous cleanser characterized by a smoothly flowable or plastic consistency, preferably pourable, and being stably abrasive-suspending comprising contacting the surface having a stain thereon with the thickened, aqueous cleanser comprising:
- (a) a particulate abrasive having an average particle size greater than about one micron to provide scouring action wherein the particulate abrasive comprises from about 5 to about 70% by weight of the cleanser;
- (b) at least one of an anionic, nonionic, amphoteric or zwitterionic surfactant being present in a cleaning-effective and abrasive-suspending amount;
- (c) an electrolyte/buffer forming about 0.1 to about 10% by weight of the cleanser;
- (d) a colloidal alumina thickener having an average particle size, in dispersion, of no more than about one micron, the colloidal alumina thickener forming from about 1 to about 15% by weight of the cleanser;
- (e) a fatty acid soap being present from an effective amount to about 5% by weight of the cleanser; and
- (f) an organic solvent present from an effective amount to about 10% by weight of the cleanser.
- The present invention has surprisingly demonstrated the ability of the surfactant, alumina colloid, soap and solvent to provide an abrasive cleanser which is not only smoothly flowable or plastic, preferably pourable, and is stably abrasive-suspending but also provides superior cleaning properties.
- In one aspect, the present invention provides a thickened aqueous abrasive cleanser characterized by being pourable and having a smooth flowable consistency, these characteristics being retained by the cleanser even over long periods of time. More preferably, the invention provides a hard surface abrasive scouring cleanser having properties of the type described above while also being stably abrasive-suspending, thereby stably suspending the abrasive solids over time.
- Accordingly, in at least one embodiment of the invention, a thickened, aqueous cleanser having desirable characteristics of a pourable and smooth flowing consistency and being stably abrasive-suspending, comprises:
- (a) a particulate abrasive having an average particle size greater than about one micron to provide scouring action wherein the particulate abrasive comprises from about 10 to about 70% by weight of the cleanser;
- (b) at least one of an anionic, nonionic, amphoteric or zwitterionic surfactant being present from about 0.1 to about 10% by weight of the cleanser;
- (c) an electrolyte/buffer forming from about 0.1 to about 10% by weight of the cleanser;
- (d) a colloidal alumina thickener having an average particle size, in dispersion, of no more than about one micron, the colloidal alumina thickener forming about 1 to about 15% by weight of the cleanser;
- (e) a fatty acid soap being present from about 0.1 to about 5% by weight of the cleanser; and
- (f) an organic solvent present from about 0.1 to about 10% by weight of the cleanser.
- Essential ingredients in the abrasive composition of the invention as summarized above particularly include the colloidal alumina thickener, the surfactant, the soap and the solvent, particularly where the colloidal alumina thickener tends to demonstrate the smoothly flowable or plastic (preferably pourable) and not thixotropic characteristics upon combination with the surfactant, abrasive, soap and organic solvent.
- In order to provide a more complete understanding of the invention, a summary as to each of the individual components in the composition of the present invention is set forth in greater detail below.
- Abrasives are used in the invention to promote cleaning action by providing a scouring action when the cleansers of the invention are used on hard surfaces. Preferred abrasives include silica sand, but other hard abrasives such as a perlite, which is an expanded silica, and various other insoluble particulate abrasives can be used, such as quartz, pumice, calcium carbonate, feldspar, talc, tripoli and calcium phosphate. Abrasives can be present in amounts ranging from about 5% to about 70% by weight based on the total weight of the cleanser, preferably from about 10% to about 60%, and more preferably between about 20% and about 40%.
- Useful abrasives are generally sold as grades based on U.S. Mesh Sieve sizes. The U.S. Sieve sizes are inversely related to measurements in microns, wherein 80 mesh sieves correspond to about 180 microns, and 325 mesh sieves correspond to about 45 microns. The particles should have an average size of at least about 10 microns, preferably from about 20 to about 200 microns, more preferably from about 30 to about 100 microns, and usually a preferred useful abrasive will have an average particle size of around 45 microns. Particle hardness of the abrasives can range from Mohs hardness of about 1-10, more preferably 3-8. Abrasives are generally insoluble inorganic materials, although there are some organic abrasives, to wit, melamine granules, urea formaldehyde, corn cobs, rice hulls, etc., which are useful in the cleansers of the present invention.
- Some thickeners are also insoluble inorganic materials, for instance, the colloidal aluminum oxide thickeners used in this invention. However, the colloidal alumina thickeners used in this invention distinguish from the above aluminum oxide abrasives in many aspects. Colloidal alumina thickeners are dispersable in an aqueous system and have a dispersed average particle size of smaller than one micron and usually much smaller. Aluminum oxide abrasives on the other hand will be much larger, such as up to 500 microns, and even in aqueous dispersion, will not thicken the cleansers of this invention. As mentioned below, the colloidal alumina thickeners must be initially dispersed in acidic media to provide thickening. Further, without the colloidal thickeners of this invention, abrasives, even aluminum oxide abrasives, cannot be stably suspended.
- As mentioned herein above, the surfactants suitable for use in this invention are selected from anionic, nonionic, amphoteric, zwitterionic surfactants and mixtures thereof, which are in general the non-soap type of surfactants. It is especially preferred to use a combination of anionics and bleach-stable nonionics, which are usually more saturated to provide stability in the presence of the bleach. However, when the cleansers of this invention are used as non-bleach formulations, more unsaturation may be present in the surfactants selected.
