EP0328128B2 - Process concerning the adhesion between metallic materials and galvanic aluminium layers and the non-aqueous electrolyte used therein - Google Patents

Process concerning the adhesion between metallic materials and galvanic aluminium layers and the non-aqueous electrolyte used therein Download PDF

Info

Publication number
EP0328128B2
EP0328128B2 EP89102319A EP89102319A EP0328128B2 EP 0328128 B2 EP0328128 B2 EP 0328128B2 EP 89102319 A EP89102319 A EP 89102319A EP 89102319 A EP89102319 A EP 89102319A EP 0328128 B2 EP0328128 B2 EP 0328128B2
Authority
EP
European Patent Office
Prior art keywords
metal
anhydrous
nickel
compounds
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102319A
Other languages
German (de)
French (fr)
Other versions
EP0328128A1 (en
EP0328128B1 (en
Inventor
Herbert Prof. Dr. Lehmkuhl
Klaus-Dieter Mehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6347224&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0328128(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of EP0328128A1 publication Critical patent/EP0328128A1/en
Publication of EP0328128B1 publication Critical patent/EP0328128B1/en
Application granted granted Critical
Publication of EP0328128B2 publication Critical patent/EP0328128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance

Definitions

  • the invention relates to methods for the metal coating of metal materials, in particular of low-alloy, high-strength steels.
  • the invention also relates to the non-aqueous electrolytes used in the above process.
  • Certain metals such as copper, can be directly electroplated with aluminum after appropriate mechanical and / or chemical pretreatments to remove fat and / or oxide layers from the surface of the workpieces.
  • metals such as, for example, iron materials and in particular special steels, generally no adhesive layers of galvanoaluminium can be obtained in the same way.
  • DE-PS 22 60 191 (Siemens AG, priority: 08.12.1972) describes such a method, which is characterized in that at least the last process step, which is used to shape the workpieces, is carried out under an aprotic, water- and oxygen-free protective medium.
  • milling, sawing or sanding are mentioned as the last process step used for shaping.
  • a decisive disadvantage of the two last-mentioned procedures is that during the electrodeposition of the metals serving as adhesion promoters, co-separation of hydrogen cannot be avoided.
  • Low-alloy high-strength steels for example as shown in Table 1, are very sensitive to embrittlement to hydrogen. Aqueous electrolyte solutions are therefore unsuitable for coating such steels.
  • DE-A-2012846 discloses non-aqueous, DMSO-containing solutions of metal salts for electroplating without hydrogen fragility.
  • the invention consequently relates to methods for the metal coating of metal materials, in particular low-alloy high-strength steels, galvanic bonding layers being formed from non-aqueous electrolytes of anhydrous metal compounds Iron, iron and nickel, nickel, cobalt, copper or alloys of the above-mentioned metals or tin-nickel alloys are deposited on these metal materials and then subsequently galvanically aluminum is deposited in a manner known per se.
  • a layer thickness of 1 to 4 ⁇ m is generally sufficient to ensure adhesion between the material, intermediate layer and galvanoaluminium layer.
  • electrolytes are solutions of anhydrous metal salts of Fe, Co, Ni, Cu or Sn, in particular their anhydrous halides and / or the complex compounds of these metal halides with ethers, such as for example tetrahydrofuran, or with alcohols, such as ethanol, in anhydrous alkyl half ethers of a C2-C3 alkylene glycol of the formula in the R for C1 to C6 and phenyl, and R1 represents H or methyl, or mixtures of these solutions with the addition of anhydrous conductive salts, in particular lithium chloride, lithium bromide or corresponding tetraorganylammonium halides.
  • ethers such as for example tetrahydrofuran
  • alcohols such as ethanol
  • Such soluble anodes are expediently those from the concerned metal or in the deposition of alloys used from the metals to be deposited or corresponding alloy anodes.
  • the metal (II) compounds are expediently used; in the deposition of Cu, Cu (I) compounds are generally used.
  • the anhydrous metal salts are preferably the anhydrous metal dichlorides or dibromides in the case of Fe, Co and Ni or copper (I) chloride or bromide or their addition compounds with alcohols, such as, for example, methanol or ethanol, or with ethers, such as, for example, diethyl ether, THF or dimethoxyethane , used.
  • Alkyl half ethers of an alkylene glycol such as 1-alkoxy-2-hydroxyethane or 1-alkoxy-2-hydroxypropane, in particular the easily and inexpensively accessible half ethers of 1,2-ethanediol ROCH2CH2OH, preferably those with R methyl, ethyl, propyl or isopropyl, are used as solvents or those of 1,2-propanediol, in particular CH3CH (OH) CH2OCH3, used.
  • concentrations of conductive salt, especially lithium bromide, should be of approximately the same to twice the order of magnitude.
  • the electrolysis temperatures are between room temperature and approximately 120 ° C. Temperatures between 50 and 80 ° C. are preferred. Good, uniform and shiny metal layers made of Fe, Co, Ni or Cu can be achieved with current densities between 0.2 and 1.5 A / dm2, preferably 0.5 to 1.0 A / dm2, see Table 1.
  • alloy deposits mixtures of solutions of the metal salts of the alloy components are generally used according to the invention.
  • the anodes can then be either those made of appropriate alloys or a plurality of electrodes made of the metals of the individual alloy components. If there is a large electrolyte supply, it is possible to work only with the anode made from one of the alloy components. The concentration of the other alloy component must then be refreshed from time to time in the solution by adding the appropriate salt. If the deposition tendencies of the individual metals are very different, electrolytes containing only the salt of the more difficult to deposit metal can also be used when using alloy anodes.
  • the electrolyses are carried out in closed vessels in an inert gas atmosphere of, for example, argon and / or nitrous oxide and / or nitrogen.
  • the workpieces are first washed with the solvent of the electrolyte.
  • the workpieces are washed with dry toluene and then transferred to the aluminizing bath via an inert gas lock.
  • a particular advantage of such a procedure is that no new oxide or water layer can be formed on the metal surface. Furthermore, there is no need for subsequent, complex drying processes before entering the aluminizing bath, such as treatment with fluorocarbons containing wetting agents.
  • a cylindrical glass vessel with an edge ground flat at the top serves as the electrolysis cell and can be firmly closed with a lid made of insulating material.
  • a cathode made of the material to be coated for example WL-1.6359, is suspended from the lid between two anode plates made of the electrochemically dissolvable metal, for example nickel.
  • the attachments of the electrodes also serve as a power supply.
  • the dry cell is filled with inert gas, such as argon or nitrogen.
  • To coat the cathode with nickel a solution of 0.05 mol NiCl2 ⁇ 0.63 THF and 0.05 mol LiBr in 1 liter CH3OCH2CH2OH is used as the electrolyte. Electrolysis is carried out at 60 ° C.
  • the anodic and cathodic current yields are quantitative in relation to the amount of electricity.
  • the workpieces are washed with the solvent of the electrolyte and dried in a stream of inert gas.
  • the workpieces are then washed with dry toluene and transferred to the aluminizing bath via an inert gas lock.
  • the "tape test” is a quantitative comparative method that enables liability assessments to be carried out in a simple manner. For this purpose, an adhesive strip is first pressed firmly onto the galvanic layer and then quickly torn off. In the event of poor or moderate adhesion, the galvanic layer and the adhesive strip come off the material base. If the adhesion is good, only small areas of the electroplating layer will be removed and if the adhesion is very good, the bonding of the electroplating layer to the base will remain intact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

