EP0326785A1 - Foil-like metal strip - Google Patents

Foil-like metal strip Download PDF

Info

Publication number
EP0326785A1
EP0326785A1 EP88810837A EP88810837A EP0326785A1 EP 0326785 A1 EP0326785 A1 EP 0326785A1 EP 88810837 A EP88810837 A EP 88810837A EP 88810837 A EP88810837 A EP 88810837A EP 0326785 A1 EP0326785 A1 EP 0326785A1
Authority
EP
European Patent Office
Prior art keywords
melt
hard particles
strip
master alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88810837A
Other languages
German (de)
French (fr)
Other versions
EP0326785B1 (en
Inventor
Hans-Walter Dr. Schläpfer
Bruno Sonderegger
Werner Straub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of EP0326785A1 publication Critical patent/EP0326785A1/en
Application granted granted Critical
Publication of EP0326785B1 publication Critical patent/EP0326785B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]

Definitions

  • the invention relates to a foil-like metal strip with inclusions of hard particles in a metal matrix composed of at least one element from Group VIIIA, at least one element from Groups IVA, VA or VIA and at least one of the elements boron, carbon, silicon and phosphorus, the hard particles being the primary excretions from the melt are predominantly arranged near one surface of the metal strip, the thickness of the strip also being a maximum of 1 mm, and a cooling rate of at least 10 2 K / sec has been observed during its production from the melt.
  • Boron, carbon, silicon and phosphorus act in a known manner as glass formers; their effect can be enhanced by an optional addition of sulfur, gallium, germanium, arsenic, tin and / or antimony.
  • a metal strip of the type described above is known from EP-A-2 785.
  • the melt from which the strip is made becomes hard particles - for example metal borides, carbides or -oxides - added in granular form and embedded in the solidified metal matrix of the tape; however, the hard particles can also pass through chemical reactions of individual components of the melt can be obtained directly as primary excretions.
  • the object of the invention is to improve the adhesion of hard particles in the metal matrix of the belt.
  • this object is achieved in that at least 50% of the hard particles have a skeletal crystal shape with a length to width ratio of at least 5.
  • hard particles preferably accumulate in the new tape on the free surface of the glassy or microcrystalline solidified tape; there they form a rough surface.
  • the main areas of application for the new metal belt are its use as abrasive or emery "paper” or as an abrasive coating on files and cutting discs, where it can be used as a replacement for diamond tools, for example.
  • Another area of application is, for example, the use as an adhesive layer for adhesives, for example for clutch linings.
  • the new tape is also possible to use the new tape as a flexible tape for welding coatings or as a starting material for laser coatings.
  • it can also be used to manufacture hard material powders can be obtained by dissolving the metal matrix.
  • the surface provided with the deposits has a rough structure with protruding tips which contain at least almost 100% hard particles.
  • a process for the production of the new strip is characterized in that in the separate production of the master alloy, the melt metallurgical parameters - such as the melt atmosphere, chemical composition, overheating of the melt before casting, casting temperature and / or solidification speed - are selected so that the hard particles are already separated Eliminate from the melt when the master alloy solidifies, and that a maximum value for an empirically determined energy influence on the melt of the remelted master alloy, which is a function of the melt temperature and the time until the melt solidifies, is also observed during the strip production, for which maximum value Re-dissolution of the hard particles is prevented at least in part.
  • the melt metallurgical parameters - such as the melt atmosphere, chemical composition, overheating of the melt before casting, casting temperature and / or solidification speed - are selected so that the hard particles are already separated Eliminate from the melt when the master alloy solidifies, and that a maximum value for an empirically determined energy influence on the melt of the remelted master alloy, which is a function of the melt temperature and the time until
  • the "energy influence" to be considered in the manufacturing process is a relatively complex function of the temperature of the remelted master alloy melt and the time during which the master alloy is in the liquid phase.
  • the complexity of the functional relationship between the two sizes requires this "energy influence” for the production of a tape according to the invention in preliminary tests - for each tape composition and for different particle sizes of the embedded ones Hard particles again - to be determined empirically; this results in a relationship such that only relatively short times are required for a specific dissolution of the hard particle crystals in a given metal matrix at relatively high melt temperatures or relatively long times at relatively low temperatures.
  • the "influence of energy” can be described vividly as the ability of the remelted liquid phase to dissolve the hard particles stored in it.
  • the size of the hard particles and thus the roughness of the free strip surface can be controlled by variations in the rate of solidification during the production of the master alloy and / or the strip, the solidification of the master alloy essentially due to the material and diameter of the casting molds and the strip rigidity primarily due to its Speed on the heat-dissipating centrifugal wheel or belt can be influenced.
  • the peripheral speed of the wheel can vary between 500 and 3000 (m / min).
  • the master alloy is advantageously melted and re-melted in a protective gas atmosphere, for example in an argon (Ar) atmosphere, before the strip is manufactured.
  • a protective gas atmosphere for example in an argon (Ar) atmosphere
  • the master alloy can be produced under a reduced pressure.
  • the melt the liquidus temperature of which has been measured at approximately 1380 ° C., is heated to a temperature of approximately 1540 ° C. before casting, which corresponds to an overheating of approximately 160 ° C.
  • the master alloy melt which contains a eutectic-like residual melt with a lower solidus point of approximately 1060 ° C., is poured into molds and solidified.
  • the size of the hard particles separated from the melt which in the present case mainly consist of zeta-chromium boride ( ⁇ -CrB), depends on the rate of solidification of the master alloy - and can therefore be changed to a certain extent by varying the solidification time - this is used for a desired particle size of the hard material deposits optimal solidification rate experimentally determined in preliminary tests.
  • the rate of solidification depends primarily on the material and / or lining of the mold, as well as on its diameter.
  • the casting takes place at a temperature of about 1420 ° C, for example in a copper mold with a diameter of 20-24 mm, it solidifies in 3-5 seconds at a cooling rate of 103 ° C / min reached, whereby hard particle precipitates of about 10-20 microns in length are formed.
  • zirconium oxide ZrO2
  • the metal strip is produced from the master alloy interspersed with hard material precipitates in a known melt spinning device.
  • the master alloy is melted again in a quartz glass nozzle, which is arranged above a centrifugal wheel made of a heat-conducting material, for example a heat-hardenable copper-chromium alloy, with the aid of an induction coil surrounding the nozzle, with bath movements of the melt surface tensions and relatively low temperatures in the region of the open Prevent the melt from flowing out of the nozzle.
  • the heating time is chosen so that the melting point of the alloy, as mentioned, of approximately 1060 ° C. is reached after approximately 4.5 minutes, the quartz glass tube being flushed with argon during the heating to approximately 950 ° C.
  • a certain holding time is required after the remelting before a band can be produced from the remelted master alloy.
  • This holding time depends on the "energy influence" explained above and can be 1 to a maximum of 5 minutes.
  • the empirically determined influence of energy has shown that in the present Example after a complete remelting of the master alloy, a holding time of the melt of about 1 min is permissible.
  • the remelted master alloy is "shot" by a pressure surge of argon at 0.25 bar overpressure on the melt surface against the centrifugal wheel; its speed or circumferential speed influences the solidification time of the strip, whereby relatively high speeds lead to strips with relatively coarse and / or excretions from the strip plane and relatively low speeds lead to fine-grained and / or flat arranged hard material particles in the metal matrix, which result in present case contains a percentage of 3 - 10% zeta-chromium boride as hard material excretions.
  • centrifugal wheel free surface of the belt mean roughness values R a (DIN 4762) provide for the described embodiment, at peripheral speeds of about 1100 m / min on the side opposite the centrifugal wheel, in the longitudinal direction of the band from 2.2 to 2.8 microns and transversely thereto from 1.3 to 1.8 ⁇ m. If the circumferential speed of the wheel is increased to approximately 1300 m / min, the average roughness values R a are measured in the longitudinal direction from 100-130 ⁇ m and in the transverse direction from 60-100 ⁇ m.
  • the figure shows in a glass-like, amorphously solidified metal matrix 1, which, however, at least partially also can have microcrystalline structure, hard particles 2, the crystal shape of which can be described as skeletal.
  • microcrystals 3 made of hard materials can also be seen in the metallic base material.
  • the figure clearly shows tips 4 "occupied” with hard particle crystals, which are formed on the free surface of the strip 1 pointing upwards in the figure, with in the example shown over 70% of the longitudinal dimension of the hard particles 2 in the metal matrix 1 are embedded.
  • the irregular shapes of the skeleton-like solidified crystals 2 with internal cavities, incisions, corners and edges are the reason for the improved adhesion of the hard materials in the amorphous or microcrystalline structure of the metal strip.
  • the arrow indicated represents the direction in which the tape 1 was flung away from the melt spinning nozzle by the centrifugal wheel during its manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Foil-like metal strip comprises hard particles embedded in a metal matrix of gp. VIIIA element(s) gp. IVA, VA or VIA element(s) and at least one of B, C, Si and P, the hard particles being prim. pptes near surface of the strip and the strip having a thickness of max. 1 mm. and being produced from a melt using a cooling rate of at least 100 K/s. The novelty is that at least 50% of the hard particles have a skeleton-like crystal form with a length 1 width ratio of at least 5. In prodn. of the strip by melt spinning directly from a separately produced and remelted alloy, the novelty is that, in the separate alloy prodn. step, the parameters (e.g. melting atmos., chemical compsn., superheat, casting temp. and/or solidificn. rate) are chosen so that the hard particles already ppte. from the melt during solidificn. During strip mfr., a max. value for an empirically determined, energy input to the remelted alloy is maintained, the max. value being a function of the melting temp. and the time to solidificn. of the melt such that re-dissolution of the hard particles is at least partially avoided.