- The anionic surfactants useful in this invention can be selected from surfactants such as alkali metal alkyl sulfates, secondary alkane sulfonates, linear alkyl benzene sulfonates, and mixtures thereof. These anionic surfactants will preferably have alkyl chain groups averaging about 8 to about 20 carbon atoms. In practice, it is frequently desirable to have a bleach present in the cleanser. When the bleach is present, the surfactant can be any other anionic surfactant which does not degrade chemically when in contact with a hypohalite, e.g., hypochlorite, bleaching species. An example of a particularly preferred secondary alkane sulfonate is HOSTAPUR SAS, manufactured by Farbwerke Hoeschst A.G., Frankfurt, West Germany. Another example of an alkane sulfonate is Mersolat, which has an alkyl group of about 13-15 carbon atoms and is sold by Mobay Chemical Company. An example of typical alkali metal alkyl sulfates is Conco Sulfate WR, which has an alkyl group of about 16 carbon atoms, and is sold by Continental Chemical Company. When the electrolyte used is an alkali metal silicate, it is most preferable to include with the surfactant a soluble alkali metal soap of a fatty acid, such as a C₆₋₁₈, more preferably C₁₀₋₁₆, fatty acid soap. Especially preferred are sodium and potassium soaps of lauric and myristic acid.
- Examples of preferred bleach-stable nonionic surfactants are amine oxides, especially trialkyl amine oxides. A representative structure is set forth below:
- It is preferred in some instances to combine at least two of these surfactants, most preferably the anionics and the bleach-stable nonionics. Combinations of these types of surfactants appear to be particularly desired when a bleach is present in the cleanser for maintaining hypochlorite half-life stability at elevated temperatures for long periods of time. Additionally, when these particular combinations of surfactants are combined with the alumina thickener, the formulations thus produced are practically free from syneresis.
- The surfactant is generally present in the cleanser in a range of about 0.1 to about 15% by weight, based on the total weight of the cleanser, more preferably about 0.5 to about 10% and most preferably about 1 to about 5%.
- The electrolyte/buffer used in the present invention should be selected in combination with the surfactant or surfactants and the colloidal alumina thickener in order to produce the pourable and smooth flowing consistency desired for the composition of the present invention. In broad terms, electrolytes/buffers employed within the present invention are generally the salts of various inorganic acids, including the alkali metal phosphates, polyphosphates, pyrophosphates, triphosphates, tetrapyrophosphates, silicates, metasilicates, polysilicates, carbonates, hydroxides, chlorides, sulfates, and mixtures of the above. Certain divalent salts, for example, alkaline earth phosphate, carbonate, hydroxide, etc., salts can function singly as buffers. If such compounds were used, they normally would be combined with at least one other of the previous electrolytes/buffers to provide the appropriate pH adjustment. It may also be desirable to use as a buffer such materials as aluminosilicates (zeolites), borates, aluminates and bleach-stable organic materials such as gluconates, succinates, maleates, and their alkali metal salts. These electrolytes/buffers function to maintain the pH range of the inventive cleanser compounds preferably above 7.0, more preferably above 8.0 or 9.0 and most preferably at between about 10.0 and 13.0. The amount of electrolyte/buffer employed with the composition of the present invention can vary from about 0.1% to about 15% by weight of the cleanser, preferably from about 0.5 to about 10% and more preferably from about 1 to about 5%.
- The silicate electrolyte/buffers useful in the present invention are formed by a combination of sodium oxide and silicon dioxide and may preferably be a sodium silicate having a weight ratio of silicon dioxide to sodium oxide of about 3.75/1 and about 1/1, preferably between about 3/1 and about 1.5/1. More preferably, the electrolyte/buffer is in the form of sodium silicate having a weight ratio of silicon dioxide to sodium oxide of about 2.4/1.
- A silicate as described above is available, for example, from the PQ Corporation, Philadelphia, PA.
- The colloidal alumina thickener component of the present invention is preferably a hydrated aluminum oxide having qualifying characteristics such as particle size to cause it to function as a colloidal thickener. In this sense, the colloidal alumina thickener used in the invention is to be contrasted from abrasive alumina materials having substantially larger particle sizes, for example substantially greater than one micron. Accordingly, the particle size of the colloidal alumina thickener is a particularly important feature for that component of the invention. It should be noted that, while the discussion herein is in terms of the colloidal alumina being a thickener, a critically important function of the colloidal alumina is to act, in combination with the surfactants and soaps in the cleanser compositions of the present invention, as a suspension or suspending agent for the abrasives and particularly to stably suspend the abrasives to prevent the abrasive from settling out or separating in storage over long periods of time.
- Preferred hydrated aluminas within the present invention are derived from synthetic Boehmites. Of greater importance, the hydrated colloidal alumina thickener of the present invention is chemically insoluble, that is, it should not dissolve in reasonably acidic, basic or neutral media. However, it is noted that colloidal alumina will dissolve in strongly alkaline media, for example, 50% NaOH.
- A typical alumina is distributed by Remet Chemical Corp., Chadwicks, N.Y., under the trademark DISPERAL (formerly DISPURAL) and manufactured by Condea Chemie, Brunsbuettel, West Germany. DISPERAL is an aluminum oxide monohydrate which commonly forms stable colloidal aqueous dispersions. Alumina products of this type commonly exist as dry powders which can form thixotropic gels, bind silica and other ceramic substrates, while possessing a positive charge and being substantive to a variety of surfaces.
