EP0327797B1 - Method for the preparation of proteins or protein-containing gene products - Google Patents

Method for the preparation of proteins or protein-containing gene products Download PDF

Info

Publication number
EP0327797B1
EP0327797B1 EP89100104A EP89100104A EP0327797B1 EP 0327797 B1 EP0327797 B1 EP 0327797B1 EP 89100104 A EP89100104 A EP 89100104A EP 89100104 A EP89100104 A EP 89100104A EP 0327797 B1 EP0327797 B1 EP 0327797B1
Authority
EP
European Patent Office
Prior art keywords
strain
deficient
yeast
yeast strain
protease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP89100104A
Other languages
German (de)
French (fr)
Other versions
EP0327797A1 (en
Inventor
Dieter Heinrich Prof. Dr. Wolf
Erhard Dr. Rer. Nat. Kopetzki
Günther Dr. rer. nat. Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25863770&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0327797(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE3804890A external-priority patent/DE3804890C2/en
Application filed by Roche Diagnostics GmbH filed Critical Roche Diagnostics GmbH
Publication of EP0327797A1 publication Critical patent/EP0327797A1/en
Application granted granted Critical
Publication of EP0327797B1 publication Critical patent/EP0327797B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/94Saccharomyces

Definitions

  • the invention relates to a method for manufacturing of proteins or protein products containing genes genetic engineering through transformation of eukaryotic Host cells with the gene for the desired one Protein-containing recombinant DNA molecule, Culturing the cells and isolating the gene product according to known methods.
  • Enzymes are used from various sources of vegetable or animal origin or from microorganisms won.
  • Microorganisms are becoming increasingly important for the production of enzymes and other proteins, since only these can be made available in virtually any amount by fermentation and thus enable larger amounts of protein to be isolated.
  • yeasts such as Saccharomyces cerevisiae
  • homologous expression of proteins is just as possible as the heterologous expression of eukaryotic, for example therapeutically important proteins.
  • E. coli the most frequently used host organism, many heterologously expressed proteins differ from their natural counterparts expressed in a homologous system and are not biologically active, or are obtained as insoluble inactive protein aggregates, called "refractile bodies".
  • yeasts have the typical eukaryotic post-translational modification systems, such as "protein folding", protein maturation, glycosylation and acetylation, are capable of secretion and enable the formation of disulfide bridges in polypeptides and proteins.
  • yeasts are not pathogenic and, in contrast to E. coli, they are free of toxins and pyrogenic cell wall components.
  • yeast is one of the oldest cultivated organisms in the world People. It was and still is mainly for alcoholic fermentation (wine, beer, etc.) and as "Baking aid" used in the preparation of pasta.
  • yeast has industrial importance as Inexpensive raw material source for the isolation of low molecular weight Substances such as NAD, ATP and glutathione, and high molecular substances such as DNA, RNA and especially enzymes, such as Alcohol dehydrogenase, Aldehyde dehydrogenase, acetyl-CoA synthetase, ⁇ -glucosidase, Glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase and hexokinase.
  • yeast is easy to cultivate and due to long standing Experience easily fermented on an industrial scale.
  • the yeast one of the lower eukaryotes single cell counting, has the typical characteristics of a eukaryote, but is still genetic testing and genetic manipulations easily accessible, which makes them particularly as a host organism in the In terms of recombinant DNA technology, i.e. for homologous and heterologous expression of biologically active polypeptides and proteins.
  • the object of the present invention was therefore to Process for the production of proteins on genetic engineering Provide ways with which also in the stationary phase of growth proteins formed and can be stably accumulated and thus the yield of the fermentation process can be increased.
  • This object is achieved by a Process for the production of proteins or proteinaceous Gene products through transformation of eukaryotic Host cells with the gene for the desired one Protein-containing recombinant DNA molecule, cultivation the cells and isolation of the gene product the expression, which is characterized in that one uses a yeast strain as host cells, which is in the stationary breeding phase is deficient in proteases A and B.
  • the yeast strain is preferably additionally deficient in the Protease D.
  • a yeast strain which, in addition to the deficiencies in proteases A, B and optionally D, is deficient in at least one of the carboxypeptidases Y and S.
  • the name of the proteases and carboxypeptidases in this application corresponds to their name in Yeast 1 (1985) 139-154.
  • the yeast strain is used as host cells ABYSD-11, DSM 4322.
  • This host strain is related to the Proteases A, B, D and the carboxypeptidases Y and S deficient.
  • auxotrophy means the inability of microorganisms (mostly mutants of bacteria or yeast), certain Growth factors such as Amino acids, from simple To be able to synthesize precursors.
  • auxotrophs Mutants are not on so-called minimal media. Instead, they need a full medium that is suitable for the growth necessary components that they don't can synthesize itself contains.
  • microorganisms can for one, but also several growth factors be auxotrophic (E.-L. Winnacker, genes and clones, 1985, Verlag Chemie, Appendix C).
  • a further preferred embodiment of the invention crosses the protease-deficient yeast strain another, auxotrophic and / or chemical sensitive Yeast strain, isolated after sporulation by selection on auxotrophy and / or sensitivity from the resulting hybrid strains a yeast strain that at least is deficient in proteases A and B and at least one of the auxotrophies and / or chemical sensitivities of the parent strains and uses this hybrid strain as host cells.
  • Chemical sensitivity means the inability of a microorganism to grow in a medium that contains certain chemicals, e.g. methotrexate, chloramphenicol and the gentamycin derivative G418.
  • the microorganism can only grow in the medium after transformation of the microorganism with a recombinant DNA which contains a gene which gives the microorganism resistance to these chemicals (dehydrofolate reductase, DHFR; chloramphenicol acetyltransferase, CAT; transposon Tn601-encoded aminoglycoside phosphotransferase etc.)
  • the crossing and sporulation can be carried out, for example, analogously to Sherman et al., Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1984.
  • the yeast strain ABYSD-11, DSM 4322, ( a pra1 , prb1 , prc1 , prd1 , cps1 , ade lys his7 ) is crossed with either the yeast strain TCY2824-1A ( ⁇ mal1S- ⁇ ura3- 52 his4 ), DSM 4317, or DBY 746, DSM 4316, ( ⁇ his3- ⁇ 1 leu2-3 leu2-112 ura3-52 trp1-289a ), which contains a defective maltase structural gene and auxotrophies in the uracil and histidine or auxotrophies in the Show histidine, leucine, uracil and tryptophan biosynthetic pathway.
  • Hybrid strains are then preferably isolated which are deficient in proteases A, B and, if appropriate, D, and in carboxypeptidases Y and S, and additionally at least one or more auxotrophies, such as, for example, the uracil, lysine and maltase utilization auxotrophs, or the leucine and Tryptophan, or finally the leucine, uracil and histidine auxotrophies of the parent strains.
  • auxotrophies such as, for example, the uracil, lysine and maltase utilization auxotrophs, or the leucine and Tryptophan, or finally the leucine, uracil and histidine auxotrophies of the parent strains.
  • the invention therefore contains the recombinant DNA molecule in addition to the gene for the desired protein or protein-containing gene product one or more genes that the auxotrophies and / or chemical sensitivities of the Complement the host strain.
  • the preferred embodiment of the invention a simple distinction between transformed and not transformed host cells.
  • the Presence and expression of genes that one or several of the auxotrophies and / or chemical sensitivities complement of the host strain, enables namely transformed cells, also towards media grow, for example, an amino acid contain that the host strain itself does not synthesize can, however, the gene on the recombinant DNA molecule is present.
  • Non-transformed host strains, which is the recombinant DNA molecule and the auxotrophy-complementing gene contained on it can not have, however, in such a Medium does not grow. This can be done in a simple manner selection for transformed host cells be made, which also creates the risk of Loss of the recombinant DNA which is the gene for the contains desired protein during fermentation is avoided since no growth advantage of non-transformed Cells.
  • auxotrophy or / and Chemical sensitivity of a host strain by introduction another additional recombinant DNA molecule that contains one or more genes that the auxotrophies or chemical sensitivities of the Complement host cells to overcome. It can however, the easy way of selection host cells containing the gene for the desired product not be noticed.
  • extrachromosomal transcription for example one Plasmids in question but it is also possible the gene for the desired protein via an integration vector or an integrating DNA fragment that one complete expression cassette (promoter, Terminator, regulator, transcription enhancer, etc.) included to infiltrate the yeast genome and together to express with the yeast's own proteins.
  • one complete expression cassette promoter, Terminator, regulator, transcription enhancer, etc.
  • Such a homologous region can be used integrating DNA fragment according to known Methods are introduced into the yeast chromosome.
  • the recombinant DNA molecule is therefore either a plasmid or else an integration vector or an integrating DNA fragment.
  • yeast plasmids are particularly preferred as plasmids, which occur in the cell in high number of copies.
  • yeast plasmids are, for example, hybrid yeast / E. coli vectors ("shuttle vectors"), which are referred to as YRp, YEp, YIp and YCp. In turn, only the YEp and YRp plasmids occur in high number of copies in the cell.
  • YIp plasmids can only be expressed by integration into the yeast genome. They are therefore exemplary. for integration vectors. YIp plasmids have a ten times lower transformation rate, but a significantly greater stability compared to YRp and YEp plasmids. YRp and YEp plasmids can be lost in cell growth without selection pressure (Nature 305 (1983) 391-397).
  • auxotrophic or chemical-sensitive host strains is carried out in minimal media, or media which contain a certain chemical for which the host strain is sensitive, and additionally the recombinant DNA or has multiple genes that complement auxotrophy or sensitivity.
  • the present invention enables expression of homologous or heterologous proteins or protein-containing Gene products in high yield and proteolytic not attacked form, including the selection on transformed cells, and thereby also one Increasing the yield of the desired gene product, in can be done easily. Also at Unlocking the cell mass and the further procedure to obtain the gene product according to known Methods occur due to the protease deficiency of the Host cells no proteolytic attack on the formed Product.
  • the protein alpha-glucosidase PI is produced (see also example 4).
  • the haploid Saccharomyces cerevisiae strain ABYSD-11 ( a pra1 prb1 prc1 prd1 , cps1 , ade lys his7 ), DSM 4322, the proteases A, B and D and the carboxypeptidases Y and S were used is deficient, and additionally has auxotrophy in adenine, histidine and lysine biosynthesis, with the Saccharomyces carlsbergensis strain, TCY2824-1A, ( ⁇ mal1S- ⁇ ura3-52 his4 ), DSM 4317, crossed by a defective ⁇ -glucosidase structural gene and is characterized by auxotrophy in uracil and histidine biosynthesis.
  • the strains ABYSDMAL81 ura3-52 times1S- ⁇ lys pra1 prb1 prc1 prd1 cps1
  • ABYSMAL81 ura3-52 times1S- ⁇ lys pra1 prb1 prc1 cps1
  • the segregants were placed in 5 ml of YEPD medium (1% yeast extract, 2% peptone, 2% glucose), the cells in the late logarithmic to early stationary growth phase harvested, washed twice with water and with glass beads by homogenizing on a whirl mix open-minded (MGG 145 (1976) 327-333).
  • the cells were extracted with 1 ml of 20 mmol / l Tris (HCl), pH 7.0 and the supernatant after centrifugation as a crude extract further processed.
  • To activate the proteases the crude extract titrated to pH 5.0 and at 24 hours Incubated at 25 ° C.
  • Protease B deficiency is present when the specific hydrolytic activity of cell lysates towards Azocoll to less than 5% compared to a wild type strain is reduced.
  • Carboxypeptidase Y deficiency is present when. the specific hydrolytic activity towards benzoyl-L-tyrosine-4-nitroanilide to less than 5% compared to a wild type strain is degraded.
  • 0.5 ml test solution (0.25 mg / ml L-amino acid oxidase, 0.4 mg / ml horseradish peroxidase and 0.5 mmol / l MnCl 2 ), 0.4 ml 27.5 mmol / l Cbz-Gly- Leu solution (dissolved in 0.2 mol / 1 phosphate buffer, pH 7.0), 0.05 ml o-dianisidine dihydrochloride (2 mg / ml, dissolved in H 2 O), 0.05 ml 22 mmol / l phenylmethylsulfonyl fluoride and 0 , 1 ml of dialysed cell lysate (dialysis: 0.1 M imidazole chloride, pH 5.3; 24 hours; 25 ° C.) and the change in extinction at 405 nm was determined.
  • Carboxypeptidase Y deficiency is when the specific hydrolytic activity towards Cbz-Gly-Leu to less than 5% compared to a wild type strain is reduced.
  • Saccharomyces strain ABYSMAL81 (Example 1) was transformed with the plasmid YEp / 5C6b3 (Nature 275 (1978) 104-109).
  • the vector YRp / GLUPI, DSM 4173P was digested with the restriction endonucleases SspI and HindIII, the approximately 3.0 kBp long SspI / HindIII fragment was isolated and into the isolated PvuII / -SpHI vector fragment from YEp 24 (Gene 8 (1979), 17-24; Cold Spring Harbor, Symp. Quant. Biol. 43 (1979) 77-90; Gene 29 (1984) 113-124; Nature 286 (1980) 860-865) - after replenishment the overhanging 5 'end of the HindIII and degradation of the overhanging 3' end of the SphI restriction site with Klenow polymerase - ligated.
  • the ⁇ -glucosidase PI expression cassette is integrated in the resulting plasmid YEp / S4 in the same orientation as the ⁇ -lactamase gene.
  • An approximately 3.1 kbp long BamHI fragment containing the MAL2-8 C p gene was then ligated into the BamHI restriction site of YEp / S4.
  • the plasmid pRM2, DSM 4314P was digested with the restriction endonuclease SalI, the overhanging 5 'ends were filled in with Klenow polymerase, provided with BamHI linkers (d (CGGGATCCCG)), cleaved with BamHI and the 3.1 kBp long MAL2 BamHI fragment containing -8 C p gene isolated.
  • the resulting vector construction was designated YEp / 5C6b3.
  • the transformed strain was in YEP medium (1% Yeast extract, 2% peptone) with 4% maltose and up to the late logarithmic or stationary phase bred.
  • the biomass was then harvested and washed with 10 mmol / l phosphate buffer, pH 6.8.
  • the Cells from 5 ml YEP medium (approx. 0.1 to 0.2 g yeast, Wet weight) were obtained by homogenizing with a Whirlmix digested (MGG 145 (1976) 327-333).
  • the specific ⁇ -glucosidase activity was determined using the hydrolysis of p-nitrophenyl- ⁇ -D-glucopyranoside (MGG 151 (1977) 95-103) and the protein determination according to Zamenhof (Methods Enzymol. 3 (1957) 702).
  • Table I compares the enzymatic stability of the baker's yeast ⁇ -glucosidase (obtained from Deutsche Hefewerke Struktur, DHW) with the stability of recombinantly expressed ⁇ -glucosidase in protease-deficient ⁇ -glucosidase transformants.
  • the specific ⁇ -glucosidase activity reaches a maximum in the late logarithmic to early stationary growth phase.
  • the specific ⁇ -glucosidase activity drops markedly (Table 1).
  • the ⁇ -glucosidase is stably accumulated in transformed protease-deficient malO strains, which considerably simplifies the fermentation and processing of the biomass.
  • Fermentation media baker's yeast: 1% yeast extract, 2% Peptone, 2% maltose.
  • Heterologous expression of a fusion protein consisting of from the N-terminal part of the ⁇ -glucosidase and HIV1 antigens, in protease deficient yeast strains.
  • the 1.4 KBp BglII fragment which codes for approximately 80% of the ⁇ -glucosidase PI against a approx. 300 bp long DNA fragment, which is used for part of the gp41 membrane protein of the HIV1 retrovirus coded, exchanged.
  • an approximately 300 bp long RsaI / HindIII fragment (Sequence see sequence of WMJ-1 from item 1638 to Pos. 1943 from Fig. 1 by Cell 45 (1986) 637-648) in the E.
  • coli vector digested with HincII and HindIII pUC18 (M13mp18 and pUC19, sequence in Gene 33 (1985) 103-119) subcloned (construction: pUC18HRH.300).
  • Out pUC18HRH.300 became the approximately 320 bp BamH1 / HindIII fragment isolated and into the approx. 5.2 KBp long pUR278 BamH1 / HindIII vector fragment ligated (sequence in EMBO 2 (1983) 1791-1794) (Construction: pUR278HRH.300).
  • Plasmid pUR278HRH.300 was digested with HindIII overhanging 5 'ends filled with "Klenow polymerase” and provided with BamHI linkers (d (GGGATCCC)). Then it was cleaved with BamHI, the approx. 300 bp long BamHI fragment isolated and into the approx. 11 KBp long YEp / 5C6b3 BglII vector fragment ligated.
  • gp41 membrane polypeptide DNA 'a fusion protein consisting of the N-terminus of ⁇ -glucosidase (50 amino acids), 4 construction-related Amino acids at the fusion site, 101 amino acids of the gp41 membrane protein and 3 design-related Amino acids at the C-terminus with a molecular weight of approx. 18500 D.
  • the desired construction was over the expressed fusion protein in the protease deficient Yeast expression strain ABYSMAL81 after transformation and cultivation (see below) followed by SDS gel electrophoresis and Western blot based on immunoreactivity isolated with human HIV1 sera.
  • the fusion protein was expressed to about 5% of the total protein and was as the dominant band in SDS polyacrylamide gels Coomassie staining visible.
  • the transformants were grown on selective medium (0.67% YNB, 0.5% CAA, 30 mg / l adenine) with 2% glucose and 2% maltose. After an induction phase of 10 to 20 hours (after glucose consumption), the cells were harvested.