Processes are disclosed for the metal coating of metallic material, in particular of low-alloyed high-strength steels which are characterised in that electrodeposited adhesion promotion layers composed of iron, iron and nickel, nickel, cobalt, copper or alloys of the abovementioned metals or zinc/nickel alloys are deposited on said metallic materials from non-aqueous electrolytes and aluminium is then electrodeposited thereon in a manner known per se.

Description

Die Erfindung betrifft Verfahren zur Metallbeschichtung von Metallwerkstoffen, insbesondere von niedriglegierten, hochfesten Stählen.The invention relates to methods for the metal coating of metal materials, in particular of low-alloy, high-strength steels.

Die Erfindung betrifft außerdem die im Rahmen des obigen Verfahrens eingesetzten nichtwäßrigen Elektrolyte.The invention also relates to the non-aqueous electrolytes used in the above process.

Bestimmte Metalle, wie beispielsweise Kupfer, können nach entsprechenden mechanischen und/oder chemischen Vorbehandlungen zur Entfernung von Fett- und/oder Oxidschichten von der Oberfläche der Werkstücke direkt mit Aluminium haftfest galvanisch beschichtet werden. Auf anderen Metallen, wie beispielsweie Eisenwerkstoffen und insbesondere Spezialstählen, können im allgemeinen auf gleiche Weise keine haftfesten Schichten von Galvanoaluminium erhalten werden.Certain metals, such as copper, can be directly electroplated with aluminum after appropriate mechanical and / or chemical pretreatments to remove fat and / or oxide layers from the surface of the workpieces. On other metals, such as, for example, iron materials and in particular special steels, generally no adhesive layers of galvanoaluminium can be obtained in the same way.

Daher wurden verschiedene Verfahren zur Vorbereitung von Werkstücken aus elektrisch leitfähigen Materialien, inbesondere Metallen für eine haftfeste galvanische Beschichtung mit Aluminium, vorgeschlagen.Therefore, various methods for the preparation of workpieces made of electrically conductive materials, in particular metals for an adhesive galvanic coating with aluminum, have been proposed.

Die DE-PS 22 60 191 (Siemens AG, Priorität: 08.12.1972) beschreibt ein solches Verfahren, das dadurch gekennzeichnet ist, daß zumindest der letzte, der Formgebung der Werkstücke dienende Verfahrensschritt unter aprotischem wasser- und sauerstoff-freiem Schutzmedium durchgeführt wird. In den Beispielen wird als letzter der Formgebung dienender Verfahrensschritt Fräsen, Sägen oder Schmirgeln genannt.DE-PS 22 60 191 (Siemens AG, priority: 08.12.1972) describes such a method, which is characterized in that at least the last process step, which is used to shape the workpieces, is carried out under an aprotic, water- and oxygen-free protective medium. In the examples, milling, sawing or sanding are mentioned as the last process step used for shaping.

In der DE-OS 31 12 919 (Siemens AG, Priorität: 31.03.1981) wird vorgeschlagen, zur Haftvermittlung auf Eisenwerkstücken galvanisch aus wäßrigen Lösungen dünne Schichten aus Kobalt oder Kobaltlegierungen aufzubringen. Zur Haftvermittlung mit dem anschließend galvanisch aufzubringenden Aluminium sollen Schichtdicken von maximal 1 µm ausreichen.In DE-OS 31 12 919 (Siemens AG, priority: March 31, 1981) it is proposed to apply thin layers of cobalt or cobalt alloys galvanically from aqueous solutions to impart adhesion to iron workpieces. Layer thicknesses of a maximum of 1 µm should be sufficient to impart adhesion with the aluminum that is subsequently to be electroplated.

Bereits früher (H. Lehmkuhl, Dissertation, Technische Hochschule Aachen, 1954) wurde empfohlen, galvanisch aus wäßrigen Elektrolyten abgeschiedene Kupferschichten zur Haftvermittlung zwischen Eisenwerkstücken und galvanisch erzeugten Aluminiumschichten zu verwenden.Previously (H. Lehmkuhl, dissertation, Technical University of Aachen, 1954), it was recommended to use copper layers electroplated from aqueous electrolytes to promote adhesion between iron workpieces and electroplated aluminum layers.