- DISPERAL has a typical chemical composition of 90% alpha aluminum oxide monohydrate (Boehmite) 9% water, 0.5% carbon (as primary alcohol), 0.008% silicon dioxide, 0.005% ferric oxide, 0.004% sodium silicate, and 0.05% sulfur. It has a surface area (BET) of about 320 m²/gm, an undispersed average particle size (as determined by sieving) of 15% by weight being greater than 45 microns and 85% being less than 45 microns, an average particle size, in dispersion, of 0.0048 microns as determined by X-ray diffraction, and a bulk density of 45 pounds per cubic foot (loose bulk) and 50 pounds per cubic foot (packed bulk). Yet another alumina suitable for use within the present invention, although not as preferred, is manufactured by Vista Chemicals Company, Houston, Texas and sold under the trademark CATAPAL alumina. CATAPAL has a typical chemical composition of 74.2% aluminum oxide (Boehmite), 25.8% water, 0.36% carbon, 0.008% silicon dioxide, 0.005% ferric oxide, 0.004% sodium oxide and less than 0.01% sulfur. It has a surface area (BET) of 280 m²/gm, an undispersed average particle size (as determined by sieving) of 38% by weight being less than 45 microns and 19% being greater than 90 microns.
- These colloidal alumina thickeners, used in dispersed form in the invention, generally have exceedingly small average particle size in dispersion (i.e., generally less than one micron). In point of fact, the average particle size diameter of these thickeners when dispersed is likely to be around 0.0048 micron. Thus, a preferred average particle size range in dispersion is preferably less than one micron, more preferably less than about 0.5 micron and most preferably less than 0.1 micron. Due to their small particle size, little or substantially no abrasive action is provided by these types of thickeners even though they are chemically insoluble, inorganic particles. Additionally, these colloidal aluminas are chemically quite different from aluminum oxide abrasives, such as corundum. Colloidal aluminas are produced from synthetic Boehmite. In general, they are synthesized by hydrolyzing aluminum alcoholates, with the resulting reaction products being hydrated aluminum (colloidal alumina) and three fatty alcohols. The reaction equation is set forth below:
- (From Condea Chemie, "PURAL PURALOX DISPERAL High Purity Aluminas" Brochure (1984), the contents of which are herein incorporated by reference.)
- These hydrated aluminum oxides are called synthetic Boehmites merely because their crystalline structure appears similar to that of naturally occurring Boehmite. Boehmite, which is the actual mineral, has a Mohs hardness of about 3. It thus may be expected that the synthetic Boehmite would not have a hardness greater than the naturally occurring Boehmite. Corundum, on the other hand, appears to have a Mohs hardness of at least 8 and perhaps higher. Thus, any abrasive action provided by colloidal aluminum oxides may be severely mitigated due to their relative softness. An important aspect of the hydrated aluminas used herein is that they should be chemically insoluble, i.e., should not dissolve in acidic, basic or neutral media in order to have effective thickening as well as stability properties. However, colloidal Boehmite aluminas will dissolve in highly basic media, e.g., 50% NaOH.
- A further important point is that these colloidal alumina thickeners, in order to be useful as thickeners in the cleansers of this invention, must be initially dispersed in aqueous dispersion by means of strong acids. Preferable acids used to disperse these colloidal aluminas include, but are not limited to, acetic, nitric and hydrochloric acids. Sulfuric or phosphoric acids are not preferred.
- Generally, a 1-50%, more preferably are about 5-40%, and most preferably about 10-35% dispersion is made up, although in some instances, percentages of colloidal alumina are calculated for 100% (i.e., as if non-dispersed) active content. In practice, the colloidal alumina may be added to water sufficient to make up the desired percent dispersion and then the acid may be added thereto. Or, the acid may be first added to the water and then the colloidal alumina is dispersed in the dilute acid solution. In either case, a substantial amount of shearing (i.e. mixing in a mixing vat) is required to obtain the proper rheology.
- Usually, a relatively small amount of concentrated acid is added. For instance, for a 25 wt.% dispersion material, 25% alumina monohydrate is combined with 1.75% concentrated (12M) hydrochloric acid and then dispersed in 73.75% water. The colloidal alumina thickener itself is generally present in the cleanser in the range of about 1 to about 15% by weight based on the total weight of the cleanser, preferably about 1 to about 10%, more preferably about 1 to 6%, and most preferably, about 1 to about 4.7. Many useful formulations will contain from about 2.5 to about 3.5% colloidal alumina according to the present invention.
- Neutralization of the acidified dispersed colloid is necessary to obtain the desired, finished product rheology (i.e., it thickens). Thus, the acidified, diluted colloid is neutralized, preferably by sodium hydroxide (e.g., a 50% solution), although if the electrolyte/buffer is sodium carbonate or sodium silicate, it may be possible to forego the sodium hydroxide as a separate component. Secondly, since a halogen bleach may be added, if desired, to the cleansers of this invention, and such bleaches are unstable in the presence of acid, neutralization is also desirable when a bleach is used.