Abstract

In the prodn. of proteins or protein-contg. gene products by transformation of eucaryotic cells with recombinant DNA contg. the appropriate gene, cultivation of the transformants and isolation of the expressed gene product, the new feature is that cells of a yeast strain deficient in protease A and B are used as host. The host may also be deficient in protease D and carboxypeptidase Y and/or S, e.g. the strain ABYSD-11 (DSM 4322).

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Proteinen oder proteinhaltigen Genprodukten auf gentechnologischem Wege durch Transformation von eukaryontischen Wirtszellen mit einem das Gen für das gewünschte Protein enthaltenden rekombinanten DNA-Molekül, Kultivierung der Zellen und Isolierung des Genprodukts nach an sich bekannten Methoden.The invention relates to a method for manufacturing of proteins or protein products containing genes genetic engineering through transformation of eukaryotic Host cells with the gene for the desired one Protein-containing recombinant DNA molecule, Culturing the cells and isolating the gene product according to known methods.

Die Bestimmung klinisch-chemischer Parameter erfolgt heutzutage in großem Umfang mit enzymatischen Methoden. Die für die Herstellung der dafür benötigten Reagenzien verwendeten Enzyme werden aus verschiedenen Quellen pflanzlichen oder tierischen Ursprungs oder aus Mikroorganismen gewonnen.Clinical-chemical parameters are determined nowadays on a large scale with enzymatic methods. The reagents needed to make them Enzymes are used from various sources of vegetable or animal origin or from microorganisms won.

Zur Herstellung von Enzymen und anderen Proteinen gewinnen Mikroorganismen hierbei zunehmend an Bedeutung, da nur diese in praktisch beliebiger Menge durch Fermentation verfügbar gemacht werden können und somit die Isolierung größerer Proteinmengen ermöglichen. Besondere Bedeutung besitzen hierbei bekanntermaßen Hefen, wie z.B. Saccharomyces cerevisiae, da in diesen Organismen die homologe Expression von Proteinen ebenso möglich ist wie die heterologe Expression eukaryontischer, z.B. therapeutisch wichtiger Proteine. In E. coli dagegen, dem am häufigsten benutzten Wirtsorganismus, unterscheiden sich viele heterolog exprimierte Proteine von ihren in einem homologen System exprimierten natürlichen Gegenstücken und sind biologisch nicht aktiv, oder fallen als unlösliche inaktive Proteinaggregate, "refractile bodies" genannt, an. Viele eukaryontische Proteine, die in E.coli inaktiv exprimiert werden, werden in S. cerevisiae löslich und aktiv gebildet (Biotechnology and Genetic Engineering Reviews 3 (1985) 377-416). Dies mag unter anderem dadurch bedingt sein, daß Hefen über die typischen eukaryontischen posttranslationalen Modifizierungssysteme, wie z.B. "Proteinfaltung", Proteinreifung, Glycosylierung und Acetylierung verfügen, zur Sekretion fähig sind und die Ausbildung von Disulfidbrücken in Polypeptiden und Proteinen ermöglichen. Außerdem sind Hefen nicht pathogen und im Gegensatz zu E.coli frei von Toxinen und pyrogenen Zellwandbestandteilen.Microorganisms are becoming increasingly important for the production of enzymes and other proteins, since only these can be made available in virtually any amount by fermentation and thus enable larger amounts of protein to be isolated. As is known, yeasts, such as Saccharomyces cerevisiae, are of particular importance, since in these organisms the homologous expression of proteins is just as possible as the heterologous expression of eukaryotic, for example therapeutically important proteins. In contrast, in E. coli, the most frequently used host organism, many heterologously expressed proteins differ from their natural counterparts expressed in a homologous system and are not biologically active, or are obtained as insoluble inactive protein aggregates, called "refractile bodies". Many eukaryotic proteins that are inactively expressed in E. coli are soluble and actively formed in S. cerevisiae (Biotechnology and Genetic Engineering Reviews 3 (1985) 377-416). Among other things, this may be due to the fact that yeasts have the typical eukaryotic post-translational modification systems, such as "protein folding", protein maturation, glycosylation and acetylation, are capable of secretion and enable the formation of disulfide bridges in polypeptides and proteins. In addition, yeasts are not pathogenic and, in contrast to E. coli, they are free of toxins and pyrogenic cell wall components.