Entscheidender Nachteil der beiden zuletzt genannten Verfahrensweisen ist, daß bei der galvanischen Abscheidung der als Haftvermittler dienenden Metalle aus wäßrigen Lösungen eine Mitabscheidung von Wasserstoff nicht zu vermeiden ist. Niedriglegierte hochfeste Stähle, wie beispielsweise in Tabelle 1 angegeben, sind jedoch sehr versprödungempfindlich gegenüber Wasserstoff. Wäßrige Elektrolytlösungen sind daher zur Beschichtung solcher Stähle ungeeignet.A decisive disadvantage of the two last-mentioned procedures is that during the electrodeposition of the metals serving as adhesion promoters, co-separation of hydrogen cannot be avoided. Low-alloy high-strength steels, for example as shown in Table 1, are very sensitive to embrittlement to hydrogen. Aqueous electrolyte solutions are therefore unsuitable for coating such steels.

Aus der DE-A-2012846 sind nicht wäßrige, DMSO enthaltende Lösungen von Metallsalzen zum Elektroplattieren ohne Wasserstoffbrüchigkeit bekannt.DE-A-2012846 discloses non-aqueous, DMSO-containing solutions of metal salts for electroplating without hydrogen fragility.

Die Erfindung betrifft folglich Verfahren zur Metallbeschichtung von Metallwerkstoffen, insbesondere niedriglegierten hochfesten Stählen, wobei aus nichtwäßrigen Elektrolyten wasserfreier Metallverbindungen galvanisch Haftvermittlungsschichten aus Eisen, Eisen und Nickel, Nickel, Cobalt, Kupfer oder Legierungen der vorstehend genannten Metalle oder Zinn-Nickel-Legierungen auf diese Metallwerkstoffe abgeschieden und darauf dann anschließend in an sich bekannter Weise galvanisch Aluminium abgeschieden wird.The invention consequently relates to methods for the metal coating of metal materials, in particular low-alloy high-strength steels, galvanic bonding layers being formed from non-aqueous electrolytes of anhydrous metal compounds Iron, iron and nickel, nickel, cobalt, copper or alloys of the above-mentioned metals or tin-nickel alloys are deposited on these metal materials and then subsequently galvanically aluminum is deposited in a manner known per se.

Bei Verwendung dieser Metalle als Zwischenschichten für eine anschließende Aluminierung auf galvanischem Weg ist im allgemeinen eine Schichtdicke von 1 bis 4 µm ausreichend, um Haftung zwischen Werkstoff, Zwischenschicht und Galvanoaluminiumschicht zu gewährleisten.When using these metals as intermediate layers for a subsequent aluminizing by galvanic means, a layer thickness of 1 to 4 µm is generally sufficient to ensure adhesion between the material, intermediate layer and galvanoaluminium layer.

Als Elektrolyte werden, um die Abscheidung von Wasserstoff und die damit verbundene Gefahr der Versprödung der Werkstoffe zu vermeiden, Lösungen wasserfreier Metallsalze des Fe, Co, Ni, Cu oder Sn, insbesondere deren wasserfreie Halogenide und/oder die Komplexverbindungen dieser Metallhalogenide mit Ethern, wie beispielsweise Tetrahydrofuran, oder mit Alkoholen, wie beispielsweise Ethanol, in wasserfreien Alkylhalbethern eines C₂-C₃-Alkylenglykols der Formel

Figure imgb0001

in der
R für C₁ bis C₆ und Phenyl, und
R¹ für H oder Methyl steht,
oder Mischungen dieser Lösungen unter Zusatz wasserfreier Leitsalze, insbesondere Lithiumchlorid, Lithiumbromid oder entsprechende Tetraorganylammoniumhalogenide verwendet.In order to avoid the deposition of hydrogen and the associated risk of embrittlement of the materials, electrolytes are solutions of anhydrous metal salts of Fe, Co, Ni, Cu or Sn, in particular their anhydrous halides and / or the complex compounds of these metal halides with ethers, such as for example tetrahydrofuran, or with alcohols, such as ethanol, in anhydrous alkyl half ethers of a C₂-C₃ alkylene glycol of the formula
Figure imgb0001

in the
R for C₁ to C₆ and phenyl, and
R¹ represents H or methyl,
or mixtures of these solutions with the addition of anhydrous conductive salts, in particular lithium chloride, lithium bromide or corresponding tetraorganylammonium halides.

Weiter werden als lösliche Anoden zweckmäßig solche aus dem betreffenden Metall oder bei der Abscheidung von Legierungen solche aus den abzuscheidenden Metallen oder entsprechende Legierungsanoden eingesetzt.Furthermore, such soluble anodes are expediently those from the concerned metal or in the deposition of alloys used from the metals to be deposited or corresponding alloy anodes.

Bei Fe-, Co-, Ni- und Sn-Verbindungen werden zweckmäßig die Metall(II)-Verbindungen eingesetzt, bei der Abscheidung von Cu geht man im allgemeinen von Cu(I)-Verbindungen aus.In the case of Fe, Co, Ni and Sn compounds, the metal (II) compounds are expediently used; in the deposition of Cu, Cu (I) compounds are generally used.