- With respect to thickening, it should be noted that while there are many types of inorganic and organic thickeners, not all will provide the proper type of plastic, flowable rheology desired in the present invention, particularly the preferred pourable consistency. Common clays, for instance, those used in U.S. Patent 3,985,668 and U.S. Patent 3,558,496, will likely lead to a false body rheology. False body rheology pertains to liquids which, at rest, turn very viscous, i.e., form gels. Problematic with such false body liquids is that they appear to tend to thicken very rapidly and harden or set up so that flowability is a problem. A thixotropic rheology is also not particularly desirable in this invention since in the thixotropic state, a liquid at rest also thickens dramatically, but, theoretically, should flow upon shearing. If the thixotrope has a high yield stress value, as typcially found in clay-thickened liquid media, the fluid at rest may not re-achieve flowability without shaking or agitation. As a matter of fact, if colloidal alumina alone is used to thicken the liquid cleansers of this invention, a thixotrope with high yield stress values appears to result. This type of product is less preferred, and therefore, the surfactants included in the formulas of this invention are crucial towards achieving a desired creamy, flowable, plastic rheology, particularly the preferred pourable consistency. Ordinarily, a thixotrope will flow from a dispenser only upon shaking or squeezing. An example of a typical thixotrope is catsup, which sometimes requires quite a bit of shaking and pounding of the bottom of the bottom containing it to induce flow.
- The type of rheology desired in this invention is a plastic, flowable rheology. This sort of rheology does not require shearing to promote fluidity. Thus, a product made in accordance with the present invention will not require, in its preferred form, squeezing (assuming a deformable plastic squeeze bottle), shaking or agitation to flow out of the container or dispenser, but will have a pourable consistency. In a non-preferred form, the cleansers of the present invention may not be pourable from a particular container, but nevertheless are a smoothly flowable, plastic consistency and are not thixotropes.
- Attaining this rheology together with the abrasive-suspending stability in the cleansers of the present invention containing organic solvents was very surprising since it has been known that addition of organic solvents to suspended abrasive cleanser compositions would ordinarily be expected to affect the rheology differently and expected to promote syneresis and/or cause the abrasive suspension to be unstable. It was surprising that the colloidal alumina thickened and stabilized cleansers, such as in Choy et al. 4,695,394, would have such plastic rheology and also such abrasive-suspending stability so as to not become unstable when the organic solvents were included in such compositions in accordance with the present invention. Nothing in the art had ever disclosed that alumina thickened suspended-abrasive household hard surface cleansers could contain an organic solvent to enhance cleaning efficacy in some applications. One would have expected the solvent to have detrimental effects on the plastic consistency and/or the abrasive-suspending stability properties of these cleansers. One patent, U.S. Patent 3,558,496 had suggested coupling an aluminum oxide with common clays to thicken hypochlorite, but had not indicated that using surfactants instead of the clays would lead to the desired plastic rheology and especially the preferred pourable consistency of the cleansers of this invention. Another, U.S. Patent 4,508,634 to Elepaño et al. disclosed the possible use of colloidal alumina as a protective colloid thickener to stabilize an emulsion of surfactants, solvents and an optional mild abrasive, but did not recognize or disclose that a stable suspension of abrasives could be attained with the colloidal alumina in the combination of surfactants, soaps and organic solvents.
- The soap useful in the present invention can be straight chain or branched chain fatty acids having 6 to 24 carbon groups with univalent or multivalent cations which render the soap soluble or dispersible in the aqueous cleanser. The soap may be an alkali metal salt of such a fatty acid, such as Li, Na or K, or may be ammonium or alkylammonium salts thereof. Soaps which are conventionally used as suds suppressors will generally be useful in the present invention. While soaps are selected for use in prior art cleansers for either suds control or for bleach stability, it is also important in the present invention that the soap be compatible with and solubilize the organic solvent in the cleanser of the present invention, and also be compatible with the colloidal alumina thickener in the cleanser of the present invention. The soap which may be saturated or unsaturated, provides in combination with the alumina colloid thickener and hydrocarbon solvent, the characteristics of improved cleansing properties and the improved resistance to syneresis, while still maintaining the plastic consistency or plastic consistency or pourable flow characteristics of the cleanser of this invention. As indicated above relative to the surfactants, a saturated soap is usually preferred when a bleach is present in order to maintain bleach stability, but an unsaturated soap may be preferred in some instances when a bleach is not included in the cleanser of the present invention.
- The soap useful in the present invention is generally limited to a molecular weight range characterized by having from about 8 to about 20 carbon groups, either in a straight or branched chain configuration. More preferably, the soap is of a type having from about 10 to about 18 carbon groups, even more preferably about 12 to about 14 carbon groups. The amount of soap employed in a cleanser according to the present invention will be from an effective amount to about 5% by weight of the cleanser, preferably from about 0.1 to about 5%, more preferably from about 0.5 to about 4% and most preferably up to about 3%.
- Suitable fatty acid soaps useful in the present invention may be selected from the class consisting of potassium laurate, sodium laurate, sodium stearate, potassium stearate, sodium oleate, etc. Similar soaps containing ammonium ion as a cation may also be used particularly if the cleanser does not contain a bleach. Suitable soaps for use within the present invention are disclosed in Chemical Publishing Co., Inc., Encyclopedia Of Surface-Active Agents, Vol. I (1952), page 39 etc., Kirk-Othmer, Encyclopedia of Chemical Technology 3d, Vol. 21 pp. 162-181 re "Soaps" and Vol. 22, re "Surfactants". Accordingly, those references are incorporated herein as though set out in full.
- The manner in which the fatty acid anionic surfactant or soap functions in combinations with the colloidal alumina thickener and the hydrocarbon solvent according to the present invention is not fully understood. It is believed that the soap may be useful for reasons described below. However, the present invention is not to be limited by the following theory.