Die Hefe ist einer der ältesten Kulturorganismen des Menschen. Sie wurde und wird noch immer hauptsächlich zur alkoholischen Gärung (Wein, Bier usw.) und als "Backhilfe" bei der Zubereitung von Teigwaren verwendet. Daneben hat die Hefe industrielle Bedeutung als kostengünstige Rohstoffquelle zur Isolierung von niedermolekularen Substanzen wie z.B. NAD, ATP und Glutathion, und hochmolekularen Substanzen wie z.B. DNA, RNA und vor allem Enzymen, wie z.B. Alkohol-Dehydrogenase, Aldehyd-Dehydrogenase, Acetyl-CoA-Synthetase, α-Glucosidase, Glycerinaldehyd-3-phosphatdehydrogenase, Glucose-6-phosphat-dehydrogenase und Hexokinase, erlangt. Hefe ist leicht zu kultivieren und aufgrund von langjährigen Erfahrungen im industriellen Maßstab einfach zu fermentieren. Die Hefe, ein zu den niederen Eukaryonten zählender Einzeller, besitzt die typischen Merkmale eines Eukaryonten, ist aber trotzdem genetischen Untersuchungen und genetischen Manipulationen leicht zugänglich, wodurch sie besonders als Wirtsorganismus im Hinblick auf rekombinante DNA-Technologie geeignet ist, d.h. zur homologen und heterologen Expression von biologisch aktiven Polypeptiden und Proteinen.Yeast is one of the oldest cultivated organisms in the world People. It was and still is mainly for alcoholic fermentation (wine, beer, etc.) and as "Baking aid" used in the preparation of pasta. In addition, yeast has industrial importance as Inexpensive raw material source for the isolation of low molecular weight Substances such as NAD, ATP and glutathione, and high molecular substances such as DNA, RNA and especially enzymes, such as Alcohol dehydrogenase, Aldehyde dehydrogenase, acetyl-CoA synthetase, α-glucosidase, Glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase and hexokinase. yeast is easy to cultivate and due to long standing Experience easily fermented on an industrial scale. The yeast, one of the lower eukaryotes single cell counting, has the typical characteristics of a eukaryote, but is still genetic testing and genetic manipulations easily accessible, which makes them particularly as a host organism in the In terms of recombinant DNA technology, i.e. for homologous and heterologous expression of biologically active polypeptides and proteins.

Bei der Expression von Proteinen in Hefe ist in vielen Fällen jedoch die Menge an gebildetem Protein nicht befriedigend. Häufig findet man, daß nach Erreichen der frühstationären Wachstumsphase die spezifische Aktivität eines gewünschten Proteins im Verlauf der stationären Wachstumsphase wieder abnimmt, obwohl die gebildete Biomasse der Mikroorganismen noch ansteigt. Dies ist u.a. auf einen proteolytischen Angriff wirtsspezifischer Proteasen auf die gebildeten Proteine zurückzuführen.When expressing proteins in yeast is in many However, the amount of protein formed does not fall satisfying. It is often found that after reaching the early inpatient growth phase the specific activity of a desired protein in the course of the stationary Growth phase decreases again, although the educated Biomass of the microorganisms is still increasing. This is et al more host-specific to a proteolytic attack Proteases attributed to the proteins formed.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung von Proteinen auf gentechnologischem Wege bereitzustellen, mit dem auch in der stationären Phase des Wachstums Proteine gebildet und stabil akkumuliert werden können und damit die Ausbeute des Fermentationsverfahrens gesteigert werden kann.The object of the present invention was therefore to Process for the production of proteins on genetic engineering Provide ways with which also in the stationary phase of growth proteins formed and can be stably accumulated and thus the yield of the fermentation process can be increased.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Proteinen oder proteinhaltigen Genprodukten durch Transformation von eukaryontischen Wirtszellen mit einem das Gen für das gewünschte Protein enthaltenden rekombinanten DNA-Molekül, Kultivierung der Zellen und Isolierung des Genproduktes nach der Expression, welches dadurch gekennzeichnet ist, daß man als Wirtszellen einen Hefestamm verwendet, der in der stationären Züchtungsphase defizient an den Proteasen A und B ist.This object is achieved by a Process for the production of proteins or proteinaceous Gene products through transformation of eukaryotic Host cells with the gene for the desired one Protein-containing recombinant DNA molecule, cultivation the cells and isolation of the gene product the expression, which is characterized in that one uses a yeast strain as host cells, which is in the stationary breeding phase is deficient in proteases A and B.

Bevorzugt ist der Hefestamm zusätzlich defizient an der Protease D.The yeast strain is preferably additionally deficient in the Protease D.

In einer weiteren bevorzugten Ausführungsform wird ein Hefestamm verwendet, der zusätzlich zu den Defizienzen an den Proteasen A, B und gegebenenfalls D, defizient an zumindest einer der Carboxypeptidasen Y und S ist. Die Bezeichnung der Proteasen und Carboxypeptidasen in dieser Anmeldung entspricht ihrer Bezeichnung in Yeast 1 (1985) 139-154. In a further preferred embodiment, a yeast strain is used which, in addition to the deficiencies in proteases A, B and optionally D, is deficient in at least one of the carboxypeptidases Y and S. The name of the proteases and carboxypeptidases in this application corresponds to their name in Yeast 1 (1985) 139-154.

Durch die Verwendung dieser Protease-defizienten Hefestämme im erfindungsgemäßen Verfahren wird es ermöglicht, Proteine oder proteinhaltige Genprodukte in Hefe in erhöhten Ausbeuten herzustellen, ohne daß auch bei extrem langen Fermentationszeiten oder bei der anschließenden Isolierung nach an sich bekannten Methoden ein proteolytischer Angriff, und damit eine Inaktivierung der Proteine, stattfindet.By using these protease-deficient yeast strains in the method according to the invention it is possible to Proteins or protein products in yeast to produce in increased yields without extremely long fermentation times or during the subsequent one Isolation according to known methods proteolytic attack, and thus inactivation of proteins.

In einer besonders bevorzugten Ausführungsform der Erfindung verwendet man als Wirtszellen den Hefestamm ABYSD-11, DSM 4322. Dieser Wirtsstamm ist bezüglich der Proteasen A, B, D und der Carboxypeptidasen Y und S defizient. Zusätzlich weist er Auxotrophien in der Adenin-, Histidin- und Lysin-Biosynthese auf. Auxotrophie bedeutet die Unfähigkeit von Mikroorganismen (meist Mutanten von Bakterien oder Hefen), bestimmte Wachstumsfaktoren, wie z.B. Aminosäuren, aus einfachen Vorläufern synthetisieren zu können. Im Gegensatz zu den entsprechenden Wildtypstämmen wachsen auxotrophe Mutanten dabei nicht auf sogenannten Minimalmedien. Stattdessen benötigen sie ein Vollmedium, das die für das Wachstum notwendigen Komponenten, die sie nicht selbst synthetisieren können, enthält. Mikroorganismen können für einen, aber auch mehrere Wachstumsfaktoren auxotroph sein (E.-L. Winnacker, Gene und Klone, 1985, Verlag Chemie, Appendix C).In a particularly preferred embodiment of the invention the yeast strain is used as host cells ABYSD-11, DSM 4322. This host strain is related to the Proteases A, B, D and the carboxypeptidases Y and S deficient. In addition, he shows auxotrophies in the Adenine, histidine and lysine biosynthesis. auxotrophy means the inability of microorganisms (mostly mutants of bacteria or yeast), certain Growth factors such as Amino acids, from simple To be able to synthesize precursors. In contrast to the corresponding wild type strains grow auxotrophs Mutants are not on so-called minimal media. Instead, they need a full medium that is suitable for the growth necessary components that they don't can synthesize itself contains. microorganisms can for one, but also several growth factors be auxotrophic (E.-L. Winnacker, genes and clones, 1985, Verlag Chemie, Appendix C).

In einer weiteren bevorzugten Ausgestaltung der Erfindung kreuzt man den Protease-defizienten Hefestamm mit einem anderen, auxotrophen oder/und Chemikalien-sensitiven Hefestamm, isoliert nach Sporulation durch Selektionierung über die Auxotrophie oder/und Sensitivität aus den entstandenen Hybridstämmen einen Hefestamm, der mindestens defizient an den Protease A und B ist und mindestens eine der Auxotrophien oder/und Chemikaliensensitivitäten der Elternstämme aufweist und verwendet diesen Hybridstamm als Wirtszellen.In a further preferred embodiment of the invention crosses the protease-deficient yeast strain another, auxotrophic and / or chemical sensitive Yeast strain, isolated after sporulation by selection on auxotrophy and / or sensitivity from the resulting hybrid strains a yeast strain that at least is deficient in proteases A and B and at least one of the auxotrophies and / or chemical sensitivities of the parent strains and uses this hybrid strain as host cells.

Unter Chemikaliensensitivität versteht man die Unfähigkeit eines Microorganismus, in einem Medium zu wachsen, das bestimmte Chemikalien enthält, z.B. Methotrexat, Chloramphenicol und das Gentamycinderivat G418. Erst nach Transformation des Microorganismus mit einer rekombinanten DNA, die ein Gen enthält, das dem Microorganismus Resistenz gegen diese Chemikalien verleiht (Dehydrofolatreductase, DHFR; Chloramphenicol-Acetyltransferase, CAT; Transposon Tn601 kodierte Aminoglykosid-Phosphotransferase etc.) kann der Microorganismus in dem Medium wachsen. Die Kreuzung und Sporulation kann beispielsweise analog Sherman et al., Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1984, durchgeführt werden. In einer besonders bevorzugten Ausführungsform der Erfindung kreuzt man hierzu den Hefestamm ABYSD-11, DSM 4322, (a pra1, prb1, prc1, prd1, cps1, ade lys his7), mit entweder dem Hefestamm TCY2824-1A (α mal1S-Δ ura3-52 his4), DSM 4317, oder DBY 746, DSM 4316, (α his3-Δ1 leu2-3 leu2-112 ura3-52 trp1-289a), welche ein defektes Maltasestrukturgen und Auxotrophien im Uracil- und Histidin-, bzw. Auxotrophien im Histidin-, Leucin-, Uracil- und Tryptophan-Biosyntheseweg aufweisen. Bevorzugt isoliert man sodann Hybridstämme, die defizient an den Proteasen A, B und gegebenenfalls D, und an den Carboxypeptidasen Y und S sind und zusätzlich mindestens eine bzw. mehrere Auxotrophien wie z.B. die Uracil-, Lysin- und Maltaseverwertungsauxotrophien, oder die Leucin- und Tryptophan-, oder schließlich die Leucin-, Uracil- und Histidin-Auxotrophien der Elternstämme aufweisen. Chemical sensitivity means the inability of a microorganism to grow in a medium that contains certain chemicals, e.g. methotrexate, chloramphenicol and the gentamycin derivative G418. The microorganism can only grow in the medium after transformation of the microorganism with a recombinant DNA which contains a gene which gives the microorganism resistance to these chemicals (dehydrofolate reductase, DHFR; chloramphenicol acetyltransferase, CAT; transposon Tn601-encoded aminoglycoside phosphotransferase etc.) , The crossing and sporulation can be carried out, for example, analogously to Sherman et al., Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1984. In a particularly preferred embodiment of the invention, the yeast strain ABYSD-11, DSM 4322, ( a pra1 , prb1 , prc1 , prd1 , cps1 , ade lys his7 ) is crossed with either the yeast strain TCY2824-1A ( α mal1S-Δ ura3- 52 his4 ), DSM 4317, or DBY 746, DSM 4316, ( α his3-Δ1 leu2-3 leu2-112 ura3-52 trp1-289a ), which contains a defective maltase structural gene and auxotrophies in the uracil and histidine or auxotrophies in the Show histidine, leucine, uracil and tryptophan biosynthetic pathway. Hybrid strains are then preferably isolated which are deficient in proteases A, B and, if appropriate, D, and in carboxypeptidases Y and S, and additionally at least one or more auxotrophies, such as, for example, the uracil, lysine and maltase utilization auxotrophs, or the leucine and Tryptophan, or finally the leucine, uracil and histidine auxotrophies of the parent strains.