Die Verwendung von 2-Ethoxyethanol als Lösungsmittel von Elektrolyten zur Abscheidung von Cu, Ni, Co ist von A.L. Chaney, C.A. Mann, J. Phys. Chem 35 (1931) 2289 beschrieben worden. Im Gegensatz zum erfindungsgemäßen Verfahren wurden jedoch nur die Wasser enthaltenen Verbindungen (Cu(ClO₄ )₂·2H₂O, Ni(ClO₄)₂ ·2H₂O und Co(ClO₄)₂ ·2H₂O beschrieben. Die Art der Metallabscheidung wird von den Autoren beim Cu als gut, beim Ni als weniger gut, weil spröde, und beim Co auch als weniger gut, weil schwarz, schwammig beschrieben. Ob diese Schichten als Haftvermittlungsschichten für Galvanoaluminium geeignet sind, ist nicht bekannt. Dies muß jedoch, insbesondere wegen der Eigenschaften der Ni- oder Co-Schichten, wie Sprödigkeit oder schwammiger Charakter, bezweifelt werden. Auf jeden Fall bleibt bei den durch die Metallsalze eingebrachten Wasseranteilen die Mitabscheidung von Wasserstoff unvermeidbar und damit verbunden die Gefahr der Versprödung der Werkstoffe durch Wasserstoff erhalten.The use of 2-ethoxyethanol as a solvent of electrolytes for the deposition of Cu, Ni, Co has been described by AL Chaney, CA Mann, J. Phys. Chem 35 (1931) 2289. In contrast to the process according to the invention, however, only the water-containing compounds (Cu (ClO₄) ₂ · 2H₂O, Ni (ClO₄) ₂ · 2H₂O and Co (ClO₄) ₂ · 2H₂O have been described. The authors describe the type of metal deposition for Cu as good , Ni is less good because it is brittle, and Co less good because it is black, spongy, and it is not known whether these layers are suitable as adhesion-promoting layers for galvanoaluminium, but this must be the case, particularly because of the properties of the Ni or Co-layers such as brittleness or spongy character are doubted In any case, with the water components brought in by the metal salts, the co-separation of hydrogen remains unavoidable and the associated risk of embrittlement of the materials by hydrogen is maintained.

Die von A.J. Dill (Plating 1972, 59 (11), 1048-1052, Galvano-Organo 1974, 43, 151-156) beschriebene Abscheidung von Nickel aus Lösungen von NiCl₂·6H₂O in Ethylenglykol (1,2-Ethandiol) geht ebenfalls von einem wasserhaltigen Metallsalz aus. Die Mitabscheidung von Wasserstoff kann daher nicht vermieden werden. Ähnliches gilt für die von A.A. Sarabi, V.B. Singh, Indian J. of Technology 25 (1987) 119 untersuchte Nickelabscheidung aus 0.2 M Lösungen von NiCl₂ nicht definierten Wassergehaltes oder NiSO₄·7 H₂O in 1,2-Ethandiol oder 2-Methoxyethanol unter Zusatz von Borsäure (0.2 M). In 2-Methoxyethanol-NiCl₂-H₃BO₃-x H₂O-Elektrolyten sind die Nickelabscheidungen gleichmäßig, grauglänzend und haftend bei Stromdichten von 0.1-0.3 A/dm², bei höheren Stromdichten zeigen sie eine Tendenz sich abzuschälen. Da die kathodischen Stromausbeuten nur 90-98 % betragen, muß angenommen werden, daß Wasserstoff mit abgeschieden wird. Hierzu ist allgemein bekannt (F.A. Cotton, G. Wilkinson, Anorganische Chemie, Verlag Chemie, Weinheim 1967, S. 245), daß Borsäure mit Alkoholen sehr leicht unter Abspaltung von Wasser Borsäureester bildet. Mit 1,2-Alkandiolen, wie 1,2-Ethandiol, entstehen stark saure Chelatkomplexe vom Typ

Figure imgb0002

   Beide Effekte verstärken die Gefahr der Wasserstoffabspaltung.The deposition of nickel from solutions of NiCl₂ · 6H₂O in ethylene glycol (1,2-ethanediol) also described by AJ Dill (Plating 1972 , 59 (11), 1048-1052, Galvano-Organo 1974 , 43, 151-156) a water-containing metal salt. The co-separation of hydrogen cannot therefore be avoided. The same applies to the nickel deposition from 0.2 M solutions by AA Sarabi, VB Singh, Indian J. of Technology 25 (1987) 119 NiCl₂ undefined water content or NiSO₄ · 7 H₂O in 1,2-ethanediol or 2-methoxyethanol with the addition of boric acid (0.2 M). In 2-methoxyethanol-NiCl₂-H₃BO₃-x H₂O electrolytes, the nickel deposits are uniform, shiny gray and sticky at current densities of 0.1-0.3 A / dm², at higher current densities they show a tendency to peel off. Since the cathodic current yields are only 90-98%, it must be assumed that hydrogen is also deposited. It is generally known (FA Cotton, G. Wilkinson, Inorganic Chemistry, Verlag Chemie, Weinheim 1967, p. 245) that boric acid forms very easily boric acid esters with the elimination of water with alcohols. With 1,2-alkanediols, such as 1,2-ethanediol, strongly acidic chelate complexes of the type are formed
Figure imgb0002

Both effects increase the risk of hydrogen elimination.

Diese Gefahr besteht beim erfindungsgemäßen Verfahren nicht, da hier die wasserfreien Salze eingesetzt werden und das Lösungsmittel ebenfalls wasserfrei und ohne Zusatz von Säuren, insbesondere Borsäure, verwendet wird. Die anodischen und kathodischen Stromausbeuten sind bezogen auf aufgelöstes bzw. abgeschiedenes Metall quantitativ. Wasserstoff wird nicht abgeschieden. 1 Faraday, d.s. 26.8 Amperestunden, lösen anodisch 55.85/2 g Eisen, 58.94/2 g Kobalt oder 58.71/2 g Nickel entsprechend dem elektrolytischen Vorgang M → M 2(+) + 2 e (-)