- Initially, it is not merely the anionic form of the soap that makes it useful within the present invention since other anionic surfactants have been tested without achieving the same advantages. The soaps herein appear, overall, to be more hydrophobic in nature than other anionic surfactants. While not being entirely understood, this more hydrophobic nature of the soaps surprisingly appears to help maintain in the organic solvent containing system of this invention the uniform smoothly flowable characteristics and advantageously promotes the smoothly flowable plastic rheology, as well as the preferred pourable consistency, of the cleansers of the present invention.
- In further supposition, it is also noted that the soap has been particularly effective in combination with colloidal alumina thickener where the cleanser also contains a silicate based material as an electrolyte/buffer. In this regard, it is theorized that the silicate and alumina may function to form a network, possibly through the formation of bridging oxygens, in order to produce a very thixotropic composition similar to compositions employing clay as a thickening agent.
- It is believed that soap, having a carboxyl group which is hydrophilic in combination with a hydrophobic alkyl chain functions to break up the network formed between the silicate and alumina in order to render the composition smoothly flowable, as realized by the present invention.
- It is also believed that the soap also aids in solubilizing the organic solvent present in the cleansers of the present invention because it probably helps to mix or emulsify the solvent therein.
- The organic solvents useful in the present invention are alkyl or aryl hydrocarbons containing at least 2 carbon atoms, preferably about 4 to about 18 carbon atoms, and can include ethers, alcohols, esters, ketones and other hydrocarbons which are compatible with the fatty acid soap surfactant and colloidal aluminum present in the composition of the cleanser of the present invention. Examples of such organic solvents include d-limonene, terpinolene, pine oil, glycol ethers such as butoxyethanol (butyl "Cellosolve"), straight or branched chain C₄ glycol ethers; glycols, such as polyethylene glycol; alcohols such as phenol, ethyl alcohol, benzyl alcohol, geraniol, citronellol, santalol, menthol, borneol, carveol, ethylhexelcarbonyl, vetiverol, linalol, terpineol, myrcenol, cetrol; and esters such as linalyl acetate, benzyl acetate, isobornyl acetate, ethyl acetoacetate and isoamylacetate. Other examples of organic solvents which may be useful in the cleansers of the present invention include saturated derivatives of terpenes, isoprenes, mineral spirits, such as the Isopar and Norpar series of mineral spirits and mineral oils sold by Exxon Corporation, and mineral oils, such as available from Penreco Company. Of course, mixtures of various organic solvents are useful in the cleansers of the present invention.
- As understood with respect to the surfactants and soaps, saturated organic solvents should be used when a bleach is included in the cleansers of this invention to promote bleach stability as recognized by those skilled in the art. Conversely, unsaturated organic solvents may be selected for use in the non-bleach formulations of the cleansers of this invention. Moreover, it is further understood that the organic solvent is selected to be compatible with the soap and surfactant useful in the present invention as outlined above.
- The amount of organic solvent employed in the cleanser according to the present invention will be from an effective amount up to about 10% by weight of the cleanser, preferably from about 0.1 to about 8%, more preferably from about 0.1 to about 6%, and most preferably up to about 4%. In addition, it appears desirable in the present invention that the ratio of organic solvent to the combined amount of soap and surfactant generally be within certain ranges for most practical formulation. In general, the weight ratio of organic solvent to soap plus surfactant should be less than about 1:40, and usually between about 10:1 and about 1:20, preferably between about 2:1 and about 1:10, more preferably between about 1:1.5 and about 1:9, still more preferably between about 1:2 and about 1:8, and most preferably between about 1:3 and about 1:7.
- As mentioned above, the cleansers of the present invention can, when desired, contain a bleach. A source of bleach is selected from various halogen bleaches. For the purposes of the present invention, halogen bleaches are particularly favored. As examples thereof, the bleach can be selected from the group consisting essentially of the alkali metal and alkaline earth salts of hypohalite, hypohalite addition products, haloamines, haloimines, haloimides and haloamides. These also produce hypohalous bleaching species in situ with hypochlorites being a preferred form of bleach. Representative hypochlorite producing compounds include sodium, potassium, lithium and calcium hypochlorite, chlorinated trisodium phosphate dodecahydrate, potassium and sodium dichloroisocyanurate, trichloroisocyanuric acid, dichlorodimethyl hydantoin, chlorobromo dimethylhydantoin, N-chlorosulfamide, and chloramine.
- As noted above, a preferred bleach employed in the present invention is sodium hypochlorite having the chemical formula NaOCl, in an amount ranging from about 0.1% to about 5%, more preferably about 0.25% to 4% and most preferably 0.5% to 2.0%. The purpose for the bleach is evident in forming an oxidizing cleaning agent which is very effective against oxidizable stains such as organic stains.
- A principal problem with the use of bleach in such compositions is its tendency to be unstable or to cause instability of other components, particularly certain surfactants if they are present in substantial amounts. In any event, because of the use of colloidal alumina as a thickener in the present invention together with a fatty acid soap, a surfactant, and organic solvent together with only limited amounts of additional surfactant components, the bleach stability of the composition of the present invention (expressed in half-life stability) is surprisingly good resulting in a product capable of maintaining excellent flow characteristics and bleach strength even after considerable periods of shelf life.
- In addition to the components for the cleaning composition of the present invention as set forth above, further desirable adjuncts may include bleach-stable dyes (for example, anthraquinone dyes), pigments (for example, phthalocyanine, TiO₂, ultramarine blue), colorants and fragrances in relatively low amounts, for example, about 0.001% to 5.0% by weight of the cleanser composition.