In einer weiteren bevorzugten Ausführungsform der Erfindung enthält das rekombinante DNA-Molekül daher zusätzlich zu dem Gen für das gewünschte Protein oder proteinhaltige Genprodukt ein oder mehrere Gene, die die Auxotrophien oder/und Chemikaliensensitivitäten des Wirtsstammes komplementieren.In a further preferred embodiment of the invention therefore contains the recombinant DNA molecule in addition to the gene for the desired protein or protein-containing gene product one or more genes that the auxotrophies and / or chemical sensitivities of the Complement the host strain.

Durch die bevorzugte Ausführungsform der Erfindung wird eine einfache Unterscheidung von transformierten und nicht transformierten Wirtszellen ermöglicht. Die Anwesenheit und Expression von Genen, die eine oder mehrere der Auxotrophien oder/und Chemikaliensensitivitäten des Wirtsstammes komplementieren, ermöglicht nämlich transformierten Zellen, auch auf Medien zu wachsen, die beispielsweise eine Aminosäure nicht enthalten, die der Wirtsstamm selbst nicht synthetisieren kann, deren Gen jedoch auf dem rekombinanten DNA-Molekül vorhanden ist. Nicht-transformierte Wirtsstämme, welche also das rekombinante DNA-Molekül und das darauf enthaltene Auxotrophie-komplementierende Gen nicht aufweisen, können dagegen in einem derartigen Medium nicht wachsen. Hierdurch kann auf einfache Weise eine Selektionierung auf transformierte Wirtszellen vorgenommen werden, wodurch auch die Gefahr eines Verlustes der rekombinanten DNA, welche das Gen für das gewünschte Protein enthält, während der Fermentation vermieden wird, da kein Wachstumsvorteil von nichttransformierten Zellen besteht.The preferred embodiment of the invention a simple distinction between transformed and not transformed host cells. The Presence and expression of genes that one or several of the auxotrophies and / or chemical sensitivities complement of the host strain, enables namely transformed cells, also towards media grow, for example, an amino acid contain that the host strain itself does not synthesize can, however, the gene on the recombinant DNA molecule is present. Non-transformed host strains, which is the recombinant DNA molecule and the auxotrophy-complementing gene contained on it can not have, however, in such a Medium does not grow. This can be done in a simple manner selection for transformed host cells be made, which also creates the risk of Loss of the recombinant DNA which is the gene for the contains desired protein during fermentation is avoided since no growth advantage of non-transformed Cells.

Alternativ ist es auch möglich, die Auxotrophie oder/und Chemikaliensensitivität eines Wirtsstammes durch Einbringen eines weiteren zusätzlichen rekombinanten DNA-Moleküls, das ein oder mehrere Gene enthält, die die Auxotrophien bzw. Chemikaliensensitivitäten der Wirtszellen komplementieren, zu überwinden. Dabei kann jedoch die einfache Möglichkeit der Selektionierung auf das Gen für das gewünschte Produkt enthaltende Wirtszellen nicht wahrgenommen werden.Alternatively, it is also possible to use auxotrophy or / and Chemical sensitivity of a host strain by introduction another additional recombinant DNA molecule that contains one or more genes that the auxotrophies or chemical sensitivities of the Complement host cells to overcome. It can however, the easy way of selection host cells containing the gene for the desired product not be noticed.

Für das rekombinante DNA-Molekül kommen alle rekombinanten DNA-Moleküle in Frage, mit denen Hefezellen transformiert werden können, und die zur Expression eines Fremdgens fähig sind. Hierbei kommt nicht nur die extrachromosomale Transkription beispielsweise eines Plasmids in Frage, sondern es ist ebenfalls möglich, das Gen für das gewünschte Protein über einen Integrationsvektor oder ein integrierendes DNA-Fragment, die jeweils eine vollständige Expressionskassette (Promotor, Terminator, Regulator, Transkriptionsverstärker u.ä.) enthalten, in das Hefegenom einzuschleusen und zusammen mit den hefeeigenen Proteinen zu exprimieren. Voraussetzung hierfür ist das Vorhandensein von Homologien auf dem rekombinanten DNA-Molekül und chromosomalen Hefesequenzen. Über solche homologe Regionen kann ein integrierendes DNA-Fragment nach an sich bekannten Methoden in das Hefechromosom eingeschleust werden.All recombinant come for the recombinant DNA molecule DNA molecules in question with which yeast cells can be transformed and used for expression are capable of a foreign gene. Here comes not only that extrachromosomal transcription, for example one Plasmids in question but it is also possible the gene for the desired protein via an integration vector or an integrating DNA fragment that one complete expression cassette (promoter, Terminator, regulator, transcription enhancer, etc.) included to infiltrate the yeast genome and together to express with the yeast's own proteins. requirement for this is the presence of homologies on the recombinant DNA molecule and chromosomal Yeast sequences. Such a homologous region can be used integrating DNA fragment according to known Methods are introduced into the yeast chromosome.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist daher das rekombinante DNA-Molekül entweder ein Plasmid oder aber ein Integrationsvektor oder ein integrierendes DNA-Fragment. Als Plasmide sind hierbei wiederum besonders bevorzugt Hefeplasmide, die in hoher Kopienzahl in der Zelle vorkommen. Solche Hefeplasmide sind beispielsweise hybride Hefe/E. coli-Vektoren ("Shuttle-Vektoren"), die als YRp, YEp, YIp und YCp bezeichnet werden. In hoher Kopienzahl kommen in der Zelle wiederum nur die YEp- und YRp-Plasmide vor. Diese sind nämlich aufgrund des Vorhandenseins von Sequenzen, die eine eigenständige Replikation der Plasmide ermöglichen, unabhängig von der Replikation des Hefechromosoms und liegen normalerweise in Stückzahlen von 5 bis 40 Kopien pro Zelle vor. Die YIp-Plasmide können nur durch Integration in das Hefegenom zur Expression gebracht werden. Sie sind daher beispielhaft. für Integrationsvektoren. YIp-Plasmide weisen eine zehnmal niedrigere Transformationsrate, dafür aber eine bedeutend größere Stabilität im Vergleich zu YRp- und YEp-Plasmiden auf. YRp- und YEp-Plasmide können ohne Selektionsdruck bei der Zellvermehrung verloren werden (Nature 305 (1983) 391-397). Ein solcher Selektionsdruck besteht aber bei der bevorzugten Ausführungsform der Erfindung, bei der die Fermentation von auxotrophen oder Chemikalien-sensitiven Wirtsstämmen in Minimalmedien, oder Medien, die eine bestimmte Chemikalie enthalten, für die der Wirtsstamm sensitiv ist, durchgeführt wird und die rekombinante DNA zusätzlich ein oder mehrere Gene aufweist, die'die Auxotrophie oder Sensitivität komplementieren.In a further preferred embodiment of the invention, the recombinant DNA molecule is therefore either a plasmid or else an integration vector or an integrating DNA fragment. Again, yeast plasmids are particularly preferred as plasmids, which occur in the cell in high number of copies. Such yeast plasmids are, for example, hybrid yeast / E. coli vectors ("shuttle vectors"), which are referred to as YRp, YEp, YIp and YCp. In turn, only the YEp and YRp plasmids occur in high number of copies in the cell. This is because, due to the presence of sequences which enable the plasmids to replicate independently, they are independent of the replication of the yeast chromosome and are usually present in quantities of 5 to 40 copies per cell. The YIp plasmids can only be expressed by integration into the yeast genome. They are therefore exemplary. for integration vectors. YIp plasmids have a ten times lower transformation rate, but a significantly greater stability compared to YRp and YEp plasmids. YRp and YEp plasmids can be lost in cell growth without selection pressure (Nature 305 (1983) 391-397). Such a selection pressure exists, however, in the preferred embodiment of the invention, in which the fermentation of auxotrophic or chemical-sensitive host strains is carried out in minimal media, or media which contain a certain chemical for which the host strain is sensitive, and additionally the recombinant DNA or has multiple genes that complement auxotrophy or sensitivity.

Die vorliegende Erfindung ermöglicht die Expression von homologen oder heterologen Proteinen oder proteinhaltigen Genprodukten in hoher Ausbeute und proteolytisch nicht angegriffener Form, wobei auch die Selektionierung auf transformierte Zellen, und dadurch ebenfalls eine Erhöhung der Ausbeute des gewünschten Genproduktes, in einfacher Weise durchgeführt werden kann. Auch beim Aufschließen der Zellmasse und der weiteren Prozedur zur Gewinnung des Genprodukts nach an sich bekannten Methoden erfolgt aufgrund der Proteasedefizienz der Wirtszellen kein proteolytischer Angriff auf das gebildete Produkt.The present invention enables expression of homologous or heterologous proteins or protein-containing Gene products in high yield and proteolytic not attacked form, including the selection on transformed cells, and thereby also one Increasing the yield of the desired gene product, in can be done easily. Also at Unlocking the cell mass and the further procedure to obtain the gene product according to known Methods occur due to the protease deficiency of the Host cells no proteolytic attack on the formed Product.

In einer bevorzugten Ausführungsform der Erfindung wird das Protein alpha-Glucosidase PI hergestellt (siehe auch Beispiel 4). In a preferred embodiment of the invention the protein alpha-glucosidase PI is produced (see also example 4).

Die folgenden Beispiele erläutern die Erfindung weiter.The following examples further illustrate the invention.

Beispiel 1example 1

Zur Herstellung der Saccharomycesstämme ABYSMAL81 und ABYSDMAL81 wurde der haploide Saccharomyces cerevisiae-Stamm ABYSD-11 (a pra1 prb1 prc1 prd1, cps1, ade lys his7), DSM 4322, der bzgl. der Proteasen A, B und D und der Carboxypeptidasen Y und S defizient ist, und zusätzlich eine Auxotrophie in der Adenin-, Histidin- und Lysin-Biosynthese besitzt, mit dem Saccharomyces carlsbergensis-Stamm, TCY2824-1A, (α mal1S-Δ ura3-52 his4), DSM 4317, gekreuzt, der durch ein defektes α-Glucosidase-Strukturgen und durch eine Auxotrophie in der Uracil- und Histidin-Biosynthese charakterisiert ist.For the production of the Saccharomyces strains ABYSMAL81 and ABYSDMAL81, the haploid Saccharomyces cerevisiae strain ABYSD-11 ( a pra1 prb1 prc1 prd1 , cps1 , ade lys his7 ), DSM 4322, the proteases A, B and D and the carboxypeptidases Y and S were used is deficient, and additionally has auxotrophy in adenine, histidine and lysine biosynthesis, with the Saccharomyces carlsbergensis strain, TCY2824-1A, ( α mal1S-Δ ura3-52 his4 ), DSM 4317, crossed by a defective α-glucosidase structural gene and is characterized by auxotrophy in uracil and histidine biosynthesis.