Figure imgb0003
auf und scheiden kathodisch die gleichen Metallmengen entsprechend M 2(+) + 2 e (-) → M
Figure imgb0004
ab. Bei CuCl enthaltenden Elektrolytlösungen werden pro 1 Faraday 63.54 g Cu entsprechend M → M (+) + e (-)
Figure imgb0005
aufgelöst und die gleiche Metallmenge entsprechend M (+) + e (-) → M
Figure imgb0006
kathodisch abgeschieden. Als wasserfreie Metallsalze werden bevorzugt die wasserfreien Metalldichloride oder -dibromide bei Fe, Co und Ni bzw. Kupfer(I)chlorid oder -bromid oder deren Additionsverbindungen mit Alkoholen, wie beispielsweise Methanol oder Ethanol, oder mit Ethern, wie z.B. Diethylether, THF oder Dimethoxyethan, verwendet.This danger does not exist in the process according to the invention, since the anhydrous salts are used here and the solvent is also used anhydrous and without the addition of acids, in particular boric acid. The anodic and cathodic current yields are quantitative in relation to dissolved or deposited metal. Hydrogen is not separated out. 1 Faraday, ds 26.8 ampere hours, anodically dissolve 55.85 / 2 g iron, 58.94 / 2 g cobalt or 58.71 / 2 g nickel according to the electrolytic process M → M 2 (+) + 2 e (-)
Figure imgb0003
and cathodically separate the same amounts of metal accordingly M 2 (+) + 2 e (-) → M
Figure imgb0004
from. In the case of electrolyte solutions containing CuCl, 63.54 g of Cu per 1 Faraday are used M → M (+) + e (-)
Figure imgb0005
dissolved and the same amount of metal accordingly M (+) + e (-) → M
Figure imgb0006
deposited cathodically. The anhydrous metal salts are preferably the anhydrous metal dichlorides or dibromides in the case of Fe, Co and Ni or copper (I) chloride or bromide or their addition compounds with alcohols, such as, for example, methanol or ethanol, or with ethers, such as, for example, diethyl ether, THF or dimethoxyethane , used.

Als Lösungsmittel werden Alkylhalbether eines Alkylenglykols wie 1-Alkoxy-2-hydroxyethan oder 1-Alkoxy-2-hydroxypropan, insbesondere die leicht und preiswert zugänglichen Halbether des 1,2-Ethandiols ROCH₂CH₂OH, bevorzugt solche mit R = Methyl, Ethyl, Propyl oder Isopropyl oder solche des 1,2-Propandiols, insbesondere CH₃CH(OH)CH₂OCH₃, eingesetzt.Alkyl half ethers of an alkylene glycol such as 1-alkoxy-2-hydroxyethane or 1-alkoxy-2-hydroxypropane, in particular the easily and inexpensively accessible half ethers of 1,2-ethanediol ROCH₂CH₂OH, preferably those with R = methyl, ethyl, propyl or isopropyl, are used as solvents or those of 1,2-propanediol, in particular CH₃CH (OH) CH₂OCH₃, used.

Als Metallsalzkonzentration in diesen Lösungsmitteln werden 0,02 bis 0,1 M, bevorzugt 0,044 bis 0,05 M Lösungen empfohlen. Die Konzentrationen an Leitsalz, insbesondere Lithiumbromid, sollten von etwa gleicher bis doppelter Größenordnung sein.0.02 to 0.1 M, preferably 0.044 to 0.05 M solutions are recommended as the metal salt concentration in these solvents. The concentrations of conductive salt, especially lithium bromide, should be of approximately the same to twice the order of magnitude.

Die Elektrolysetemperaturen liegen zwischen Raumtemperatur und ca. 120°C bevorzugt werden Temperaturen zwischen 50 und 80 °C. Gute, gleichmäßige und glänzende Metallschichten aus Fe, Co, Ni oder Cu lassen sich mit Stromdichten zwischen 0,2 und 1,5 A/dm² erreichen, bevorzugt werden 0,5 bis 1,0 A/dm², siehe Tabelle 1.The electrolysis temperatures are between room temperature and approximately 120 ° C. Temperatures between 50 and 80 ° C. are preferred. Good, uniform and shiny metal layers made of Fe, Co, Ni or Cu can be achieved with current densities between 0.2 and 1.5 A / dm², preferably 0.5 to 1.0 A / dm², see Table 1.

Bei Legierungsabscheidungen werden erfindungsgemäß im allgemeinen Mischungen aus Lösungen der Metallsalze der Legierungsbestandteile eingesetzt. Als Anoden können dann entweder solche aus entsprechenden Legierungen oder mehrere Elektroden aus den Metallen der einzelnen Legierungsbestandteile verwendet werden. Bei Vorhandensein eines größeren Elektrolytvorrats ist es möglich, nur mit der Anode aus einem der Legierungsbestandteile zu arbeiten. Die Konzentration des anderen Legierungsbestandteils muß dann in der Lösung durch Zugabe des entsprechenden Salzes von Zeit zu Zeit aufgefrischt werden. Wenn die Abscheidungstendenzen der Einzelmetalle sehr verschieden sind, lassen sich bei Verwendung von Legierungsanoden auch Elektrolyte verwenden, die nur das Salz des sich schwerer abscheidenden Metalls enthalten.In the case of alloy deposits, mixtures of solutions of the metal salts of the alloy components are generally used according to the invention. The anodes can then be either those made of appropriate alloys or a plurality of electrodes made of the metals of the individual alloy components. If there is a large electrolyte supply, it is possible to work only with the anode made from one of the alloy components. The concentration of the other alloy component must then be refreshed from time to time in the solution by adding the appropriate salt. If the deposition tendencies of the individual metals are very different, electrolytes containing only the salt of the more difficult to deposit metal can also be used when using alloy anodes.

Die Zusammensetzung der abzuscheidenden Legierung kann in weiten Bereichen variiert werden (siehe Tabelle 2) und zwar

  • 1. durch Veränderung des Verhältnisses der Metallsalze im Elektrolyten zueinander und/oder
  • 2. durch Verwendung von mehreren Anoden unterschiedlicher wirksamer Fläche aus den Metallen der einzelnen Legierungsbestandteile und/oder
  • 3. bei Einsatz mehrerer Anoden aus den Metallen der Legierungsbestandteile durch unterschiedliche Stromkreise zwischen der Kathode und den einzelnen Anoden.
The composition of the alloy to be deposited can be varied within a wide range (see Table 2)
  • 1. by changing the ratio of the metal salts in the electrolyte to one another and / or
  • 2. by using several anodes of different effective area from the metals of the individual alloy components and / or
  • 3. when using multiple anodes made of the metals of the alloy components through different circuits between the cathode and the individual anodes.