- Water is the medium used as the continuous phase in which the various components of the cleanser of the present invention are dissolved, dispersed or suspended. Some of these components may be added to the cleanser in a water base, thus contributing to the total water present in the cleanser. While water and the miscellaneous minor ingredients or additives make up the remainder of the composition, water is generally present in amounts ranging from 10-80% by weight of the cleanser.
- As previously mentioned, the method of preparing the liquid cleanser of this invention comprises combining:
- (a) an initial portion of the total water with a colloidal aluminum oxide thickener;
- (b) a final portion of the total water and a discrete amount of a neutralizing agent;
- (c) optionally, a halogen bleach;
- (d) a fatty acid soap;
- (e) a surfactant (bleach stable nonionic when a bleach is used);
- (f) a buffer/electrolyte which interacts with the surfactants recited in steps (d) and (e) and the thickener recited in step (a) to result in a plastic rheology; and
- (g) an organic solvent.
- As similarly described in U.S. Patent 4,657,692 at column 13 (the disclosure of which patent is incorporated herein by reference) to produce the cleanser, alumina is charged into a vat or suitable mixing vessel which has been provided with a suitable mixing means, such as an impeller, which is in constant agitation with suitable angular velocity. The alumina is acidified and diluted with about 50% of the total water used. An alkyl benzene sulfonate phase stabilizer can be optionally added at this point. Next, a neutralizer, such as a 50% NaOH solution can be added, with the remainder of the water. Next, halogen bleach and abrasives can be added. Thereafter, the anionic surfactants are added. When silicate is used as the electrolyte/buffer, it is necessary to have a fatty acid soap as one of the anionic surfactants since, as explained in U.S. Patent 4,695,394, the soap appears to surprisingly break up any network which could form between the silicate and the colloidal alumina. Next, the bleach-stable nonionic surfactant is added, which is generally a trialkyl amine oxide (although a betaine or other surfactant would likely be suitable). At this point any alkyl benzene sulfonate is most preferably, although optionally, added. The electrolyte/buffer is then added and finally, the organic solvent is added. Alternatively, the organic solvent can be premixed with the surfactants if desired in some methods of making the cleansers of the present invention. Note that at virtually any step in this method, the optional minor ingredients, such as fragrance and pigments could be added. However, since fragrance is an organic component which may be more susceptible to oxidation by the halogen bleach, it is preferable to add it last.
- The invention is further demonstrated by the examples and results set forth below.
- The following cleansers were prepared and tested for properties as shown:
EXAMPLES 1 - 9 Formula a DISPERAL Alumina f Solvent Viscosity e (cps) Syneresis b 1F/T d At 120°F At 70°F 15 Months @ Room Temperature c 1 2.75 None 13400 15% 5%- 1 wk 2%-1 wk 20.4% 2 2.9 2-butoxyethanol(2%)/terpinolene(1%) 17720 - 0%-4 wk 0%-4 wk 21.4% 3 3.0 None 17800 5% 6%-1 wk 3%-1 wk 18% 4 3.0 d-limonene(2%) 19400 0 0%-4 wk 0%-4 wk 12.8% 5 3.0 pine oil(3%) - - 2%-3 day 1%-5 day 14.9% 6 3.0 terpinolene(3%) 20400 0 0%-8 wk 0%-8 wk 13.3% 7 3.0 d-limonene(3%) 6600 3% 5%-5 day 3%-5 day 13.4% 8 0 d-limonene(3%) 1890 42% 16%-5day 10%-5day 27% 9 0 d-limonene(2%) 1800 39% 19%-5day 11%-5day 32.8% (A dash - indicates no measurement was made.) a. In addition to the material listed above, all formulas contain 30% CaCO₃ abrasive, 3% silicate buffer, 2% NaCl, 1% sodium laurate and 8% mixed surfactant (trimethyl nonyl polyethylene glycol ether/sodium alkyl aryl sulfonate/secondary alkyl sulfonate). b. Syneresis is measured by the percent liquid volume to total volume. c. An unusually long period of testing, typically not required for a commercial product. Although all samples showed considerable syneresis, the abrasive was still stably suspended, and the cleansers were usable without having to resuspend or remix the abrasive. d. The 1F/T values were determined by storing samples at 0°F for 24 hrs. (freezing), thawing them at room temperature over 72 hrs. and measuring syneresis. This test gives an indication of physical stability when samples are transported or stored in low temperature conditions. e. Brookfield RVT, spindle No. 4, 5 RPM, room temperature. f. From Condea Chemie, Brunsbuettel, West Germany. - Kitchen grease soil was applied on marlite test panels. Three grams of each product was applied to a sponge dampened with 100ppm hardness (3:1 Ca:Mg ratio). A Gardner Wear-Tester was used to move the sponge across a soiled panel. The number of cycles required for complete removal was noted. (One back and forth stroke of the Tester equals one cycle.) The most effective cleaning products required fewer cycles to remove the soil.
Ex. Product Cycles for Complete Removal 10 Formula 4 (from above) 6 11 Mr. Clean Cleanser (Commercially available from Procter and Gamble Co., Cincinnati, Ohio, U.S.A. 7 - The following bleach containing cleansers were prepared and tested for syneresis as shown:
Formula a DISPERAL Alumina NaOCl Solvent b Syneresis 1F/T 24days @ 120°F 12 2.75 1.1 dihydroterpineol 24.6 7.3% 13 2.75 1.1 pimenthane 26.5 3.5% 14 2.75 1.1 pimane 29.6 5.4% 15 2.75 1.1 pimenthane/cineole 27.9 3.5% 16 2.75 1.1 pinane/isocamphane 28.4 3.6% a. In addition to the material listed above the formulas all included 30% silica sand abrasive, 6% silicate buffer, 1% sodium laurate and 0.8% lauryl amine oxide. b. Solvent level is 0.5 wt%. - The following embodiments illustrate formulations containing low and high levels of abrasive.
Material Formula 17 Low Abrasive Wt. % Formula 18 High Abrasive Wt. % Water 66.06 22.66 HCl (38%) 0.21 0.09 Disperal¹ 4.50 2.00 Calcium Carbonate Abrasive² 5.00 55.00 Pigment 0.75 0.75 Tergitol³ 2.70 1.71 LAS⁴ 2.80 1.78 SAS⁵ 2.65 1.68 Soap Solution⁶ 7.33 7.33 Sodium Chloride 2.00 2.00 Terpinolene⁷ 3.00 2.00 Silicate RU⁸ 3.00 3.00 100.00 100.00 Viscosity (cps)⁹ 1,720 5,920 1. Alumina (Al₂O₃.H₂O) from Condea Chemie. 2. Abrasive from Georgia Marble. 3. Tergitol TMN-6 from Union Carbide. 4. Biosoft LAS 40-S(40%) from Stepan Chemical Company. 5. Hostapur SAS, secondary alkane sulfonate from Hoechst A.G. 6. Soap solution prepared from 13.62 parts by weight lauric acid, 13.62 parts 50% NaOH and 72.75 parts water. 7. From SCM Aroma and Flavor Chemicals. 8. Sodium silicate RU from PQ Corporation. 9. Brookfield RVT, spindle No. 4, 5 RPM, room temperature. - The present invention also contemplates methods for forming cleansers including compositions such as those described above and illustrated by the various examples. Generally, such a method comprises the steps of combining the various components to form the cleanser composition.
- The present invention also contemplates methods for cleaning hard surfaces or removing soil in a manner believed obvious from the preceding description. However, to assure a complete understanding of the invention, such a method is carried out by contacting the surface, stain or soil with a composition according to the present invention. Thereafter, the composition together with the suspended stain is preferably removed from the surface by rinsing.
- Accordingly, there has been disclosed above a number of embodiments and examples for a thickened aqueous abrasive cleanser particularly characterized by a smoothly flowable or plastic consistency while demonstrating the ability to suspend solids, preferably in the form of abrasives. While preferred embodiments and examples of the invention have been illustrated and described above, it is to be understood that these embodiments are capable of further variation and modification; therefore, the present invention is not to be limited to precise details of the embodiments set forth above but is to be taken with such changes and variations as fall within the purview of the following claims.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17663688A | 1988-04-01 | 1988-04-01 | |
US176636 | 1994-01-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0336651A2 true EP0336651A2 (en) | 1989-10-11 |
EP0336651A3 EP0336651A3 (en) | 1990-03-28 |
EP0336651B1 EP0336651B1 (en) | 1994-12-28 |
Family
ID=22645202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89303175A Expired - Lifetime EP0336651B1 (en) | 1988-04-01 | 1989-03-30 | Thickened pourable aqueous abrasive cleanser |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0336651B1 (en) |
JP (1) | JP2987817B2 (en) |
AT (1) | ATE116358T1 (en) |
AU (1) | AU626837B2 (en) |
CA (1) | CA1336669C (en) |
DE (1) | DE68920181T2 (en) |
ES (1) | ES2068239T3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2694016A1 (en) * | 1992-07-22 | 1994-01-28 | Delcroix Yves | Cleaning-renovating agent for smooth surfaces. |
FR2697849A1 (en) * | 1991-09-16 | 1994-05-13 | Clorox Co | A thickened aqueous abrasive composition having improved stability of its colloidal phase for cleaning hard surfaces. |
WO1994025001A1 (en) * | 1993-04-30 | 1994-11-10 | Sprintvest Corporation N.V. | Skin cleansing formulations with terpene solvents and corn meal scrubber |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3028277A1 (en) * | 2009-02-13 | 2010-08-19 | The Regents Of The University Of California | System, method and device for tissue-based diagnosis |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2254635A1 (en) * | 1973-12-14 | 1975-07-11 | Henkel & Cie Gmbh | |
US3981826A (en) * | 1971-11-15 | 1976-09-21 | The Procter & Gamble Company | Hard surface cleaning composition |
US4507219A (en) * | 1983-08-12 | 1985-03-26 | The Proctor & Gamble Company | Stable liquid detergent compositions |
US4508634A (en) * | 1983-11-15 | 1985-04-02 | Minnesota Mining And Manufacturing Company | Aqueous skin cleaner composition comprising propylene carbonate |
EP0137616A1 (en) * | 1983-08-11 | 1985-04-17 | The Procter & Gamble Company | Liquid detergents with solvent |
US4576738A (en) * | 1984-12-21 | 1986-03-18 | Colgate-Palmolive Company | Hard surface cleaning compositions containing pianane |
EP0206534A1 (en) * | 1985-05-30 | 1986-12-30 | The Clorox Company | Thickened aqueous cleanser |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1160134A (en) * | 1980-01-07 | 1984-01-10 | Sharon J. Mitchell | Abrasive-containing liquid detergent composition |
-
1989
- 1989-03-13 AU AU31269/89A patent/AU626837B2/en not_active Ceased
- 1989-03-30 AT AT89303175T patent/ATE116358T1/en not_active IP Right Cessation
- 1989-03-30 DE DE68920181T patent/DE68920181T2/en not_active Expired - Fee Related
- 1989-03-30 EP EP89303175A patent/EP0336651B1/en not_active Expired - Lifetime
- 1989-03-30 ES ES89303175T patent/ES2068239T3/en not_active Expired - Lifetime
- 1989-03-31 JP JP1078765A patent/JP2987817B2/en not_active Expired - Fee Related
- 1989-03-31 CA CA000595430A patent/CA1336669C/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981826A (en) * | 1971-11-15 | 1976-09-21 | The Procter & Gamble Company | Hard surface cleaning composition |
FR2254635A1 (en) * | 1973-12-14 | 1975-07-11 | Henkel & Cie Gmbh | |
EP0137616A1 (en) * | 1983-08-11 | 1985-04-17 | The Procter & Gamble Company | Liquid detergents with solvent |
US4507219A (en) * | 1983-08-12 | 1985-03-26 | The Proctor & Gamble Company | Stable liquid detergent compositions |
US4508634A (en) * | 1983-11-15 | 1985-04-02 | Minnesota Mining And Manufacturing Company | Aqueous skin cleaner composition comprising propylene carbonate |
US4576738A (en) * | 1984-12-21 | 1986-03-18 | Colgate-Palmolive Company | Hard surface cleaning compositions containing pianane |
EP0206534A1 (en) * | 1985-05-30 | 1986-12-30 | The Clorox Company | Thickened aqueous cleanser |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2697849A1 (en) * | 1991-09-16 | 1994-05-13 | Clorox Co | A thickened aqueous abrasive composition having improved stability of its colloidal phase for cleaning hard surfaces. |
ES2051235A1 (en) * | 1991-09-16 | 1994-06-01 | Clorox Company 1221 Broadway | Thickening aqueous abrasive cleaner with improved colloidal stability |
FR2694016A1 (en) * | 1992-07-22 | 1994-01-28 | Delcroix Yves | Cleaning-renovating agent for smooth surfaces. |
WO1994002583A1 (en) * | 1992-07-22 | 1994-02-03 | Lotigie, S.A. | Substantially liquid aqueous composition for preserving the lustre of smooth surfaces |
US5634965A (en) * | 1992-07-22 | 1997-06-03 | Lotigie S.A. | Substantially liquid aqueous composition for preserving the lustre of smooth surfaces |
WO1994025001A1 (en) * | 1993-04-30 | 1994-11-10 | Sprintvest Corporation N.V. | Skin cleansing formulations with terpene solvents and corn meal scrubber |
Also Published As
Publication number | Publication date |
---|---|
AU3126989A (en) | 1989-10-05 |
AU626837B2 (en) | 1992-08-13 |
EP0336651B1 (en) | 1994-12-28 |
EP0336651A3 (en) | 1990-03-28 |
ATE116358T1 (en) | 1995-01-15 |
JP2987817B2 (en) | 1999-12-06 |
ES2068239T3 (en) | 1995-04-16 |
CA1336669C (en) | 1995-08-15 |
JPH01304192A (en) | 1989-12-07 |
DE68920181D1 (en) | 1995-02-09 |
DE68920181T2 (en) | 1995-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4657692A (en) | Thickened aqueous abrasive scouring cleanser | |
US4695394A (en) | Thickened aqueous cleanser | |
US4842757A (en) | Thickened liquid, improved stability abrasive cleanser | |
EP0336652B1 (en) | Thickened aqueous hard surface cleaner | |
CA1123700A (en) | Thixotropic abrasive liquid scouring composition | |
US4599186A (en) | Thickened aqueous abrasive scouring cleanser | |
US5731276A (en) | Thickened aqueous cleaning composition and methods of preparation thereof and cleaning therewith | |
US5298181A (en) | Thickened pourable aqueous abrasive cleanser | |
US5346641A (en) | Thickened aqueous abrasive cleanser with improved colloidal stability | |
JPS5838480B2 (en) | Migakisenjiyouzaiisobutsu | |
JPS593517B2 (en) | Polishing composition | |
GB1590744A (en) | Cleansing compositions | |
GB2140450A (en) | Thixotropic automatic dishwasher composition with chlorine bleach | |
JPS6372797A (en) | Aqueous tixotropic liquid composition | |
US5279755A (en) | Thickening aqueous abrasive cleaner with improved colloidal stability | |
US4248728A (en) | Liquid scouring cleanser | |
JPS5829828B2 (en) | Abrasive polish composition | |
EP0336651B1 (en) | Thickened pourable aqueous abrasive cleanser | |
KR100207895B1 (en) | Thickening aqueous abrasive cleaner with improved colloidal stability | |
CA2015541A1 (en) | Aqueous liquid automatic dishwashing detergent composition with improved anti-filming and anti-spotting properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19900426 |
|
17Q | First examination report despatched |
Effective date: 19930518 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19941228 Ref country code: LI Effective date: 19941228 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19941228 Ref country code: CH Effective date: 19941228 Ref country code: BE Effective date: 19941228 Ref country code: AT Effective date: 19941228 |
|
REF | Corresponds to: |
Ref document number: 116358 Country of ref document: AT Date of ref document: 19950115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 68920181 Country of ref document: DE Date of ref document: 19950209 |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950331 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2068239 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040318 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040324 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040407 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040430 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050330 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20051130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050331 |