Anschließend wurde eine Sporulation durchgeführt und die entstandenen Hefe-Segreganten auf ihre Auxotrophien durch Ausplattieren auf verschiedenen Selektionsmedien und auf ihre Protease-Defizienzen durch Bestimmung der Protease-Aktivitäten in Zellysaten überprüft. Die Stämme ABYSDMAL81 (ura3-52 mal1S-Δ lys pra1 prb1 prc1 prd1 cps1) und ABYSMAL81 (ura3-52 mal1S-Δ lys pra1 prb1 prc1 cps1) wurden identifiziert durch:A sporulation was then carried out and the yeast segregants formed were checked for their auxotrophies by plating on various selection media and for their protease deficits by determining the protease activities in cell lysates. The strains ABYSDMAL81 ( ura3-52 times1S-Δ lys pra1 prb1 prc1 prd1 cps1 ) and ABYSMAL81 (ura3-52 times1S-Δ lys pra1 prb1 prc1 cps1 ) were identified by:

Nachweis der Protease-DefizienzenEvidence of protease deficits

Die Segreganten wurden in 5 ml YEPD-Medium (1% Hefeextrakt, 2% Pepton, 2% Glucose) angezogen, die Zellen in der spät-logarithmischen bis früh-stationären Wachstumsphase geerntet, zweimal mit Wasser gewaschen und mit Glasperlen durch Homogenisieren auf einem Whirlmix aufgeschlossen (MGG 145 (1976) 327-333). Die Zellen wurden mit 1 ml 20 mmol/l Tris (HCl), pH 7,0 extrahiert und der Überstand nach Zentrifugation als Rohextrakt weiterverarbeitet. Zur Aktivierung der Proteasen wurde der Rohextrakt auf pH 5,0 titriert und 24 Stunden bei 25°C inkubiert.The segregants were placed in 5 ml of YEPD medium (1% yeast extract, 2% peptone, 2% glucose), the cells in the late logarithmic to early stationary growth phase harvested, washed twice with water and with glass beads by homogenizing on a whirl mix open-minded (MGG 145 (1976) 327-333). The cells were extracted with 1 ml of 20 mmol / l Tris (HCl), pH 7.0 and the supernatant after centrifugation as a crude extract further processed. To activate the proteases the crude extract titrated to pH 5.0 and at 24 hours Incubated at 25 ° C.

Nachweis der Protease A-Defizienz (pra1)Detection of protease A deficiency (pra1)

Keine Hydrolyse durch Zellextrakte von 1,2% säuredenaturiertem Hämoglobin, pH 3,0 (Eur. J. Biochem. 42 (1974) 621-626).No hydrolysis by cell extracts of 1.2% acid-denatured Hemoglobin, pH 3.0 (Eur. J. Biochem. 42 (1974) 621-626).

0,5 ml 0,1 mol/l Lactat-Puffer, pH 3,0 mit 1,2% säuredenaturiertem Hämoglobin wurden mit 0,1 ml Zellysat bei 25°C inkubiert. Nach 30 Minuten wurde die Reaktion mit 0,5 ml 10%iger Trichloressigsäure gestoppt und nach Zentrifugation die Trichloressigsäure löslichen Produkte entweder durch Absorptionsmessung bei 280 nm oder durch eine modifizierte Folin-Bestimmung nach McDonald und Chen (Anal. Biochem. 10 (1965) 175-177) bestimmt.0.5 ml 0.1 mol / l lactate buffer, pH 3.0 with 1.2% acid-denatured Hemoglobin was added with 0.1 ml of cell lysate Incubated at 25 ° C. After 30 minutes the reaction started with 0.5 ml of 10% trichloroacetic acid stopped and after Centrifugation of the trichloroacetic acid soluble products either by absorption measurement at 280 nm or by a modified Folin determination according to McDonald and Chen (Anal. Biochem. 10 (1965) 175-177).

Zur Berechnung der spezifischen Aktivität wurde eine Proteinbestimmung nach Zamenhof durchgeführt (Methods Enzymol. 3 (1957) 702).To calculate the specific activity, a Protein determination according to Zamenhof carried out (Methods Enzymol. 3 (1957) 702).

Eine Protease A-Defizienz liegt vor, wenn die spezifische hydrolytische Aktivität von Zellysaten gegenüber säuredenaturiertem Hämoglobin auf kleiner 5% im Vergleich mit einem Wildtypstamm herabgesetzt ist. Protease A deficiency exists when the specific hydrolytic activity of cell lysates towards acid-denatured hemoglobin compared to less than 5% is degraded with a wild type strain.

Nachweis der Protease B-Defizienz (prb1)Detection of protease B deficiency (prb1)

Keine Hydrolyse durch Zellextrakte von 2,4% Azocoll bei pH 7 (Eur. J. Biochem. 42 (1974) 621-626).No hydrolysis by cell extracts of 2.4% Azocoll pH 7 (Eur. J. Biochem. 42 (1974) 621-626).

0,5 ml einer 2,4%igen Azocoll Suspension in 0,1 mol/l Phosphatpuffer, pH 7,0 wurden mit 0,1 ml Zellysat unter Schütteln bei 25°C inkubiert. Zur Aktivierung der Protease B wurde der Rohextrakt vor der Aktivitätsbestimmung mit Natriumdodecylsulfat (Endkonzentration 0,25%) versetzt.0.5 ml of a 2.4% Azocoll suspension in 0.1 mol / l Phosphate buffer, pH 7.0 was added with 0.1 ml of cell lysate Shake incubated at 25 ° C. To activate the Protease B became the crude extract before the activity determination with sodium dodecyl sulfate (final concentration 0.25%) added.

Nach 30 Minuten wurde die Reaktion durch Zugabe von 0,5 ml 10%iger Trichloressigsäure gestoppt und nach Zentrifugation die Extinktion im Überstand bei 550 nm bestimmt.After 30 minutes the reaction was stopped by adding 0.5 ml of 10% trichloroacetic acid stopped and after Centrifugation of the absorbance in the supernatant at 550 nm certainly.

Eine Protease B-Defizienz liegt vor, wenn die spezifische hydrolytische Aktivität von Zellysaten gegenüber Azocoll auf kleiner 5% im Vergleich mit einem Wildtypstamm herabgesetzt ist.Protease B deficiency is present when the specific hydrolytic activity of cell lysates towards Azocoll to less than 5% compared to a wild type strain is reduced.

Nachweis der Protease D-Defizienz (prd1)Detection of protease D deficiency (prd1)

Keine Hydrolyse durch Zellextrakte von 0,5 mmol/l Bz-Pro-Phe-Arg-NA (Benzoyl-L-prolyl-L-phenylalanyl-L-arginyl-p-nitroanilid) in 50 mmol/l Tris-Maleat-Puffer, pH 7,0 in Gegenwart von Aminopeptidase M (J. Biol. Chem. 260 (1985) 4585-4590)

Figure 00110001
No hydrolysis by cell extracts of 0.5 mmol / l Bz-Pro-Phe-Arg-NA (benzoyl-L-prolyl-L-phenylalanyl-L-arginyl-p-nitroanilide) in 50 mmol / l Tris-maleate buffer, pH 7.0 in the presence of aminopeptidase M (J. Biol. Chem. 260 (1985) 4585-4590)
Figure 00110001

0,03 ml 0,5 mol/l Tris-Maleat Puffer, pH 7,0 wurden mit 0,015 ml 10 mmol/l Bz-Pro-Phe-Arg-NA (gelöst in Dimethylsulfoxid), 10 µl (40 µg, 240 mU) Aminopeptidase M, 0,145 ml Wasser und 0,1 ml Rohextrakt gemischt und die Extinktionsänderung bei 405 nm gegen einen Reagenzienleerwert bestimmt.0.03 ml of 0.5 mol / l Tris-maleate buffer, pH 7.0 were added 0.015 ml 10 mmol / l Bz-Pro-Phe-Arg-NA (dissolved in dimethyl sulfoxide), 10 µl (40 µg, 240 mU) aminopeptidase M, 0.145 ml of water and 0.1 ml of crude extract mixed and the Change in extinction at 405 nm against a reagent blank certainly.

Eine Protease D-Defizienz liegt vor, wenn die spezifische hydrolytische Aktivität gegenüber Bz-Pro-Phe-Arg-NA auf kleiner 10% im Vergleich mit einem Wildtypstamm herabgesetzt ist.A protease D deficiency exists when the specific hydrolytic activity against Bz-Pro-Phe-Arg-NA to less than 10% compared to a wild type strain is reduced.

Nachweis der Carboxypeptidase Y-Defizienz (prc1)Detection of carboxypeptidase Y deficiency (prc1)

Keine Hydrolyse durch Zellextrakte von 0,5 mmol/l Benzoyl-L-Tyrosin-4-nitroanilid, pH 7 (Agr. Biol. Chem. 35 (1971) 658-666).No hydrolysis by cell extracts of 0.5 mmol / l Benzoyl-L-tyrosine-4-nitroanilide, pH 7 (Agr. Biol. Chem. 35 (1971) 658-666).

0,1 ml mit Deoxycholat aktivierter (Endkonzentration 0,5%) Rohextrakt wurden mit 1 ml 0,1 mol/l Phosphatpuffer pH 7,0 und 0,2 ml 3 mmol/l Benzoyl-L-Tyrosin-4-nitroanilid (gelöst in Dimethylformamid) bei 25°C inkubiert. Nach 10 Minuten wurde die Reaktion mit 1 ml 1 mmol/l Quecksilberchlorid gestoppt und das freigesetzte p-Nitroanilin bei 410 nm bestimmt.0.1 ml activated with deoxycholate (final concentration 0.5%) crude extract were with 1 ml 0.1 mol / l phosphate buffer pH 7.0 and 0.2 ml of 3 mmol / l benzoyl-L-tyrosine-4-nitroanilide (dissolved in dimethylformamide) incubated at 25 ° C. To For 10 minutes, the reaction was with 1 ml of 1 mmol / l mercury chloride stopped and the released p-nitroaniline determined at 410 nm.

Eine Carboxypeptidase Y-Defizienz liegt vor, wenn. die spezifische hydrolytische Aktivität gegenüber Benzoyl-L-Tyrosin-4-nitroanilid auf kleiner 5% im Vergleich mit einem Wildtypstamm herabgesetzt ist.Carboxypeptidase Y deficiency is present when. the specific hydrolytic activity towards benzoyl-L-tyrosine-4-nitroanilide to less than 5% compared to a wild type strain is degraded.

Nachweis der Carboxypeptidase S-Defizienz (cps1)Detection of carboxypeptidase S deficiency (cps1)

Keine Hydrolyse durch Zellextrakte von Cbz-Gly-Leu (Benzyloxycarbonyl-glycyl-L-leucin) bei pH 7,4 mit nachfolgender Analyse des freigesetzten Leucins in einem L-Aminosäure Oxidase-Peroxidase Test (Eur. J. Biochem. 73 (1977) 553-556).No hydrolysis by cell extracts from Cbz-Gly-Leu (Benzyloxycarbonyl-glycyl-L-leucine) at pH 7.4 with subsequent analysis of the released leucine in an L-amino acid oxidase-peroxidase test (Eur. J. Biochem. 73 (1977) 553-556).