Um eine Luftoxidation der Metallsalzlösungen und/oder der galvanisch abgeschiedenen Metallschichten zu vermeiden, werden die Elektrolysen in geschlossenen Gefäßen in einer Inertgasatmosphäre von z.B. Argon und/oder Lachgas und/oder Stickstoff ausgeführt. Nach Beendigung der Zwischenbeschichtung werden die Werkstücke zunächst mit dem Lösungsmittel des Elektrolyten gewaschen. Nach Abtropfen des Lösungsmittels und Trocknen im Inertgasstrom oder im Vakuum werden die Werkstücke mit trockenem Toluol gewaschen und dann über eine Inertgasschleuse in das Aluminierbad überführt. Besonderer Vorteil einer solchen Verfahrensweise ist, daß auf der Metalloberfläche keine neue Oxid- oder Wasserschicht gebildet werden kann. Weiter entfallen nachträgliche aufwendige Trocknungsverfahren vor Eintritt in das Aluminierbad, wie beispielsweise die Behandlung mit Netzmittel enthaltenden Fluorkohlenwasserstoffen.In order to avoid air oxidation of the metal salt solutions and / or the galvanically deposited metal layers, the electrolyses are carried out in closed vessels in an inert gas atmosphere of, for example, argon and / or nitrous oxide and / or nitrogen. After finishing the intermediate coating, the workpieces are first washed with the solvent of the electrolyte. After draining the Solvents and drying in an inert gas stream or in a vacuum, the workpieces are washed with dry toluene and then transferred to the aluminizing bath via an inert gas lock. A particular advantage of such a procedure is that no new oxide or water layer can be formed on the metal surface. Furthermore, there is no need for subsequent, complex drying processes before entering the aluminizing bath, such as treatment with fluorocarbons containing wetting agents.

Die Erfindung wird anhand der in den folgenden beiden Tabellen beschriebenen Ausführungsbeispiele erläutert.The invention is explained using the exemplary embodiments described in the following two tables.

Beispiel 1example 1

Als Elektrolysezelle dient ein zylindrisches Glasgefäß mit oben plan geschliffenem Rand, das mit einem Deckel aus isolierendem Material fest verschlossen werden kann. Am Deckel ist zwischen zwei Anodenplatten aus dem elektrochemisch aufzulösenden Metall, z.B. Nickel, eine Kathode aus dem zu beschichtenden Werkstoff, z.B. WL-1.6359 aufgehängt. Die Befestigungen der Elektroden dienen gleichzeitig als Stromzuführung. Die trockene Zelle wird mit Inertgas gefüllt, z.B. Argon oder Stickstoff. Zur Beschichtung der Kathode mit Nickel wird als Elektrolyt eine Lösung von 0.05 mol NiCl₂·0.63 THF und 0.05 mol LiBr in 1 Liter CH₃OCH₂CH₂OH eingesetzt. Es wird bei 60 °C mit einer Kathodenstromdichte von 0.5 A/dm² bei ca. 3-4 Volt und guter Duchmischung des Elektrolyten solange elektrolysiert, bis sich eine 1 µ dicke Nickelschicht auf der Kathode abgeschieden hat. Bezogen auf die Strommenge sind die anodischen und kathodischen Stromausbeuten quantitativ.A cylindrical glass vessel with an edge ground flat at the top serves as the electrolysis cell and can be firmly closed with a lid made of insulating material. A cathode made of the material to be coated, for example WL-1.6359, is suspended from the lid between two anode plates made of the electrochemically dissolvable metal, for example nickel. The attachments of the electrodes also serve as a power supply. The dry cell is filled with inert gas, such as argon or nitrogen. To coat the cathode with nickel, a solution of 0.05 mol NiCl₂ · 0.63 THF and 0.05 mol LiBr in 1 liter CH₃OCH₂CH₂OH is used as the electrolyte. Electrolysis is carried out at 60 ° C. with a cathode current density of 0.5 A / dm² at about 3-4 volts and thorough mixing of the electrolyte until a 1 μm thick nickel layer has deposited on the cathode. The anodic and cathodic current yields are quantitative in relation to the amount of electricity.

In analoger Weise wurden andere, in Tabelle 1 aufgeführte Metallabscheidungen mit den in Tabelle 1 angegebenen Elektrolyten ausgeführt.

Figure imgb0007
In an analogous manner, other metal deposits listed in Table 1 were carried out with the electrolytes shown in Table 1.
Figure imgb0007

Beispiel 2Example 2

Dieses Beispiel beschreibt den in Tabelle 2 aufgeführten Versuch 1 detailliert. Eine 0.05 molare (M) Lösung von LiBr in CH₃OCH₂CH₂OH, die außerdem noch 0.029 M an NiCl₂ und 0.015 M an FeCl₂ ist, wird bei 65 °C in einer Inertgasatmosphäre mit einer Stromdichte von 0.5 A/dm² elektrolysiert. Als Anoden werden Nickel- und Eisenblech verwendet; das Flächenverhältnis beider Metallanoden ist 1.0 : 0.5. Als Kathode wird ein Werkstück aus WL-1.7176 eingesetzt. Man elektrolysiert solange, bis sich auf der Kathode eine ca. 3 µ dicke Legierungsschicht abgeschieden hat. Die Legierung besteht zu 75 % aus Fe und zu 25 % aus Ni. Die Versuche 2-9 wurden analog mit den in Tabelle 2 angegebenen Elektrolyten und Anoden durchgeführt.This example describes Experiment 1 listed in Table 2 in detail. A 0.05 molar (M) solution of LiBr in CH₃OCH₂CH₂OH, which is also 0.029 M in NiCl₂ and 0.015 M in FeCl₂, is electrolyzed at 65 ° C in an inert gas atmosphere with a current density of 0.5 A / dm². Nickel and iron sheets are used as anodes; the area ratio of both metal anodes is 1.0: 0.5. A workpiece made of WL-1.7176 is used as the cathode. Electrolysis is carried out until an approximately 3 μ thick alloy layer has been deposited on the cathode. The alloy consists of 75% Fe and 25% Ni. Experiments 2-9 were carried out analogously with the electrolytes and anodes specified in Table 2.