Description

Die Erfindung betrifft ein folienartiges Metallband mit Einlagerungen von Hartpartikeln in einer Metallmatrix aus mindestens einem Element der Gruppe VIIIA, mindestens einem Element der Gruppen IVA, VA oder VIA und mindestens einem der Elemente Bor, Kohlenstoff, Silizium und Phosphor, wobei die Hartpartikel als primäre Ausscheidungen aus der Schmel­ze vorwiegend nahe der einen Oberfläche des Metallbandes angeordnet sind, wobei ferner die Dicke des Bandes maxiaml 1 mm beträgt, und bei seiner Herstellung aus der Schmelze eine Abkühlungsgeschwindigkeit von mindestens 10² K/sec eingehalten worden ist.The invention relates to a foil-like metal strip with inclusions of hard particles in a metal matrix composed of at least one element from Group VIIIA, at least one element from Groups IVA, VA or VIA and at least one of the elements boron, carbon, silicon and phosphorus, the hard particles being the primary excretions from the melt are predominantly arranged near one surface of the metal strip, the thickness of the strip also being a maximum of 1 mm, and a cooling rate of at least 10 2 K / sec has been observed during its production from the melt.

Bor, Kohlenstoff, Silizium und Phosphor wirken dabei in bekannter Weise als Glasbildner; ihre Wirkung kann noch verstärkt werden durch eine fakultative Zugabe von Schwe­fel, Gallium, Germanium, Arsen, Zinn und/oder Antimon.Boron, carbon, silicon and phosphorus act in a known manner as glass formers; their effect can be enhanced by an optional addition of sulfur, gallium, germanium, arsenic, tin and / or antimony.

Ein Metallband der vorstehend beschriebenen Art ist bekannt aus der EP-A- 2 785. Bei diesem bekannten, nach dem Melt-­Spinning-Verfahren hergestellten Band, werden der Schmelze, aus der das Band hergestellt wird, Hartpartikel - z.B. Metallboride, -karbide oder -oxide - in körniger Form zugegeben, und in die erstarrte Metallmatrix des Bandes eingebettet; die Hartpartikel können jedoch auch durch chemische Reaktionen einzelner Komponenten der Schmelze direkt als primäre Ausscheidungen gewonnen werden.A metal strip of the type described above is known from EP-A-2 785. In this known strip, produced by the melt spinning process, the melt from which the strip is made becomes hard particles - for example metal borides, carbides or -oxides - added in granular form and embedded in the solidified metal matrix of the tape; however, the hard particles can also pass through chemical reactions of individual components of the melt can be obtained directly as primary excretions.

Es hat sich gezeigt, dass die Haftung der Hartpartikel in diesem Metallband - wenn es beispielsweise als Abrasions­material für die Oberflächenbearbeitung von Festkörpern dienen soll - unter Umständen ungenügend ist.It has been shown that the adhesion of the hard particles in this metal strip - if it is to serve, for example, as an abrasion material for the surface treatment of solid bodies - may be insufficient.

Aufgabe der Erfindung ist es, die Haftfähigkeit von Hart­partikeln in der Metallmatrix des Bandes zu verbessern.The object of the invention is to improve the adhesion of hard particles in the metal matrix of the belt.

Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass mindestens 50 % der Hartpartikel eine skelettartige Kri­stallform mit einem Verhältnis Länge zu Breite von minde­stens 5 aufweisen.According to the invention, this object is achieved in that at least 50% of the hard particles have a skeletal crystal shape with a length to width ratio of at least 5.

Wie bei dem bekannten Band reichern sich bei dem neuen Band Hartpartikel vorzugsweise an der freien Oberfläche des glasig oder mikrokristallin erstarrten Bandes an; sie bilden dort eine rauhe Oberfläche.As with the known tape, hard particles preferably accumulate in the new tape on the free surface of the glassy or microcrystalline solidified tape; there they form a rough surface.

Die skelettartigen Hartpartikel-Kristalle mit stark von einer Kugelform abweichender Struktur, die sich in der Metallmatrix beispielsweise mit Hinterschneidungen verhaken kann, bewirken eine erhöhte Haftfestigkeit.The skeleton-like hard particle crystals with a structure that differs greatly from a spherical shape, which can get caught in the metal matrix, for example, with undercuts, result in increased adhesive strength.

Als Anwendungsgebiete für das neue Metallband ist in erster Linie seine Verwendung als Schleif- oder Schmirgel-"Papier" oder als Schleifbelag auf Feilen und Trennscheiben zu nennen, wo es beispielsweise als Ersatz für Diamantwerk­zeuge eingesetzt werden kann. Ein anderer Einsatzbereich besteht beispielsweise in der Verwendung als Haftschicht für Klebestoffe z.B. bei Kupplungsbelägen. Weiterhin ist es möglich, das neue Band als flexibles Band für Schweiss­beschichtungen oder als Ausgangsmaterial für Laserbeschich­tungen zu verwenden. Schliesslich kann man es auch zur Herstellung von Hartstoffpulvern einsetzen, wobei diese durch Auflösen der Metallmatrix gewonnen werden. Selbstver­ständlich bieten sich auch noch weitere Anwendungen an, bei denen eine rauhe Oberfläche mit grosser Härte und guter Haftfestigkeit der Hartstoffe gefordert wird.The main areas of application for the new metal belt are its use as abrasive or emery "paper" or as an abrasive coating on files and cutting discs, where it can be used as a replacement for diamond tools, for example. Another area of application is, for example, the use as an adhesive layer for adhesives, for example for clutch linings. It is also possible to use the new tape as a flexible tape for welding coatings or as a starting material for laser coatings. Finally, it can also be used to manufacture hard material powders can be obtained by dissolving the metal matrix. Of course, there are also other applications in which a rough surface with great hardness and good adhesive strength of the hard materials is required.

Für die geschilderten Verwendungen als Abrasions-Material, ist es zweckmässig, wenn die mit den Einlagerungen ver­sehene Oberfläche eine rauhe Struktur mit hervorspringenden Spitzen aufweist, die zu mindestens nahezu 100 % Hartparti­kel enthalten.For the uses described as abrasion material, it is expedient if the surface provided with the deposits has a rough structure with protruding tips which contain at least almost 100% hard particles.

Ein Verfahren zur Herstellung des neuen Bandes ist dadurch gekennzeichnet, dass bei der separaten Herstellung der Vorlegierung die schmelzmetallurgischen Parameter - wie Schmelzatmosphäre, chemische Zusammensetzung, Ueberhitzung der Schmelze vor dem Abguss, Giesstemperatur und/oder Erstarrungsgeschwindigkeit - so gewählt werden, dass sich die Hartpartikel bereits beim Erstarren der Vorlegierung aus der Schmelze ausscheiden, und dass ferner bei der Bandherstellung ein Maximalwert für einen empirisch ermittelten Energieeinfluss auf die Schmelze der wiederauf­geschmolzenen Vorlegierung eingehalten wird, der eine Funktion der Schmelzentemperatur und der Zeit bis zur Erstarrung der Schmelze ist, für welchen Maximalwert ein Wiederinlösunggehen der Hartpartikel mindestens zum Teil verhindert wird.A process for the production of the new strip is characterized in that in the separate production of the master alloy, the melt metallurgical parameters - such as the melt atmosphere, chemical composition, overheating of the melt before casting, casting temperature and / or solidification speed - are selected so that the hard particles are already separated Eliminate from the melt when the master alloy solidifies, and that a maximum value for an empirically determined energy influence on the melt of the remelted master alloy, which is a function of the melt temperature and the time until the melt solidifies, is also observed during the strip production, for which maximum value Re-dissolution of the hard particles is prevented at least in part.

Der beim Herstellungsverfahren zu berücksichtigende "Energieeinfluss" ist eine relativ komplexe Funktion der Temperatur der wiederaufgeschmolzenen Vorlegierungsschmelze und der Zeit, während der die Vorlegierung in flüssiger Phase vorliegt. Die Komplexität des funktionellen Zusam­menhangs beider Grössen erfordert es, diesen "Energie­einfluss" für die Herstellung eines erfindungsgemässen Bandes in Vorversuchen - für jede Bandzusammensetzung und für verschiedene Partikelgrössen der eingelagerten Hartpartikel erneut - empirisch zu ermitteln; dabei ergibt sich ein Zusammenhang derart, dass für eine bestimmte Auflösung der Hartpartikel-Kristalle in einer gegebenen Metallmatrix bei relativ hohen Schmelzentemperaturen nur relativ kurze Zeiten oder bei relativ niedrigen Temperatu­ren relativ lange Zeiten benötigt werden.The "energy influence" to be considered in the manufacturing process is a relatively complex function of the temperature of the remelted master alloy melt and the time during which the master alloy is in the liquid phase. The complexity of the functional relationship between the two sizes requires this "energy influence" for the production of a tape according to the invention in preliminary tests - for each tape composition and for different particle sizes of the embedded ones Hard particles again - to be determined empirically; this results in a relationship such that only relatively short times are required for a specific dissolution of the hard particle crystals in a given metal matrix at relatively high melt temperatures or relatively long times at relatively low temperatures.

Der "Energieeinfluss" lässt sich anschaulich etwa beschrei­ben als das Vermögen der wiederaufgeschmolzenen flüssigen Phase, die in ihr eingelagerten Hartpartikel wieder aufzu­lösen.The "influence of energy" can be described vividly as the ability of the remelted liquid phase to dissolve the hard particles stored in it.

Die Grösse der Hartpartikel und damit die Rauhheit der freien Bandoberfläche lassen sich dabei durch Variationen der Erstarrungsgeschwindigkeit bei der Herstellung der Vorlegierung und/oder des Bandes steuern, wobei das Erstar­ren der Vorlegierung im wesentlichen durch Material und Durchmesser der Abgusskokillen und die Banderstarrung vor allem durch seine Geschwindigkeit auf dem wärmeabführenden Schleuderrad oder -band beeinflusst werden. Die Umfangsge­schwindigkeit des Rades kann zwischen 500 und 3000 (m/min) variieren.The size of the hard particles and thus the roughness of the free strip surface can be controlled by variations in the rate of solidification during the production of the master alloy and / or the strip, the solidification of the master alloy essentially due to the material and diameter of the casting molds and the strip rigidity primarily due to its Speed on the heat-dissipating centrifugal wheel or belt can be influenced. The peripheral speed of the wheel can vary between 500 and 3000 (m / min).

Mit Vorteil erfolgt das Erschmelzen der Vorlegierung und ihr Wiederaufschmelzen vor der Bandherstellung in einer Schutzgasatmosphäre, beispielsweise in einer Argon(Ar)-­Atmosphäre. In bekannter Weise kann dabei die Herstellung der Vorlegierung unter einem reduzierten Druck erfolgen.The master alloy is advantageously melted and re-melted in a protective gas atmosphere, for example in an argon (Ar) atmosphere, before the strip is manufactured. In a known manner, the master alloy can be produced under a reduced pressure.

Im folgenden wird die Erfindung anhand eines Ausführungs­beispiels näher erläutert, wobei in der Figur eine nach einem stark vergrösserten Gefügeschliffbild (Vergrösserung 500 : 1) gefertigte Skizze einer Ausführungsform eines rauhen Bandes wiedergegeben ist.The invention is explained in more detail below with the aid of an exemplary embodiment, the figure showing a sketch of an embodiment of a rough strip, which was produced after a greatly enlarged micrograph (magnification 500: 1).

Herstellung der Vorlegierung:Manufacture of the master alloy:

In einer Gesamtmenge von 300 Gramm (g) wird ein Gemisch mit - abgesehen von unerwünschten, jedoch unvermeidbaren Verunreinigungen, wie beispielsweise Aluminium (Al), Mangan (Mn) oder Kupfer (Cu) - folgender Zusammensetzung in Atom-Prozent hergestellt, was den in Klammern angegebenen Werten in Massen-Prozent entspricht:
Ni 73,8 (60,3); Cr 14 (13,1); Fe 4,5 (3,9); Si 4,5 (7,8) und B 3,2 (14,3). Dieses Gemisch wird in einem mit einer Aluminium (Al)-Silikat-Auskleidung (Mullit) versehenen Tiegel mit Hilfe einer Induktionsspule zu der Vorlegierung aufgeschmolzen, wobei ein leichtes Vakuum von etwa 130 mbar (100 mm Hg) in dem Tiegel aufrechterhalten wird; die Schmelzatmosphäre besteht dabei aus Argon (Ar) mit einer Reinheit von 99,998 %.
In a total amount of 300 grams (g) a mixture with - apart from undesirable but unavoidable impurities such as aluminum (Al), manganese (Mn) or copper (Cu) - the following composition in atomic percent is produced, which the in Values in mass percent given in brackets correspond to:
Ni 73.8 (60.3); Cr 14 (13.1); Fe 4.5 (3.9); Si 4.5 (7.8) and B 3.2 (14.3). This mixture is melted in a crucible provided with an aluminum (Al) silicate lining (mullite) with the aid of an induction coil to the master alloy, a slight vacuum of about 130 mbar (100 mm Hg) being maintained in the crucible; the melting atmosphere consists of argon (Ar) with a purity of 99.998%.

Die Schmelze, deren Liquidus-Temperatur etwa zu 1380 °C gemessen worden ist, wird vor dem Abguss auf eine Tempera­tur von etwa 1540 °C aufgeheizt, was einer Ueberhitzung von etwa 160 °C entspricht. Anschliessend wird die Vorlegie­rungsschmelze, die eine eutektikumähnliche Restschmelze mit niedrigerem Soliduspunkt von etwa 1060 °C enthält, in Kokillen abgegossen und zur Erstarrung gebracht.The melt, the liquidus temperature of which has been measured at approximately 1380 ° C., is heated to a temperature of approximately 1540 ° C. before casting, which corresponds to an overheating of approximately 160 ° C. Subsequently, the master alloy melt, which contains a eutectic-like residual melt with a lower solidus point of approximately 1060 ° C., is poured into molds and solidified.

Da die Grösse der aus der Schmelze ausgeschiedenen Hartpar­tikel, die im vorliegenden Fall vorwiegend aus Zeta-­Chromborid (ζ-CrB) bestehen, von der Erstarrungsgeschwin­digkeit der Vorlegierung abhängt - und daher durch Variati­on der Erstarrungszeit in gewissem Umfange gezielt verände­rt werden kann - wird die für eine gewünschte Partikel­grösse der Hartstoffeinlagerungen optimale Erstarrungs­geschwindigkeit experimentell in Vorversuchen ermittelt. Die Erstarrungsgeschwindigkeit hängt dabei vor allem von Material und/oder Auskleidung der Kokille, sowie von deren Durchmesser ab. Erfolgt der Abguss bei einer Temperatur von etwa 1420 °C, beispielsweise in einer Kupferkokille von 20 - 24 mm Durchmesser, so wird in dieser bei Abkühlungsge­schwindigkeit von 10³ °C/min ein Erstarren in 3 - 5 sec erreicht, wodurch Hartpartikelausscheidungen von etwa 10 -20 µm Länge gebildet werden. Ersetzt man jedoch die Kupfer-Kokillen durch eine mit Zirkonoxid (ZrO₂) ausgeklei­dete Stahlkokille, die einen Durchmesser von 28 mm hat, so ergeben sich - bei sonst gleichen Bedingungen - langsamere Abkühlungsgeschwindigkeiten von etwa 500 °C/min, was zu Erstarrungszeiten von 10 sec führt; in diesem Fall scheiden die Hartpartikel im wesentlichen als skelettartige Kristalle mit einer Länge von etwa 0,3 mm aus.Since the size of the hard particles separated from the melt, which in the present case mainly consist of zeta-chromium boride (ζ-CrB), depends on the rate of solidification of the master alloy - and can therefore be changed to a certain extent by varying the solidification time - this is used for a desired particle size of the hard material deposits optimal solidification rate experimentally determined in preliminary tests. The rate of solidification depends primarily on the material and / or lining of the mold, as well as on its diameter. If the casting takes place at a temperature of about 1420 ° C, for example in a copper mold with a diameter of 20-24 mm, it solidifies in 3-5 seconds at a cooling rate of 103 ° C / min reached, whereby hard particle precipitates of about 10-20 microns in length are formed. However, if you replace the copper molds with a steel mold lined with zirconium oxide (ZrO₂), which has a diameter of 28 mm, there are - under otherwise identical conditions - slower cooling speeds of around 500 ° C / min, resulting in solidification times of 10 seconds leads; in this case, the hard particles essentially separate as skeletal crystals with a length of about 0.3 mm.

Herstellung des Metallbandes:Production of the metal band:

Die Herstellung des Metallbandes aus der mit Hartstoffaus­scheidungen durchsetzten Vorlegierung erfolgt in einer bekannten Melt-Spinning-Einrichtung. Die Vorlegierung wird dabei in einer Quarzglasdüse, die über einem Schleuderrad aus einem wärmeleitenden Material, beispielsweise einer warmaushärtbaren Kupferchromlegierung, angeordnet ist, mit Hilfe einer die Düse umgebenden Induktionsspule wieder aufgeschmolzen, wobei Badbewegungen der Schmelze Oberflä­chenspannungen und relativ niedrige Temperaturen im Bereich des an sich offenen Düsenaustrittes ein Ausfliessen der Schmelze verhindern. Die Aufheizzeit wird dabei so gewählt, dass der Schmelzpunkt der Legierung von, wie erwähnt, etwa 1060 °C, nach etwa 4,5 min erreicht wird, wobei das Quarz­glasrohr während des Aufheizens bis ca. 950 °C mit Argon gespült wird.The metal strip is produced from the master alloy interspersed with hard material precipitates in a known melt spinning device. The master alloy is melted again in a quartz glass nozzle, which is arranged above a centrifugal wheel made of a heat-conducting material, for example a heat-hardenable copper-chromium alloy, with the aid of an induction coil surrounding the nozzle, with bath movements of the melt surface tensions and relatively low temperatures in the region of the open Prevent the melt from flowing out of the nozzle. The heating time is chosen so that the melting point of the alloy, as mentioned, of approximately 1060 ° C. is reached after approximately 4.5 minutes, the quartz glass tube being flushed with argon during the heating to approximately 950 ° C.

Um eine Homogenisierung der gesamten Vorlegierungsschmelze, beispielsweise bezüglich der Temperatur und der Viskosität, zu erreichen, ist nach dem Wiederaufschmelzen eine gewisse Haltezeit erforderlich, bis aus der wieder aufgeschmolzenen Vorlegierung ein Band hergestellt werden kann. Diese Haltezeit ist abhängig von dem im Vorstehenden erläuterten "Energieeinfluss" und kann 1 bis maximal 5 min betragen. Für eine Schmelzentemperatur von 1060 °C hat der empirisch ermittelte Engergieeinfluss ergeben, dass im vorliegenden Beispiel nach dem vollständigen Wiederaufschmelzen der Vorlegierung noch eine Haltezeit der Schmelze von etwa 1 min zulässig ist.In order to achieve homogenization of the entire master alloy melt, for example with regard to the temperature and the viscosity, a certain holding time is required after the remelting before a band can be produced from the remelted master alloy. This holding time depends on the "energy influence" explained above and can be 1 to a maximum of 5 minutes. For a melt temperature of 1060 ° C, the empirically determined influence of energy has shown that in the present Example after a complete remelting of the master alloy, a holding time of the melt of about 1 min is permissible.

Nach Ablauf der Haltezeit wird die wiederaufgeschmolzene Vorlegierung durch einen Druckstoss von Argon mit 0,25 bar Ueberdruck auf die Schmelzenoberfläche gegen das Schleuder­rad "geschossen"; dessen Drehzahl bzw. Umfangsgeschwindig­keit beeinflusst die Erstarrungszeit des Bandes, wobei relativ hohe Geschwindigkeiten zu Bändern mit relativ groben und/oder stark aus der Bandebene hervorragenden Ausscheidungen und relativ niedrige Geschwindigkeiten zu feinkörnigen und/oder flacher angeordneten Hartstoff-­Partikeln in der Metallmatrix führen, die im vorliegenden Fall einen prozentualen Anteil von 3 - 10% Zeta-Chromborid als Hartstoffausscheidungen enthält.After the holding time has elapsed, the remelted master alloy is "shot" by a pressure surge of argon at 0.25 bar overpressure on the melt surface against the centrifugal wheel; its speed or circumferential speed influences the solidification time of the strip, whereby relatively high speeds lead to strips with relatively coarse and / or excretions from the strip plane and relatively low speeds lead to fine-grained and / or flat arranged hard material particles in the metal matrix, which result in present case contains a percentage of 3 - 10% zeta-chromium boride as hard material excretions.

Für das geschilderte Ausführungsbeispiel ergeben sich bei Umfangsgeschwindigkeiten des Schleuderrades von etwa 1100 m/min auf der dem Schleuderrad abgewandten, freien Oberfläche des Bandes Mittenrauhwerte Ra, (DIN 4762) in Längsrichtung des Bandes von 2,2 - 2,8 µm und quer dazu von 1,3 - 1,8 µm. Wird die Umfangsgeschwindigkeit des Rades auf etwa 1300 m/min erhöht, so misst man Mittenrauhwerten Ra, in Längsrichtung von 100 - 130 µm und in Querrichtung von 60 - 100 µm.Of the centrifugal wheel free surface of the belt mean roughness values R a, (DIN 4762) provide for the described embodiment, at peripheral speeds of about 1100 m / min on the side opposite the centrifugal wheel, in the longitudinal direction of the band from 2.2 to 2.8 microns and transversely thereto from 1.3 to 1.8 µm. If the circumferential speed of the wheel is increased to approximately 1300 m / min, the average roughness values R a are measured in the longitudinal direction from 100-130 µm and in the transverse direction from 60-100 µm.

Die einzige Figur, die einen Querschnitt durch ein relativ grobes Metallband zeigt, dessen Herstellung vorstehend beschrieben worden ist, ist nach einer photographischen Aufnahme gezeichnet worden. Diese ist mit Hilfe eines Lichtmikroskops bei 500-facher Vergrösserung hergestellt worden.The only figure showing a cross section through a relatively coarse metal band, the manufacture of which has been described above, has been drawn after a photograph. This was produced with the aid of a light microscope at a magnification of 500 times.

Die Figur zeigt in einer glasartig, amorph erstarrten Metallmatrix 1, die jedoch mindestens teilweise auch ein mikrokristallines Gefüge haben kann, Hartpartikel 2, deren Kristallform als skelettartig zu bezeichnen ist. Neben den skelettartigen Kristallen 2 sind in der metallischen Grundmasse noch Mikrokristalle 3 aus Hartstoffen erkennbar.The figure shows in a glass-like, amorphously solidified metal matrix 1, which, however, at least partially also can have microcrystalline structure, hard particles 2, the crystal shape of which can be described as skeletal. In addition to the skeletal crystals 2, microcrystals 3 made of hard materials can also be seen in the metallic base material.

Die Figur lässt deutlich mit Hartpartikel-Kristallen 2 "besetzte" Spitzen 4 erkennen, die sich an der in der Figur nach oben weisenden, freien Oberfläche des Bandes 1 ausbil­den, wobei im gezeigten Beispiel über 70 % der Längsab­messung der Hartpartikel 2 in die Metallmatrix 1 ein­gebettet sind.The figure clearly shows tips 4 "occupied" with hard particle crystals, which are formed on the free surface of the strip 1 pointing upwards in the figure, with in the example shown over 70% of the longitudinal dimension of the hard particles 2 in the metal matrix 1 are embedded.

Die unregelmässigen Formen der skelettartig erstarrten Kristalle 2 mit Innenhohlräumen, Einschnitten, Ecken und Kanten, sind die Ursache für die verbesserte Haftfähigkeit der Hartstoffe im amorphen oder mikrokristallinen Gefüge des Metallbandes.The irregular shapes of the skeleton-like solidified crystals 2 with internal cavities, incisions, corners and edges are the reason for the improved adhesion of the hard materials in the amorphous or microcrystalline structure of the metal strip.

Der eingetragene Pfeil gibt die Richtung wieder, in der das Band 1 bei seiner Herstellung von dem Schleuderrad aus der Schmelzspinn-Düse weggeschleudert worden ist.The arrow indicated represents the direction in which the tape 1 was flung away from the melt spinning nozzle by the centrifugal wheel during its manufacture.

Claims (6)

1. Folienartiges Metallband mit Einlagerungen von Hartpar­tikeln in einer Metallmatrix aus mindestens einem Element der Gruppe VIIIA, mindestens einem Element der Gruppen IVA, VA oder VIA und mindestens einem der Elemente Bor (B), Kohlenstoff (C), Silizium (Si) und Phosphor (P), wobei die Hartpartikel als primäre Ausscheidungen aus der Schmelze vorwiegend nahe der einen Oberfläche des Metallbandes angeordnet sind, wobei ferner die Dicke des Bandes maximal 1 mm beträgt, und bei seiner Herstellung aus der Schmelze eine Abkühlungsgeschwindigkeit von mindestens 10² K/sec eingehalten worden ist, dadurch gekennzeichnet, dass mindestens 50 % der Hartpartikel (2) eine skelettartige Kristallform mit einem Verhältnis Länge zu Breite von mindestens 5 aufweisen.1. Foil-like metal strip with inclusions of hard particles in a metal matrix composed of at least one element from group VIIIA, at least one element from groups IVA, VA or VIA and at least one of the elements boron (B), carbon (C), silicon (Si) and phosphorus (P), the hard particles being arranged as primary precipitates from the melt, predominantly near one surface of the metal strip, the thickness of the strip also being at most 1 mm, and maintaining a cooling rate of at least 10 2 K / sec during its production from the melt characterized in that at least 50% of the hard particles (2) have a skeletal crystal shape with a length to width ratio of at least 5. 2. Band nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der skelettartigen Hartpartikel-Kristalle (2) mindestens 70 % beträgt.2. Band according to claim 1, characterized in that the number of skeletal hard particle crystals (2) is at least 70%. 3. Band nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die mit den Einlagerungen versehene Oberfläche eine rauhe Struktur mit hervorspringenden Spitzen (4) aufweist, wobei mindestens nahezu 100% der Spitzen (4) Hartpartikel (2) enthalten.3. Band according to claim 1 or 2, characterized in that the surface provided with the inclusions has a rough structure with protruding tips (4), at least almost 100% of the tips (4) containing hard particles (2). 4. Band nach Anspruüch 3, dadurch gekennzeichnet, dass bei den aus der Metallmatrix herausragenden Hartpartikeln (2) mindestens 70 % ihrer Längsabmessung in die Matrix (1) eingebettet bleibt.4. Band according to claim 3, characterized in that at least 70% of its longitudinal dimension remains embedded in the matrix (1) in the case of the hard particles (2) protruding from the metal matrix. 5. Verfahren zur Herstellung des Metallbandes nach einem der Ansprüche 1 bis 4, bei welchem Verfahren das Band durch Schmelzspinnen (melt spinning) mit Hilfe eines Schleuderra­des hoher Wärmeleitfähigkeit und hoher Wärmekapazität mit hoher Geschwindigkeit direkt aus der Schmelze einer separat hergestellten und wiederaufgeschmolzenen Vorlegierung gebildet wird, dadurch gekennzeichnet, dass bei der separa­ten Herstellung der Vorlegierung die schmelzmetallurgischen Parameter - wie Schmelzatmosphäre, chemische Zusammenset­zung, Überhitzung der Schmelze vor dem Abguss, Giess­temperatur und/oder Erstarrungsgeschwindigkeit - so gewählt werden, dass sich die Hartpartikel bereits beim Erstarren der Vorlegierung aus der Schmelze ausscheiden, und dass ferner bei der Bandherstellung ein Maximalwert für einen empirisch ermittelten Energieeinfluss auf die Schmelze der wiederaufgeschmolzenen Vorlegierung eingehalten wird, der eine Funktion der Schmelzentemperatur und der Zeit bis zur Erstarrung der Schmelze ist, für welchen Maximalwert ein Wiederinlösunggehen der Hartpartikel (2) mindestens zum Teil verhindert wird.5. A method for producing the metal strip according to any one of claims 1 to 4, in which method the strip by melt spinning with the help of a centrifugal wheel with high thermal conductivity and high heat capacity high speed is formed directly from the melt of a separately produced and remelted master alloy, characterized in that in the separate manufacture of the master alloy the melt metallurgical parameters - such as the melt atmosphere, chemical composition, overheating of the melt before casting, casting temperature and / or solidification speed - are selected in this way that the hard particles already separate from the melt when the master alloy solidifies, and that a maximum value for an empirically determined energy influence on the melt of the remelted master alloy is observed during strip production, which is a function of the melt temperature and the time until the solidification The melt is the maximum value for which the hard particles (2) are at least partially prevented from redissolving. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Grösse und/oder Lage (Anstellwinkel) der Hartpartikel (2) und damit die Rauheit der freien Bandoberfläche durch Variationen der Erstarrungsgeschwindigkeiten bei der Herstellung der Vorlegierung und/oder des Bandes (1) gesteuert werden.6. The method according to claim 5, characterized in that the size and / or position (angle of attack) of the hard particles (2) and thus the roughness of the free strip surface controlled by variations in the solidification speeds in the manufacture of the master alloy and / or the strip (1) will.
EP88810837A 1988-02-01 1988-12-07 Foil-like metal strip Expired - Lifetime EP0326785B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH341/88 1988-02-01
CH341/88A CH676471A5 (en) 1988-02-01 1988-02-01

Publications (2)

Publication Number Publication Date
EP0326785A1 true EP0326785A1 (en) 1989-08-09
EP0326785B1 EP0326785B1 (en) 1992-04-08

Family

ID=4184806

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88810837A Expired - Lifetime EP0326785B1 (en) 1988-02-01 1988-12-07 Foil-like metal strip

Country Status (6)

Country Link
US (1) US5061573A (en)
EP (1) EP0326785B1 (en)
JP (1) JP2695894B2 (en)
CH (1) CH676471A5 (en)
DE (1) DE3869943D1 (en)
ES (1) ES2031629T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608468A1 (en) * 1993-01-29 1994-08-03 Linde Aktiengesellschaft Method to produce a metallic powder for making wear-resistant coatings
EP0618039A1 (en) * 1993-04-02 1994-10-05 Sulzer Innotec Ag Tool for grinding spectacle glasses

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494760A (en) * 1991-12-24 1996-02-27 Gebrueder Sulzer Aktiengesellschaft Object with an at least partly amorphous glass-metal film
DE19605398A1 (en) * 1996-02-14 1997-08-21 Wielage Bernhard Prof Dr Ing Production of metal matrix composites in strip or foil form

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0002785A1 (en) * 1977-12-22 1979-07-11 Allied Corporation Strips of metallic glasses containing embedded particulate matter and method of forming same
EP0148306A2 (en) * 1984-01-12 1985-07-17 Olin Corporation Method for producing a metal alloy strip
US4540546A (en) * 1983-12-06 1985-09-10 Northeastern University Method for rapid solidification processing of multiphase alloys having large liquidus-solidus temperature intervals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786467A (en) * 1983-06-06 1988-11-22 Dural Aluminum Composites Corp. Process for preparation of composite materials containing nonmetallic particles in a metallic matrix, and composite materials made thereby
US4800065A (en) * 1986-12-19 1989-01-24 Martin Marietta Corporation Process for making ceramic-ceramic composites and products thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0002785A1 (en) * 1977-12-22 1979-07-11 Allied Corporation Strips of metallic glasses containing embedded particulate matter and method of forming same
US4540546A (en) * 1983-12-06 1985-09-10 Northeastern University Method for rapid solidification processing of multiphase alloys having large liquidus-solidus temperature intervals
EP0148306A2 (en) * 1984-01-12 1985-07-17 Olin Corporation Method for producing a metal alloy strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608468A1 (en) * 1993-01-29 1994-08-03 Linde Aktiengesellschaft Method to produce a metallic powder for making wear-resistant coatings
EP0618039A1 (en) * 1993-04-02 1994-10-05 Sulzer Innotec Ag Tool for grinding spectacle glasses

Also Published As

Publication number Publication date
JP2695894B2 (en) 1998-01-14
CH676471A5 (en) 1991-01-31
DE3869943D1 (en) 1992-05-14
EP0326785B1 (en) 1992-04-08
US5061573A (en) 1991-10-29
JPH01222032A (en) 1989-09-05
ES2031629T3 (en) 1992-12-16

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
DE2364131C2 (en) Metal alloys, processes for their production and their use
DE2606581A1 (en) PROCESS FOR MANUFACTURING METAL ALLOY FEMS
DE3035433C2 (en) Use of a vitreous alloy
DE2302595B2 (en) ABRASIVE BODY AND METHOD OF ITS MANUFACTURING
DE1533424B1 (en) SINTERED GRINDING BODY
WO2018009359A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
DE2919477C2 (en) Wear-resistant composite material, method for its manufacture and use of the composite material
DE102015205316A1 (en) A method of producing a superalloy member having a powder bed-based additive manufacturing method and superalloy member
DE3914010A1 (en) METHOD FOR PRODUCING CERAMIC-METAL COMPOSITIONS
DE2933761C2 (en) Process for the production of directionally solidified castings
EP0326785B1 (en) Foil-like metal strip
DE2637508A1 (en) FILTER FOR MOLTEN METALS, METHOD OF ITS MANUFACTURING AND USE
WO1995005490A1 (en) Molten mass treating agent, its production and use
CH651071A5 (en) METHOD FOR EPITAXIAL SOLIDIFICATION.
DE2534777C2 (en) Method for soldering a polycrystalline body made of extremely hard material based on boron nitride and / or diamond with a metal part and solder for carrying out this method
CH673843A5 (en)
EP0497944B1 (en) Bearing material and process for making it
CH667604A5 (en) METHOD FOR PRODUCING SOLID METAL PARTICLES AND ROTATIONAL ATOMIZING DEVICE FOR IMPLEMENTING THE METHOD.
DE1696622B2 (en) METHOD FOR MANUFACTURING FIBER-REINFORCED OBJECTS AND DEVICE FOR APPLYING A SILICON CARBIDE COATING TO CORD WIRE
DE3424061C2 (en)
DE2210771B2 (en) Process for the production of a fiber composite material
DE3424022C2 (en)
DE2203776B2 (en) HEAVY-DUTY ELECTRICAL CONTACTS OR ELECTRODES AND METHOD FOR PRODUCING THEM
DE875393C (en) Process for casting metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19891213

17Q First examination report despatched

Effective date: 19910212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 3869943

Country of ref document: DE

Date of ref document: 19920514

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88810837.0

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: M-TEC HOLDING AG

Ref country code: CH

Ref legal event code: PFA

Free format text: SULZER AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: M-TEC HOLDING AG.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971113

Year of fee payment: 10

Ref country code: FR

Payment date: 19971113

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971124

Year of fee payment: 10

Ref country code: CH

Payment date: 19971124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971208

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971216

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

BERE Be: lapsed

Owner name: M-TEC HOLDING A.G.

Effective date: 19981231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051207