0,5 ml Testlösung (0,25 mg/ml L-Aminosäure Oxidase, 0,4 mg/ml Meerrettich Peroxidase und 0,5 mmol/l MnCl2), 0,4 ml 27,5 mmol/l Cbz-Gly-Leu Lösung (gelöst in 0,2 mol/1 Phosphatpuffer, pH 7,0), 0,05 ml o-Dianisidindihydrochlorid (2 mg/ml, gelöst in H2O), 0,05 ml 22 mmol/l Phenylmethylsulfonylfluorid und 0,1 ml dialysiertes Zellysat (Dialyse: 0,1 M Imidazolchlorid, pH 5,3; 24 Stunden; 25°C) gemischt und die Extinktionsänderung bei 405 nm bestimmt.0.5 ml test solution (0.25 mg / ml L-amino acid oxidase, 0.4 mg / ml horseradish peroxidase and 0.5 mmol / l MnCl 2 ), 0.4 ml 27.5 mmol / l Cbz-Gly- Leu solution (dissolved in 0.2 mol / 1 phosphate buffer, pH 7.0), 0.05 ml o-dianisidine dihydrochloride (2 mg / ml, dissolved in H 2 O), 0.05 ml 22 mmol / l phenylmethylsulfonyl fluoride and 0 , 1 ml of dialysed cell lysate (dialysis: 0.1 M imidazole chloride, pH 5.3; 24 hours; 25 ° C.) and the change in extinction at 405 nm was determined.

Eine Carboxypeptidase Y-Defizienz liegt vor, wenn die spezifische hydrolytische Aktivität gegenüber Cbz-Gly-Leu auf kleiner 5% im Vergleich mit einem Wildtypstamm herabgesetzt ist.Carboxypeptidase Y deficiency is when the specific hydrolytic activity towards Cbz-Gly-Leu to less than 5% compared to a wild type strain is reduced.

Anhand der beschriebenen Nachweise wurde festgestellt, daß der Stamm ABYSDMAL81 defizient an den Proteasen A, B, D und den Carboxypeptidasen Y und S und der Stamm ABYSMAL81 defizient an den Proteasen A, B und den Carboxypeptidasen Y und S ist.Based on the described evidence, it was determined that the ABYSDMAL81 strain deficient in proteases A, B, D and the carboxypeptidases Y and S and the strain ABYSMAL81 deficient on proteases A, B and Carboxypeptidases Y and S.

Nachweis der Maltoseverwertungs-AuxotrophieEvidence of maltose utilization auxotrophy

Kein Wachstum auf synthetischem Komplettmedium I mit 0,67% yeast nitrogen base (YNB, Salz-Vitamingemisch, Difco), 0,5% Casaminosäuren (CAA, Proteinhydrolysat, Difco), 2% Maltose (einzige C-Quelle), 20 mg/l Uracil und 30 mg/l Adenin. No growth on complete synthetic medium I with 0.67% yeast nitrogen base (YNB, salt-vitamin mixture, Difco), 0.5% casamino acids (CAA, protein hydrolyzate, Difco), 2% maltose (only C source), 20 mg / l uracil and 30 mg / l adenine.

Nachweis der Uracil-AuxotrophieEvidence of uracil auxotrophy

Kein Wachstum auf synthetischem Komplettmedium II mit 0,67% YNB, 0,5% CAA, 2% Glucose (einzige C-Quelle) und 30 mg/l Adenin.No growth on synthetic complete medium II with 0.67% YNB, 0.5% CAA, 2% glucose (sole C source) and 30 mg / l adenine.

Nachweis der Lysin-AuxotrophieDetection of lysine auxotrophy

Kein Wachstum auf synthetischem Komplettmedium II mit Uracil (20 mg/l) aber ohne Lysin (anstelle von 0,5% CAA wurde ein Aminosäuregemisch ohne Lysin benutzt).No growth on synthetic complete medium II with Uracil (20 mg / l) but without lysine (instead of 0.5% CAA an amino acid mixture without lysine was used).

Nachweis der Histidin- und Adenin-PrototrophieDetection of histidine and adenine prototrophy

Wachstum auf synthetischem Komplettmedium II mit Uracil (20 mg/l) aber ohne Adenin und ohne Histidin (anstelle von 0,5% CAA wurde ein Aminosäuregemisch ohne Histidin benutzt).Growth on synthetic complete medium II with uracil (20 mg / l) but without adenine and without histidine (instead of 0.5% CAA became an amino acid mixture without histidine used).

Beispiele 2 und 3Examples 2 and 3

Zur Herstellung der Saccharomycesstämme ABYSD91 (leu2-3,2-112 trp1-289a pra1 prb1 prd1 prc1 cps1), ABYSD106 (ura3-52 leu2-3,2-112 his pra1 prb1 prd1 prc1 cps1), ABYS91 (leu2-3,2-112 trp1-289a pra1 prb1 prc1 cps1) und ABYS106 (ura3-52 leu2-3,2-112 his pra1 prb1 prc1 cps1) wurde wie im Beispiel 1 beschrieben, der Saccharomyces cerevisiae-Stamm ABYSD-11 mit dem Saccharomyces carlsbergensis-Stamm DBY746, DSM 4316, gekreuzt. Nach Sporulation wurden die Hefesegreganten auf ihre Protease-Defizienzen und Auxotrophien überprüft. For the production of the saccharomyces strains ABYSD91 ( leu2-3.2-112 trp1-289a pra1 prb1 prd1 prc1 cps1 ), ABYSD106 ( ura3-52 leu2-3.2-112 his pra1 prb1 prd1 prc1 cps1 ), ABYS91 ( leu2-3.2 -112 trp1-289a pra1 prb1 prc1 cps1 ) and ABYS106 ( ura3-52 leu2-3.2-112 his pra1 prb1 prc1 cps1 ) was described as in Example 1, the Saccharomyces cerevisiae strain ABYSD-11 with the Saccharomyces carlsbergensis strain DBY746, DSM 4316, crossed. After sporulation, the yeast plants were checked for their protease deficits and auxotrophies.

Für ABYS91 und ABYSD91:For ABYS91 and ABYSD91: Nachweis der Protease-DefizienzenEvidence of protease deficits Siehe Beispiel 1See example 1 Nachweis der Leucin und Tryptophan-AuxotrophieDetection of leucine and tryptophan auxotrophy

Kein Wachstum auf synthetischem Komplettmedium II mit Uracil, aber ohne Leucin bzw. Tryptophan (anstelle von 0,5% CAA wurde ein Aminosäuregemisch ohne Leucin bzw. Tryptophan benutzt).No growth on synthetic complete medium II with Uracil, but without leucine or tryptophan (instead of 0.5% CAA was an amino acid mixture without leucine or Tryptophan used).

Nachweis der Uracil-, Adenin-, Histidin- und Lysin-PrototrophieDetection of uracil, adenine, histidine and lysine prototrophy

Wachstum auf synthetischem Komplettmedium II ohne Adenin, Uracil, Histidin und Lysin (anstelle von 0,5% CAA wurde ein Aminosäuregemisch ohne Histidin und Lysin verwendet).Growth on synthetic complete medium II without Adenine, uracil, histidine and lysine (instead of 0.5% CAA became an amino acid mixture without histidine and Lysine used).

Für ABYS106 und ABYSD106For ABYS106 and ABYSD106 Nachweis der Protease-DefizienzenEvidence of protease deficits Siehe Beispiel 1See example 1 Nachweis der Uracil-AuxotrophieEvidence of uracil auxotrophy

Kein Wachstum auf synthetischem Komplettmedium II.No growth on synthetic complete medium II.

Nachweis der Leucin- und Histidin-AuxotrophieDetection of leucine and histidine auxotrophy

Kein Wachstum auf synthetischem Komplettmedium II mit Uracil aber ohne Leucin bzw. Histidin (anstelle von 0,5% CAA wurde ein Aminosäuregemisch ohne Leucin bzw. Histidin verwendet). No growth on synthetic complete medium II with Uracil but without leucine or histidine (instead of 0.5% CAA was an amino acid mixture without leucine or Histidine used).

Nachweis der Adenin-, Lysin- und Tryptophan -PrototrophieDetection of adenine, lysine and tryptophan prototrophy

Wachstum auf synthetischem Komplettmedium II mit Uracil, aber ohne Adenin, Lysin und Tryptophan (anstelle von 0,5% CAA wurde ein Aminosäuregemisch ohne Lysin und Tryptophan benutzt).Growth on synthetic complete medium II with uracil, but without adenine, lysine and tryptophan (instead of 0.5% CAA became an amino acid mixture without lysine and Tryptophan used).

Beispiel 4Example 4 Expression von α-Glucosidase PIExpression of α-glucosidase PI

Der Saccharomyces-Stamm ABYSMAL81 (Beispiel 1) wurde mit dem Plasmid YEp/5C6b3 transformiert (Nature 275 (1978) 104-109).The Saccharomyces strain ABYSMAL81 (Example 1) was transformed with the plasmid YEp / 5C6b3 (Nature 275 (1978) 104-109).

Zur Herstellung dieses Plasmids wurde der Vektor YRp/GLUPI, DSM 4173P, mit den Restriktionsendonukleasen SspI und HindIII verdaut, das ca. 3,0 kBp lange SspI/-HindIII-Fragment isoliert und in das isolierte PvuII/-SpHI-Vektorfragment aus YEp 24 (Gene 8 (1979), 17-24; Cold Spring Harbor, Symp. Quant. Biol. 43 (1979) 77-90; Gene 29 (1984) 113-124; Nature 286 (1980) 860-865) - nach Auffüllung des überhängenden 5'-Endes der HindIII- und Abbau des überhängenden 3'-Endes der SphI-Restriktionsschnittstelle mit Klenow-Polymerase - ligiert. In dem entstandenen Plasmid YEp/S4 ist die α-Glucosidase PI-Expressionscassette in gleichläufiger Orientierung zum β-Lactamasegen integriert. Danach wurde in die BamHI-Restriktionsschnittstelle von YEp/S4 ein das MAL2-8Cp-Gen enthaltendes ca. 3,1 kBp langes BamHI-Fragment ligiert. Dazu wurde das Plasmid pRM2, DSM 4314P, mit der Restriktionsendonuklease SalI verdaut, die überhängenden 5'-Enden mit Klenow-Polymerase aufgefüllt, mit BamHI-Linkern (d(CGGGATCCCG)) versehen, mit BamHI nachgespalten und das 3,1 kBp lange MAL2-8Cp-Gen enthaltende BamHI-Fragment isoliert. Die entstandene Vektorkonstruktion wurde mit YEp/5C6b3 bezeichnet.To prepare this plasmid, the vector YRp / GLUPI, DSM 4173P, was digested with the restriction endonucleases SspI and HindIII, the approximately 3.0 kBp long SspI / HindIII fragment was isolated and into the isolated PvuII / -SpHI vector fragment from YEp 24 (Gene 8 (1979), 17-24; Cold Spring Harbor, Symp. Quant. Biol. 43 (1979) 77-90; Gene 29 (1984) 113-124; Nature 286 (1980) 860-865) - after replenishment the overhanging 5 'end of the HindIII and degradation of the overhanging 3' end of the SphI restriction site with Klenow polymerase - ligated. The α-glucosidase PI expression cassette is integrated in the resulting plasmid YEp / S4 in the same orientation as the β-lactamase gene. An approximately 3.1 kbp long BamHI fragment containing the MAL2-8 C p gene was then ligated into the BamHI restriction site of YEp / S4. For this, the plasmid pRM2, DSM 4314P, was digested with the restriction endonuclease SalI, the overhanging 5 'ends were filled in with Klenow polymerase, provided with BamHI linkers (d (CGGGATCCCG)), cleaved with BamHI and the 3.1 kBp long MAL2 BamHI fragment containing -8 C p gene isolated. The resulting vector construction was designated YEp / 5C6b3.

Der transformierte Stamm wurde in YEP-Medium (1 % Hefeextrakt, 2 % Pepton) mit 4 % Maltose angezogen und bis zur spät-logarithmischen bzw. stationären Phase gezüchtet. Anschließend wurde die Biomasse geerntet und mit 10 mmol/l Phosphatpuffer, pH 6,8 gewaschen. Die Zellen aus 5 ml YEP-Medium (ca. 0,1 bis 0,2 g Hefe, Naßgewicht) wurden durch Homogenisieren mit einem Whirlmix aufgeschlossen (MGG 145 (1976) 327-333).The transformed strain was in YEP medium (1% Yeast extract, 2% peptone) with 4% maltose and up to the late logarithmic or stationary phase bred. The biomass was then harvested and washed with 10 mmol / l phosphate buffer, pH 6.8. The Cells from 5 ml YEP medium (approx. 0.1 to 0.2 g yeast, Wet weight) were obtained by homogenizing with a Whirlmix digested (MGG 145 (1976) 327-333).

Die Bestimmung der spezifischen α-Glucosidaseaktivität erfolgte anhand der Hydrolyse von p-Nitrophenyl-α-D-Glucopyranosid (MGG 151 (1977) 95-103) und der Proteinbestimmung nach Zamenhof (Methods Enzymol. 3 (1957) 702).The specific α-glucosidase activity was determined using the hydrolysis of p-nitrophenyl-α-D-glucopyranoside (MGG 151 (1977) 95-103) and the protein determination according to Zamenhof (Methods Enzymol. 3 (1957) 702).

In dem auf diese Weise erhaltenen Rohextrakt war das Enzym über 10 Tage bei 4°C stabil. Auch in der SDS-Gelelektrophorese wurde über diesen Zeitraum keine Veränderung des Bandenmusters gefunden. Dies zeigt, daß auch die anderen, in diesem Überstand enthaltenen Enzyme und Proteine, in diesem Hefestamm stabil sind und nicht merklich proteolytisch abgebaut werden.That was in the crude extract obtained in this way Enzyme stable for 10 days at 4 ° C. Also in SDS gel electrophoresis there was no change over this period of the band pattern found. This shows that too the other enzymes and in this supernatant Proteins in this yeast strain are stable and not are noticeably proteolytically degraded.

In der Tabelle I wird die enzymatische Stabilität der α-Glucosidase von Bäckerhefe (bezogen von Deutsche Hefewerke Nürnberg, DHW) mit der Stabilität von rekombinanter exprimierter α-Glucosidase in Protease-defizienten α-Glucosidase Transformanten verglichen. In Bäckerhefe erreicht die spezifische α-Glucosidase-Aktivität in der spätlogarithmischen bis frühstationären Wachstumsphase ein Maximum. Im weiteren Verlauf der Fermentation sinkt die spezifische α-Glucosidase-Aktivität merklich ab (Tabelle 1). Im Gegensatz dazu wird überraschenderweise selbst nach Erreichen der stationären Wachstumsphase die α-Glucosidase in transformierten Protease-defizienten malO-Stämmen stabil akkumuliert, wodurch die Fermentation und Aufarbeitung der Biomasse wesentlich.vereinfacht wird.Table I compares the enzymatic stability of the baker's yeast α-glucosidase (obtained from Deutsche Hefewerke Nürnberg, DHW) with the stability of recombinantly expressed α-glucosidase in protease-deficient α-glucosidase transformants. In baker's yeast, the specific α-glucosidase activity reaches a maximum in the late logarithmic to early stationary growth phase. As the fermentation progresses, the specific α-glucosidase activity drops markedly (Table 1). In contrast to this, surprisingly, even after reaching the stationary growth phase, the α-glucosidase is stably accumulated in transformed protease-deficient malO strains, which considerably simplifies the fermentation and processing of the biomass.

Fermentationsmedien: Bäckerhefe: 1 % Hefeextrakt, 2 % Pepton, 2 % Maltose.Fermentation media: baker's yeast: 1% yeast extract, 2% Peptone, 2% maltose.

ABYSMAL81: Synthetisches Komplett-Medium II.ABYSMAL81: Complete synthetic medium II.

Beispiel 5Example 5

Heterologe Expression eines Fusionsproteins, bestehend aus dem N-terminalen Teil der α-Glucosidase und HIV1-Antigenen, in Protease-defizienten Hefestämmen.Heterologous expression of a fusion protein, consisting of from the N-terminal part of the α-glucosidase and HIV1 antigens, in protease deficient yeast strains.

In dem α-Glucosidase PI-Expressionsvektor YEp/5C6b3 (Beispiel 4) wurde das 1,4 KBp lange BglII-Fragment, das für ca. 80% der α-Glucosidase PI codiert, gegen ein ca. 300 Bp langes DNA-Fragment, das für einen Teil des gp41-Membranproteins des HIV1-Retrovirus codiert, ausgetauscht. Dazu wurde ein ca. 300 Bp langes RsaI/HindIII-Fragment (Sequenz vgl. Sequenz von WMJ-1 von Pos. 1638 bis Pos. 1943 aus Fig. 1 von Cell 45 (1986) 637-648) in den mit HincII und HindIII verdauten E.coli-Vektor pUC18 (M13mp18 und pUC19, Sequenz in Gene 33 (1985) 103-119) subcloniert (Konstruktion: pUC18HRH.300). Aus pUC18HRH.300 wurde das ca. 320 Bp lange BamH1/HindIII-Fragment isoliert und in das ca. 5,2 KBp lange pUR278 BamH1/HindIII-Vektorfragment ligiert (Sequenz in EMBO 2 (1983) 1791-1794) (Konstruktion: pUR278HRH.300). Das Plasmid pUR278HRH.300 wurde mit HindIII verdaut, die überhängenden 5'-Enden mit "Klenow Polymerase" aufgefüllt und mit BamHI-Linkern (d(GGGATCCC)) versehen. Danach wurde mit BamHI nachgespalten, das ca. 300 Bp lange BamHI-Fragment isoliert und in das ca. 11 KBp lange YEp/5C6b3 BglII-Vektorfragment ligiert. Bei richtiger Orientierung der gp41-Membranpolypeptid-DNA 'entsteht ein Fusionsprotein, bestehend aus dem N-Terminus der α-Glucosidase (50 Aminosäuren), 4 konstruktionsbedingten Aminosäuren an der Fusionsstelle, 101 Aminosäuren des gp41-Membranproteins und 3 konstruktionsbedingten Aminosäuren am C-Terminus mit einem Molekulargewicht von ca. 18500 D. Die gewünschte Konstruktion wurde über das exprimierte Fusionsprotein in dem Protease-defizienten Hefeexpressionsstamm ABYSMAL81 nach Transformation und Anzucht (vgl. unten) gefolgt von SDS-Gelelektrophorese und Westernblot anhand von Immunreaktivität mit humanen HIV1-Seren isoliert. Das Fusionsprotein wurde zu ca. 5% des Gesamtproteins exprimiert und war als dominante Bande in SDS-Polyacrylamidgelen nach Coomassie-Anfärbung sichtbar.In the α-glucosidase PI expression vector YEp / 5C6b3 (Example 4) the 1.4 KBp BglII fragment, which codes for approximately 80% of the α-glucosidase PI against a approx. 300 bp long DNA fragment, which is used for part of the gp41 membrane protein of the HIV1 retrovirus coded, exchanged. For this purpose, an approximately 300 bp long RsaI / HindIII fragment (Sequence see sequence of WMJ-1 from item 1638 to Pos. 1943 from Fig. 1 by Cell 45 (1986) 637-648) in the E. coli vector digested with HincII and HindIII pUC18 (M13mp18 and pUC19, sequence in Gene 33 (1985) 103-119) subcloned (construction: pUC18HRH.300). Out pUC18HRH.300 became the approximately 320 bp BamH1 / HindIII fragment isolated and into the approx. 5.2 KBp long pUR278 BamH1 / HindIII vector fragment ligated (sequence in EMBO 2 (1983) 1791-1794) (Construction: pUR278HRH.300). The Plasmid pUR278HRH.300 was digested with HindIII overhanging 5 'ends filled with "Klenow polymerase" and provided with BamHI linkers (d (GGGATCCC)). Then it was cleaved with BamHI, the approx. 300 bp long BamHI fragment isolated and into the approx. 11 KBp long YEp / 5C6b3 BglII vector fragment ligated. at correct orientation of the gp41 membrane polypeptide DNA 'a fusion protein is created, consisting of the N-terminus of α-glucosidase (50 amino acids), 4 construction-related Amino acids at the fusion site, 101 amino acids of the gp41 membrane protein and 3 design-related Amino acids at the C-terminus with a molecular weight of approx. 18500 D. The desired construction was over the expressed fusion protein in the protease deficient Yeast expression strain ABYSMAL81 after transformation and cultivation (see below) followed by SDS gel electrophoresis and Western blot based on immunoreactivity isolated with human HIV1 sera. The fusion protein was expressed to about 5% of the total protein and was as the dominant band in SDS polyacrylamide gels Coomassie staining visible.

Zur Expression des α-Gluc.PI-gp41-Fusionsproteins wurden die Transformanten auf Selektivmedium (0,67% YNB, 0,5% CAA, 30 mg/l Adenin) mit 2% Glucose und 2% Maltose angezogen. Nach einer Induktionsphase von 10 bis 20 Stunden (nach Glucoseverbrauch) wurden die Zellen geerntet.

Figure 00200001
To express the α-Gluc.PI-gp41 fusion protein, the transformants were grown on selective medium (0.67% YNB, 0.5% CAA, 30 mg / l adenine) with 2% glucose and 2% maltose. After an induction phase of 10 to 20 hours (after glucose consumption), the cells were harvested.
Figure 00200001

Claims (10)

  1. Method for producing proteins or gene products containing protein by transforming eukaryotic host cells with a recombinant DNA molecule containing the gene for the desired protein, culturing the cells and isolating the gene product after expression, characterized in that a yeast strain which is deficient in proteases A and B in the stationary growth phase is used as the host cells.
  2. Method as claimed in claim 1, characterized in that the yeast strain is additionally deficient in protease D.
  3. Method as claimed in claim 1 or 2, characterized in that the yeast strain is additionally deficient in carboxypeptidases Y or/and S.
  4. Method as claimed in claim 3, characterized in that the yeast strain ABYSD-11, DSM 4322 is used.
  5. Method as claimed in one of the claims 1 to 4, characterized in that the protease-deficient yeast strain is crossed with another auxotrophic or/and chemical-sensitive yeast strain, after sporulation and selection of the resulting hybrid strains by means of the auxotrophy or/and chemical sensitivity, a yeast strain is isolated which is at least deficient in proteases A and B and has at least one of the auxotrophies or/and chemical sensitivities of the parent strains and this hybrid strain is used as the host cells.
  6. Method as claimed in claim 5, characterized in that the yeast strain ABYSD-11, DSM 4322 is crossed with the strain TCY2824-1A, DSM 4317 or DBY746, DSM 4316, a strain which is deficient in proteases A, B and the carboxypeptidases Y and S and optionally protease D and has the uracil, lysine and maltose utilization auxotrophies, the leucine and tryptophan or leucine, uracil and histidine auxotrophies of the parent strains is isolated and used as host cells.
  7. Method as claimed in one of the claims 5 or 6, characterized in that a recombinant DNA molecule is used which additionally contains one or more genes which complement the auxotrophies or/and chemical sensitivities of the host strain.
  8. Method as claimed in one of the claims 1 to 7, characterized in that a plasmid, an integration vector or an integrating DNA fragment is used as the recombinant DNA molecule.
  9. Method as claimed in claim 8, characterized in that the recombinant DNA molecule is a yeast plasmid which occurs in a high copy number in the cell.
  10. Yeast strain which is deficient in proteases A and B in the stationary growth phase.
EP89100104A 1988-01-05 1989-01-04 Method for the preparation of proteins or protein-containing gene products Revoked EP0327797B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3800134 1988-01-05
DE3800134 1988-01-05
DE3804890A DE3804890C2 (en) 1988-01-05 1988-02-17 Process for the production of proteins or protein products
DE3804890 1988-02-17

Publications (2)

Publication Number Publication Date
EP0327797A1 EP0327797A1 (en) 1989-08-16
EP0327797B1 true EP0327797B1 (en) 2003-09-03

Family

ID=25863770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100104A Revoked EP0327797B1 (en) 1988-01-05 1989-01-04 Method for the preparation of proteins or protein-containing gene products

Country Status (5)

Country Link
US (1) US5179003A (en)
EP (1) EP0327797B1 (en)
JP (1) JPH022385A (en)
AT (1) ATE248925T1 (en)
ES (1) ES2204884T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329667B (en) * 1998-10-05 2014-05-28 诺维信公司 Fungal transcriptional activator useful in methods for producing polyptides

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645174B1 (en) * 1989-03-31 1994-01-07 Transgene Sa IMPROVED YEAST STRAINS FOR THE PRODUCTION OF MATURE HETEROLOGOUS PROTEINS, ESPECIALLY HIRUDIN AND PROCESS FOR PREPARING HIRUDIN
US5879926A (en) * 1989-03-31 1999-03-09 Transgene S.A. Yeast strains for the production of mature heterologous proteins, especially hirudin
FR2645175B1 (en) * 1989-03-31 1994-02-18 Transgene Sa STRAIN OF SACCHAROMYCES CEREVISIA PRODUCING A HETEROLOGOUS PROTEIN AND PROCESS FOR PREPARING SAID HETEROLOGOUS PROTEIN BY FERMENTATION OF SAID STRAIN
US5268378A (en) * 1990-05-31 1993-12-07 Merck Sharp & Dohme, Limited Dioxo-tetrahydroquinoline derivatives
CA2090969C (en) * 1990-09-04 2001-08-21 Russell Arthur Brierley Production of insulin-like growth factor-1 in methylotrophic yeast cells
US5612198A (en) * 1990-09-04 1997-03-18 The Salk Institute Production of insulin-like growth factor-1 in methylotrophic yeast cells
GB2249096A (en) * 1990-10-11 1992-04-29 Ciba Geigy Saccharomyces cerevisiae strains lacking carboxypeptidase yscY activity for expression of proteins at high yields
JPH06506117A (en) * 1991-04-01 1994-07-14 メルク エンド カンパニー インコーポレーテッド Genes affecting Pichia proteolytic activity and their use
FR2692907B1 (en) * 1992-06-25 1995-06-30 Rhone Poulenc Rorer Sa MODIFIED KLUYVEROMYCES YEASTS, PREPARATION AND USE.
US5360733A (en) * 1992-10-01 1994-11-01 La Jolla Cancer Research Foundation Human β1-6 n-acetylglucosaminyl transferase
US5932532A (en) * 1993-10-14 1999-08-03 Procter & Gamble Company Bleach compositions comprising protease enzyme
DE69532283T2 (en) * 1994-06-17 2004-09-23 Novozymes A/S A MUSHROOM IN WHICH THE AREA GENE IS CHANGED AND AN AREA GENE FROM ASPERGILLUS ORYZAE
EP0815200B1 (en) * 1995-03-20 2007-02-14 Novozymes A/S Host cell expressing reduced levels of a metalloprotease and methods using the host cell in protein production
EP0866872A1 (en) * 1995-12-15 1998-09-30 Novo Nordisk A/S A FUNGUNS WHEREIN THE areA, pepC AND/OR pepE GENES HAVE BEEN INACTIVATED
US5776730A (en) * 1995-12-15 1998-07-07 University Of Hawaii Neurospora hosts for the production of recombinant proteins, and methods for producing same
US6110703A (en) * 1996-07-05 2000-08-29 Novo Nordisk A/S Method for the production of polypeptides
ES2256895T3 (en) * 1996-09-19 2006-07-16 Novozymes A/S GUEST CELLS AND PROTEIN PRODUCTION METHODS.
AU2241699A (en) * 1998-01-27 1999-08-09 Board Of Regents Of The University And Community College System Of Nevada, The Expression of proteolytically-sensitive peptides
US6806062B1 (en) 1998-10-05 2004-10-19 Novozymes A/S Fungal transcriptional activator useful in methods for producing polypeptides
CA2617832A1 (en) * 2005-08-03 2007-02-08 Asahi Glass Company, Limited Yeast host, transformant and method for producing heterologous proteins
US10334856B2 (en) 2012-05-29 2019-07-02 Neozyme International, Inc. Non-toxic pest control compositions and methods and uses thereof
US10557234B2 (en) * 2012-05-29 2020-02-11 Neozyme International, Inc. Papermaking additive compositions and methods and uses thereof
US10681914B2 (en) 2012-05-29 2020-06-16 Neozyme International, Inc. Non-toxic plant agent compositions and methods and uses thereof
ES2779960T3 (en) 2012-05-29 2020-08-20 Neozyme International Inc A useful biocatalytic composition in papermaking

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8308235D0 (en) * 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4758512A (en) * 1984-03-06 1988-07-19 President And Fellows Of Harvard College Hosts and methods for producing recombinant products in high yields
US4855231A (en) * 1984-10-30 1989-08-08 Phillips Petroleum Company Regulatory region for heterologous gene expression in yeast
US4902620A (en) * 1985-04-25 1990-02-20 Eli Lilly And Company Novel DNA for expression of delta-aminolevulinic acid synthetase and related method
JPS62224284A (en) * 1986-03-25 1987-10-02 Agency Of Ind Science & Technol Bacterium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329667B (en) * 1998-10-05 2014-05-28 诺维信公司 Fungal transcriptional activator useful in methods for producing polyptides

Also Published As

Publication number Publication date
US5179003A (en) 1993-01-12
ATE248925T1 (en) 2003-09-15
JPH022385A (en) 1990-01-08
EP0327797A1 (en) 1989-08-16
ES2204884T3 (en) 2004-05-01

Similar Documents

Publication Publication Date Title
EP0327797B1 (en) Method for the preparation of proteins or protein-containing gene products
DE69132422T3 (en) xylanase
DE69532603T2 (en) HEFESTAMMS AND MODIFIED ALBUMINS
DE69532283T2 (en) A MUSHROOM IN WHICH THE AREA GENE IS CHANGED AND AN AREA GENE FROM ASPERGILLUS ORYZAE
EP0510658B1 (en) Improvement of the secretion yield of proteins with a disulfide bridge
DD255544A5 (en) Method for the site-selective gene modification of yeasts of the genus Pichia
DD284047A5 (en) METHOD FOR PRODUCING A DNA SEQUENCE THAT CODES FOR AN ALCOHOL OXIDOSE II REGULATION RANGE OF A METHYLOTROPH YEAST
DE69720335T2 (en) Recombinant fructosyl amino acid oxidase
DD265426A5 (en) Method for increasing the rate of carbon dioxide and ethanol production of yeast
EP0654081B1 (en) Hypoglycosylated recombinant glucosidase oxidases
DE60222404T2 (en) PROCESS FOR CONSTRUCTING A HOST AND METHOD FOR PRODUCING A FOREIGN PROTEIN
CH640268A5 (en) Process for the preparation of filamentous hybrid phages, novel hybrid phages and their use
EP0776975B1 (en) Method for use of the yeast-ADH-II promotersystem for the biotechnological production of heterologous proteins in high yield
DE3804890C2 (en) Process for the production of proteins or protein products
EP0536192B1 (en) New promoter region
DE4301932A1 (en) Yeast host strains with defects in N-glycosylation
EP0323838B1 (en) Expression vector and method for controllable production of proteins in eukaryotes
EP0300425B1 (en) Method for the production of proteins in a soluble form
DE69831242T2 (en) INCREASED PREPARATION OF SECRETATED PROTEINS BY RECOMBINANT HEAVY CELLS
EP1242603B1 (en) Vectors and method for producing recombinant proteins in fungi
DE4425058C2 (en) Process for the preparation of a thermostable glucoamylase
DE69636900T2 (en) New yeast genes
WO2000061727A2 (en) Production of pancreatic procarboxy-peptidase b, isoforms and muteins thereof, and their use
DE4329969A1 (en) Process for the recombinant production of proteins in yeast
DE1517732C3 (en) Microbiological process for the production of highly active protease

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920928

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROCHE DIAGNOSTICS GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 58909889

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: F. HOFFMANN-LA ROCHE AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031106

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030404962

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2204884

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: DELTA BIOTECHNOLOGY LIMITED

Effective date: 20040602

NLR1 Nl: opposition has been filed with the epo

Opponent name: DELTA BIOTECHNOLOGY LIMITED

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20071227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080117

Year of fee payment: 20

Ref country code: GB

Payment date: 20071212

Year of fee payment: 20

Ref country code: CH

Payment date: 20080108

Year of fee payment: 20

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080107

Year of fee payment: 20

Ref country code: NL

Payment date: 20071219

Year of fee payment: 20

Ref country code: IT

Payment date: 20080115

Year of fee payment: 20

Ref country code: DE

Payment date: 20080131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071212

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080107

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080201

Year of fee payment: 20

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20080508

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20080508

NLR2 Nl: decision of opposition

Effective date: 20080508

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20080116

Year of fee payment: 20