Nach der Zwischenbeschichtung entsprechend den Beispielen 1 und 2 und den in Tabelle 1 und 2 zusaammengefaßten Versuchen werden die Werkstücke mit dem Lösungsmittel des Elektrolyten gewaschen und im Inertgasstrom getrocknet. Dann wäscht man die Werkstücke mit trockenem Toluol und überführt sie über eine Inertgasschleuse in das Aluminierbad.After the intermediate coating according to Examples 1 and 2 and the tests summarized in Tables 1 and 2, the workpieces are washed with the solvent of the electrolyte and dried in a stream of inert gas. The workpieces are then washed with dry toluene and transferred to the aluminizing bath via an inert gas lock.

Um ein quantitatives Maß für die Haftfestigkeit galvanisch erzeugter Schichten auf Werkstoffen zu erhalten, bedient man sich Verfahren zur Messung der Kraft, die benötigt wird, um den Niederschlag von der Unterlage abzureißen. Der "Tape-Test" ist eine quantitativ vergleichende Methode, die Bewertungen der Haftung auf einfache Weise ermöglicht. Dazu wird zunächst ein Klebestreifen fest auf die Galvanoschicht gepreßt und dann rasch abgerissen. Bei schlechter oder mäßiger Haftung löst sich dabei die Galvanoschicht zusammen mit dem Klebestreifen von der Werkstoffunterlage. Bei guter Haftung werden nur kleine Bezirke der Galvanoschicht abgelöst und bei sehr guter Haftung bleibt die Bindung der Galvanoschicht an die Unterlage vollständig erhalten.

Figure imgb0008
In order to obtain a quantitative measure of the adhesive strength of electroplated layers on materials, methods are used to measure the force that is required to tear off the precipitate from the substrate. The "tape test" is a quantitative comparative method that enables liability assessments to be carried out in a simple manner. For this purpose, an adhesive strip is first pressed firmly onto the galvanic layer and then quickly torn off. In the event of poor or moderate adhesion, the galvanic layer and the adhesive strip come off the material base. If the adhesion is good, only small areas of the electroplating layer will be removed and if the adhesion is very good, the bonding of the electroplating layer to the base will remain intact.
Figure imgb0008

Claims (8)

  1. A process for metal-plating of metallic materials, and more specifically low-alloy high-strength steels, wherein adhesion-bonding layers of iron, iron and nickel, nickel, cobalt, copper or alloys of said metals or tin-nickel alloys are electrodeposited on said metallic materials from non-aqueous electrolytes of anhydrous metal compounds, and then aluminium is electrodeposited thereon in a per se known manner, wherein, as the anhydrous compounds, there are employed metal salts of iron, cobalt, nickel, copper or tin, and more specifically of the anhydrous chlorides thereof and/or anhydrous bromides thereof and/or the complex compounds of the metal chlorides and/or metal bromides with ethers or with alcohols in water-free alkyl semi-ethers of a C₂- to C₃-alkylene glycol of the formula
    Figure imgb0010
    wherein
    R   represents C₁- to C₆-alkyl and phenyl, and
    R¹   represents a hydrogen atom or a methyl group,
    or mixtures of these solutions with the addition of anhydrous supporting electrolytes, and more specifically lithium chloride, lithium bromide or respective tetraorganylammonium halides.
  2. The process according to claim 1, characterized in that as the anhydrous metal compounds there are employed metal(II) compounds of iron, cobalt, nickel or tin or metal(I) compounds of copper.
  3. The process according to claims 1 or 2, characterized in that as the anode a metal anode is used which has the same alloy composition as the metal cations of the metal salts of the electrolyte.
  4. The process according to claims 1 to 3, characterized in that as the anhydrous solvent there is used a C₁- to C₄-alkyl semi-ether, and preferably a C₁- to C₃-alkyl semi-ether, of an alkylene glycol, namely of 1,2-ethylene diol or of 1,2-propanediol.
  5. The process according to claims 1 to 4, characterized in that in the solvent of the water-free electrolyte the metal salts are present in concentrations of from 0.02 to 0.1M, and preferably of from 0.044 to 0.05M, and the supporting electrolyte, more particularly the lithium bromide, is present in an equimolar to twice the equimolar concentration relative to said metal salts.
  6. The process according to claims 1 to 5, characterized in that the bonding layers are electrodeposited at current densities at from 0.2 to 1.5 A/dm², and preferably at from 0.5 to 1.0 A/dm², at electrolysis temperatures between room temperature (20 °C) and about 120 °C, and preferably between 50 °C and 80 °C.
  7. The process according to claims 1 to 6, characterized in that the electrodeposition is effected in an inert gas atmosphere.
  8. Non-aqueous electrolytes having the compositions as set forth in claims 1, 2, 4 and 5 for metal-plating of metallic materials, and more specifically low-alloy high-strength steels, and for adhesion-bonding between said metallic materials and aluminium layers electrodeposited thereon.
EP89102319A 1988-02-12 1989-02-10 Process concerning the adhesion between metallic materials and galvanic aluminium layers and the non-aqueous electrolyte used therein Expired - Lifetime EP0328128B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3804303 1988-02-12
DE3804303A DE3804303A1 (en) 1988-02-12 1988-02-12 METHOD FOR ADMINISTERING BETWEEN METAL MATERIALS AND GLAVAN ALUMINUM LAYERS AND NON-AQUE ELECTROLYTE USED THEREOF

Publications (3)

Publication Number Publication Date
EP0328128A1 EP0328128A1 (en) 1989-08-16
EP0328128B1 EP0328128B1 (en) 1992-04-08
EP0328128B2 true EP0328128B2 (en) 1995-09-20

Family

ID=6347224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102319A Expired - Lifetime EP0328128B2 (en) 1988-02-12 1989-02-10 Process concerning the adhesion between metallic materials and galvanic aluminium layers and the non-aqueous electrolyte used therein

Country Status (9)

Country Link
US (1) US4925536A (en)
EP (1) EP0328128B2 (en)
JP (1) JP2824267B2 (en)
AT (1) ATE74630T1 (en)
CA (1) CA1337690C (en)
DE (2) DE3804303A1 (en)
DK (1) DK64789A (en)
ES (1) ES2032341T5 (en)
IE (1) IE61700B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499638B1 (en) * 1989-04-20 1998-12-02 Tokin Corporation Method for Plating a Permanent Magnet of a R2T14B Intermetallic Compound
US8225481B2 (en) * 2003-05-19 2012-07-24 Pratt & Whitney Rocketdyne, Inc. Diffusion bonded composite material and method therefor
EP1524336A1 (en) * 2003-10-18 2005-04-20 Aluminal Oberflächtentechnik GmbH & Co. KG Workpieces coated with an aluminum magnesium alloy
DE102008048109B4 (en) * 2008-04-17 2015-01-29 Ks Aluminium-Technologie Gmbh Method for producing a metallic component and use of a cylinder part as basic body for carrying out the method
DE102017201559A1 (en) 2017-01-31 2018-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Atmospheric pressure plasma process for the production of plasma polymer coatings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616280A (en) * 1969-03-24 1971-10-26 Atomic Energy Commission Nonaqueous electroplating solutions and processing
JPS5334711B2 (en) * 1971-09-16 1978-09-21
JPS5137082B2 (en) * 1972-03-31 1976-10-13
DE3112834A1 (en) * 1981-03-31 1982-10-14 Siemens AG, 1000 Berlin und 8000 München Metal-coated ferrous materials
WO1986001840A1 (en) * 1984-09-17 1986-03-27 Eltech Systems Corporation Protective coating

Also Published As

Publication number Publication date
JP2824267B2 (en) 1998-11-11
EP0328128A1 (en) 1989-08-16
CA1337690C (en) 1995-12-05
DK64789A (en) 1989-08-13
DK64789D0 (en) 1989-02-10
ES2032341T5 (en) 1995-11-16
US4925536A (en) 1990-05-15
ES2032341T3 (en) 1993-02-01
DE58901105D1 (en) 1992-05-14
ATE74630T1 (en) 1992-04-15
EP0328128B1 (en) 1992-04-08
IE890424L (en) 1989-08-12
JPH01247593A (en) 1989-10-03
DE3804303A1 (en) 1989-08-24
IE61700B1 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
DE60109182T2 (en) IONIC LIQUIDS AND ITS USE
DE3428345C2 (en)
DE2947821C2 (en)
DE3048083C2 (en) Process for the chemical removal of oxide layers from objects made of titanium or titanium alloys
DE19523307A1 (en) Chrome plating process using trivalent chromium
Rashwan et al. Electrodeposition and characterization of thin layers of Zn–Co alloys obtained from glycinate baths
Crousier et al. Influence of substrate on the electrodeposition of nickel-molybdenum alloys
DE3710368A1 (en) AQUEOUS ACID BATH AND METHOD FOR GALVANIC DEPOSITION OF A ZINC-NICKEL ALLOY
CA1129805A (en) Electrodeposition of ruthenium-iridium alloy
EP0328128B2 (en) Process concerning the adhesion between metallic materials and galvanic aluminium layers and the non-aqueous electrolyte used therein
CA1256057A (en) Process for electrolytic treatment of metal by liquid power feeding
DE2114119A1 (en) Process for the electrolytic deposition of ruthenium and electrolysis bath to carry out this process
EP2635724B1 (en) Process for electroplating hard chromium from a cr(vi) free electrolyte
DE68905429T2 (en) METHOD FOR TIN ELECTROPLATING METALLIC MATERIAL.
DE2917019C2 (en) Process for the metallization of composite material and bath composition suitable for this
DE3347593C2 (en)
Levason et al. Studies of platinum electroplating baths: Part V: Solutions derived from Pt (NO2) 42− in aqueous acid
EP2989236B1 (en) Electrically conducting liquids based on metal-diphosphonate complexes
DE2818780A1 (en) GALVANIC BATH FOR ELECTROPLATING CHROME OR CHROME ALLOYS
DE3108202A1 (en) METHOD FOR ELECTROLYTICALLY DEPOSITING LAYERS OF NICKEL ALLOYS WITH ALLOY ELEMENTS
EP0360863A1 (en) Method and nickel-oxide electrode for applying a composite nickel-oxide coating to a metal carrier
Gardam Polarisation in the electrodeposition of metals
Rudnik et al. Effect of organic additives on electrodeposition of tin from acid sulfate solution
DE2606418C2 (en) Process for the production of magnetic recording media with a wear-resistant surface
DE2743847A1 (en) METHOD FOR GALVANIC DEPOSITION OF NICKEL AND COBALT ALONE OR AS BINARY OR TERNAIRE ALLOYS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890920

17Q First examination report despatched

Effective date: 19910717

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 74630

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 58901105

Country of ref document: DE

Date of ref document: 19920514

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG GR PA 8

Effective date: 19930108

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 89102319.4

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19950920

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19951018

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19951116

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000114

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000117

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000124

Year of fee payment: 12

Ref country code: LU

Payment date: 20000124

Year of fee payment: 12

Ref country code: FR

Payment date: 20000124

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000125

Year of fee payment: 12

Ref country code: AT

Payment date: 20000125

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000208

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010210

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

BERE Be: lapsed

Owner name: STUDIEN G.- KOHLE M.B.H.

Effective date: 20010228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010210

EUG Se: european patent has lapsed

Ref document number: 89102319.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050210

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO