EP0320296A2 - Fabric softening additive for detergent compositions - Google Patents
Fabric softening additive for detergent compositions Download PDFInfo
- Publication number
- EP0320296A2 EP0320296A2 EP19880311702 EP88311702A EP0320296A2 EP 0320296 A2 EP0320296 A2 EP 0320296A2 EP 19880311702 EP19880311702 EP 19880311702 EP 88311702 A EP88311702 A EP 88311702A EP 0320296 A2 EP0320296 A2 EP 0320296A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cellulose ether
- fabric softening
- alkyl
- additive according
- softening additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 60
- 239000004744 fabric Substances 0.000 title claims abstract description 53
- 239000000654 additive Substances 0.000 title claims abstract description 40
- 239000003599 detergent Substances 0.000 title claims abstract description 31
- 230000000996 additive effect Effects 0.000 title claims abstract description 29
- 229920003086 cellulose ether Polymers 0.000 claims abstract description 44
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 21
- 239000011872 intimate mixture Substances 0.000 claims abstract description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims abstract description 4
- 239000004902 Softening Agent Substances 0.000 claims description 24
- -1 hydroxypropyl Chemical group 0.000 claims description 21
- 239000000344 soap Substances 0.000 claims description 16
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 claims description 9
- 239000011149 active material Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 150000001412 amines Chemical class 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 150000003856 quaternary ammonium compounds Chemical group 0.000 claims description 4
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 claims description 3
- 239000008247 solid mixture Substances 0.000 claims description 3
- 238000006467 substitution reaction Methods 0.000 claims description 3
- 229920013820 alkyl cellulose Polymers 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000007873 sieving Methods 0.000 claims 1
- 239000002979 fabric softener Substances 0.000 abstract description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 abstract 1
- 239000000463 material Substances 0.000 description 18
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 11
- 239000000194 fatty acid Substances 0.000 description 11
- 229930195729 fatty acid Natural products 0.000 description 11
- 229910052708 sodium Inorganic materials 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 10
- 150000004665 fatty acids Chemical class 0.000 description 10
- 239000003760 tallow Substances 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- 235000013162 Cocos nucifera Nutrition 0.000 description 6
- 244000060011 Cocos nucifera Species 0.000 description 6
- 239000003240 coconut oil Substances 0.000 description 6
- 235000019864 coconut oil Nutrition 0.000 description 6
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- ZITBHNVGLSVXEF-UHFFFAOYSA-N 2-[2-(16-methylheptadecoxy)ethoxy]ethanol Chemical compound CC(C)CCCCCCCCCCCCCCCOCCOCCO ZITBHNVGLSVXEF-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 229920003091 Methocel™ Polymers 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001450 anions Chemical group 0.000 description 2
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- PGZPBNJYTNQMAX-UHFFFAOYSA-N dimethylazanium;methyl sulfate Chemical compound C[NH2+]C.COS([O-])(=O)=O PGZPBNJYTNQMAX-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 229960001922 sodium perborate Drugs 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 description 1
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 description 1
- JLJNZJNPAYILPJ-XYJRJTJESA-M 1-[1-[(z)-octadec-9-enyl]-4,5-dihydroimidazol-1-ium-1-yl]tetradecan-1-ol;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC[N+]1(C(O)CCCCCCCCCCCCC)CCN=C1 JLJNZJNPAYILPJ-XYJRJTJESA-M 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- WECIKJKLCDCIMY-UHFFFAOYSA-N 2-chloro-n-(2-cyanoethyl)acetamide Chemical compound ClCC(=O)NCCC#N WECIKJKLCDCIMY-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical class OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 229920003094 Methocel™ K4M Polymers 0.000 description 1
- SUZRRICLUFMAQD-UHFFFAOYSA-N N-Methyltaurine Chemical compound CNCCS(O)(=O)=O SUZRRICLUFMAQD-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 150000008362 aminopropionitriles Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 150000003940 butylamines Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 210000004534 cecum Anatomy 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- VKKVMDHHSINGTJ-UHFFFAOYSA-M di(docosyl)-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCCCCCC VKKVMDHHSINGTJ-UHFFFAOYSA-M 0.000 description 1
- OCTAKUVKMMLTHX-UHFFFAOYSA-M di(icosyl)-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCCCC OCTAKUVKMMLTHX-UHFFFAOYSA-M 0.000 description 1
- HPDYVEVTJANPRA-UHFFFAOYSA-M diethyl(dihexadecyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](CC)(CC)CCCCCCCCCCCCCCCC HPDYVEVTJANPRA-UHFFFAOYSA-M 0.000 description 1
- ZCPCLAPUXMZUCD-UHFFFAOYSA-M dihexadecyl(dimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCC ZCPCLAPUXMZUCD-UHFFFAOYSA-M 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- XXUJMEYKYHETBZ-UHFFFAOYSA-N ethyl 4-nitrophenyl ethylphosphonate Chemical compound CCOP(=O)(CC)OC1=CC=C([N+]([O-])=O)C=C1 XXUJMEYKYHETBZ-UHFFFAOYSA-N 0.000 description 1
- 150000003947 ethylamines Chemical class 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- ICZKASVWFUJTEI-UHFFFAOYSA-N n,n-dimethyldocosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCN(C)C ICZKASVWFUJTEI-UHFFFAOYSA-N 0.000 description 1
- HZALSNJQFSFNJR-UHFFFAOYSA-N n-benzyl-n-decyldecan-1-amine Chemical compound CCCCCCCCCCN(CCCCCCCCCC)CC1=CC=CC=C1 HZALSNJQFSFNJR-UHFFFAOYSA-N 0.000 description 1
- AINJYPILBGEEAY-UHFFFAOYSA-N n-benzyl-n-docosyldocosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCCCCCC)CC1=CC=CC=C1 AINJYPILBGEEAY-UHFFFAOYSA-N 0.000 description 1
- WRFZIYBFCULKKO-UHFFFAOYSA-N n-benzyl-n-dodecyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(CCCCCCCCCCCC)CC1=CC=CC=C1 WRFZIYBFCULKKO-UHFFFAOYSA-N 0.000 description 1
- UVARUEIJBWHZRC-UHFFFAOYSA-N n-benzyl-n-hexadecylhexadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCC)CC1=CC=CC=C1 UVARUEIJBWHZRC-UHFFFAOYSA-N 0.000 description 1
- BEZGTCFIIGBGIW-UHFFFAOYSA-N n-benzyl-n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)CC1=CC=CC=C1 BEZGTCFIIGBGIW-UHFFFAOYSA-N 0.000 description 1
- OSAMHGUIXRULEW-UHFFFAOYSA-N n-benzyl-n-tetradecyltetradecan-1-amine Chemical compound CCCCCCCCCCCCCCN(CCCCCCCCCCCCCC)CC1=CC=CC=C1 OSAMHGUIXRULEW-UHFFFAOYSA-N 0.000 description 1
- ATBNMWWDBWBAHM-UHFFFAOYSA-N n-decyl-n-methyldecan-1-amine Chemical compound CCCCCCCCCCN(C)CCCCCCCCCC ATBNMWWDBWBAHM-UHFFFAOYSA-N 0.000 description 1
- PORMVGDBMPISFU-UHFFFAOYSA-N n-docosyl-n-methyldocosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCN(C)CCCCCCCCCCCCCCCCCCCCCC PORMVGDBMPISFU-UHFFFAOYSA-N 0.000 description 1
- UWHRNIXHZAWBMF-UHFFFAOYSA-N n-dodecyl-n-methyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)CCCCCCCCCCCC UWHRNIXHZAWBMF-UHFFFAOYSA-N 0.000 description 1
- VDUIPQNXOQMTBF-UHFFFAOYSA-N n-ethylhydroxylamine Chemical class CCNO VDUIPQNXOQMTBF-UHFFFAOYSA-N 0.000 description 1
- KCMTVIZYKDBFFS-UHFFFAOYSA-N n-hexadecyl-n-methylhexadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCN(C)CCCCCCCCCCCCCCCC KCMTVIZYKDBFFS-UHFFFAOYSA-N 0.000 description 1
- BCOYWFLSRABBNM-UHFFFAOYSA-N n-icosyl-n-methyldocosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCN(C)CCCCCCCCCCCCCCCCCCCC BCOYWFLSRABBNM-UHFFFAOYSA-N 0.000 description 1
- VFLWKHBYVIUAMP-UHFFFAOYSA-N n-methyl-n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCN(C)CCCCCCCCCCCCCCCCCC VFLWKHBYVIUAMP-UHFFFAOYSA-N 0.000 description 1
- KUFYUMSBZMUWAN-UHFFFAOYSA-N n-methyl-n-tetradecyltetradecan-1-amine Chemical compound CCCCCCCCCCCCCCN(C)CCCCCCCCCCCCCC KUFYUMSBZMUWAN-UHFFFAOYSA-N 0.000 description 1
- OMXHKVKIKSASRV-UHFFFAOYSA-N n-propylhydroxylamine Chemical class CCCNO OMXHKVKIKSASRV-UHFFFAOYSA-N 0.000 description 1
- ZBJVLWIYKOAYQH-UHFFFAOYSA-N naphthalen-2-yl 2-hydroxybenzoate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=C(C=CC=C2)C2=C1 ZBJVLWIYKOAYQH-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 235000013966 potassium salts of fatty acid Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- ZMRUPTIKESYGQW-UHFFFAOYSA-N propranolol hydrochloride Chemical compound [H+].[Cl-].C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 ZMRUPTIKESYGQW-UHFFFAOYSA-N 0.000 description 1
- 125000006308 propyl amino group Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- MKWYFZFMAMBPQK-UHFFFAOYSA-J sodium feredetate Chemical compound [Na+].[Fe+3].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O MKWYFZFMAMBPQK-UHFFFAOYSA-J 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 229940045870 sodium palmitate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 235000013875 sodium salts of fatty acid Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- GGXKEBACDBNFAF-UHFFFAOYSA-M sodium;hexadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCC([O-])=O GGXKEBACDBNFAF-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/225—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
Definitions
- This invention relates to a fabric softening additive for detergent compositions, in particular for compositions which are capable of softening natural fibre wash load articles without causing redeposition problems on any synthetic fibre fabrics in the load.
- a detergent composition of this type is described in European Patent Specification EP-A-213730 (Unilever) according to which the composition contains both a fabric softening agent and a water-soluble nonionic cellulose ether of a selected class, defined in terms of HLB, gel point and the nature of the substituents on the cellulose ether.
- the described compositions may be prepared by including the cellulose ether in a slurry with other ingredients and then spray-drying or it may simply be dry-mixed with other ingredients. While successful results can be obtained with these methods of incorporation we have now surprisingly discovered that better fabric softening results can be obtained if the cellulose ether is added in the form of a particulate additive which also contains the fabric softening agent.
- a particulate fabric softening additive for detergent compositions comprising as the sole or major component, an intimate mixture of a water-soluble nonionic cellulose ether and an organic fabric softening agent in the weight ratio of from 1:1 to 0.06:1, the cellulose derivative being selected from alkyl celluloses and alkyl hydroxyalkyl celluloses in which the alkyl group is selected from methyl and ethyl and the hydroxyalkyl group is selected from hydroxyethyl and hydroxypropyl, the cellulose ether having an HLB (as herein defined) of between 3.3 and 3.8, and a gel point of between 33°C and 56°C.
- HLB as herein defined
- the fabric softening additive is in particulate form. Preferably a substantial majority of the particles have a size of between 50 to 1000 microns, most preferably from 50 to 500 microns. It may be added directly to a wash liquor or alternatively may be included in a fabric treatment composition which already contains a non-soap anionic detergent active material or a mixture thereof with other non-soap detergent active materials, in an amount of from 2% to 50% by weight.
- a suitable level for the additive in such a composition is from 1.0% to 53% by weight, so as to yield in the final composition an overall cellulose ether level of 0.5% to 3% and a fabric softening agent level of 0.5% to 50%.
- the cellulose ether and the organic fabric softening agent will normally be the only components of the additive, although minor amounts of other components may also be present. Such other components may include other cellulose ether materials, other fabric softening agents, dispersing aids and inert fillers.
- HLB is a well known measure of the hydrophilic-lyophilic balance of a material and can be calculated from its molecular structure.
- a suitable estimation method for emulsifiers is described by J T Davies, 2nd Int Congress of Surface Activity 1957, I pp 426-439. This method has been adopted to derive a relative HLB ranking for cellulose ethers by summation of Davies's HLB assignments for substituent groups at the three available hydroxyl sites on the anhydroglucose ring of the polymer.
- the HLB assignments for substituent groups include the following: Residual hydroxyl 1.9 Methyl 0.825 Ethyl 0.350 Hydroxy ethyl 1.63 Hydroxy propyl 1.15 Hydroxy butyl 0.67 (by extrapolation from Davies)
- the cellulose ethers useful herein are polymers which are water-soluble at room temperature.
- the gel point of polymers can be measured in a number of ways. In the present context the gel point is measured on a polymer solution prepared by dispersion at 60/70°C and cooling to 20/25°C at 10 g/1 concentration in deionised water. 50 ml of this solution placed in a beaker is heated, with stirring, at a heating rate of approximately 5°C/minute. The temperature at which the solution clouds is the gel point of the cellulose ether being tested and is measured using a Sybron/Brinkmann colorimeter at 80% transmission/450 nm.
- the degree of substitution (DS) of the anhydroglucose ring may be any value up to the theoretical maximum value of 3, but is preferably from about 1.9-2.9, there being a maximum of 3 hydroxyl groups on each anhydroglucose unit in cellulose.
- the expression 'molar substitution' (MS) is sometimes also used in connection with these polymers and refers the number of hydroxyalkyl substituents per anhydroglucose ring and may be more than 3 when the substituents themselves carry further substituents.
- the cellulose ethers preferred in the present invention have an average number of anhydroglucose units in the cellulose polymer, or weight average degree of polymerisation (DP), from about 50 to about 1,200.
- DP weight average degree of polymerisation
- cellulose ethers suitable for use in the present invention are commercially available, as follows:
- a second essential component of the additives of the present invention is an organic fabric softening agent which may be selected from quaternary ammonium compounds, imidazolinium derivatives (both of which are cationic fabric softening agents), fatty amines, soaps, organo-modified fabric softening clays and mixtures thereof.
- the fabric softening material is preferably a cold water-insoluble material, that is a material having a solubility at 20°C of less than 10 g/l in water at a pH value of about 6 or a material which will form an insoluble calcium salt in hard water.
- Highly preferred water-insoluble quaternary ammonium compounds are those having two C12-C24 alkyl or alkenyl chains, optionally substituted by functional groups such as --OH, --O--, --CONH, --COO-- etc.
- R1 and R2 represent hydrocarbyl groups from about 12 to about 24 carbon atoms
- R3 and R4 represent hydrocarbyl groups containing from 1 to about 4 carbon atoms
- X is an anion, preferably selected from halide, methyl sulfate and ethyl sulfate radicals.
- quaternary softeners include ditallow dimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexadecyl dimethyl ammonium chloride; di(hydrogenated tallow alkyl) dimethyl ammonium chloride; dioctadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammonium chloride; di(coconut alkyl) dimethyl ammonium chloride.
- Ditallow dimethyl ammonium chloride, di(hydrogenated tallow alkyl) dimethyl ammonium chloride, di(coconut alkyl) dimethyl ammonium chloride and di(coconut alkyl) dimethyl ammonium methosulfate are preferred.
- alkylimidazolinium salts believed to have the formula: wherein R6 is an alkyl or hydroxyalkyl group containing from 1 to 4, preferably 1 or 2 carbon atoms, R7 is an alkyl or alkenyl group containing from 8 to 25 carbon atoms, R8 is an alkyl or alkenyl group containing from 8 to 25 carbon atoms, and R9 is hydrogen or an alkyl containing from l to 4 carbon atoms and A ⁇ is an anion, preferably a halide, methosulfate or ethosulfate.
- Preferred imidazolinium salts include 1-methyl-1-(tallowylamido-) ethyl -2-tallowyl- 4,5-dihydro imidazolinium methosulfate and 1-methyl-1- (palmitoylamido)ethyl -2-octadecyl-4,5- dihydro- imidazolinium chloride.
- Other useful imidazolinium materials are 2-heptadecyl-1-methyl-1- (2-stearylamido)- ethyl-imidazolinium chloride and 2-lauryl-1-hydroxyethyl-1-oleyl-imidazolinium chloride.
- fabric softening agent excludes, cationic detergent active materials which have a solubility above 10 g/l in water at 2o°C at a pH of about 6.
- R1 and R2 each independently represent a C12-C22 alkyl group, preferably straight-chained and R3 is methyl or ethyl.
- Suitable amines include: didecyl methylamine; dilauryl methylamine; dimyristyl methylamine; dicetyl methylamine; distearyl methylamine; diarachidyl methylamine; dibehenyl methylamine; arachidyl behenyl methylamine or di (mixed arachidyl/behenyl) methylamine; di (tallowyl) methylamine; arachidyl/behenyl dimethylamine and the corresponding ethylamines, propylamines and butylamines.
- ditallowyl methylamine is Especially preferred.
- This is commercially available as Armeen M2HT from AKZO NV, as Genamin SH301 from FARBWERKE HOECHST, and as Noram M2SH from the CECA COMPANY.
- suitable amines include: didecyl benzylamine; dilauryl benzylamine; dimyristyl benzylamine; dicetyl benzylamine; distearyl benzylamine; dioleyl benzylamine; dilinoleyl benzylamine; diarachidyl benzylamine; dibehenyl benzylamine; di (arachidyl/behenyl) benzylamine, ditallowyl benzylamine and the corresponding allylamines, hydroxy ethylamines, hydroxy propylamines and 2-cyanoethylamines.
- ditallowyl benzylamine and ditallowyl allylamine are especially preferred.
- the fabric softening agent is a soap
- the soap comprises salts of higher fatty acids containing from 8 to 24 carbon atoms, preferably from 10 to 20 carbon atoms in the molecule, or mixtures thereof.
- soaps include sodium stearate, sodium palmitate, sodium salts of tallow, coconut oil and palm oil fatty acids and complexes between stearic and/or palmitic fatty acid and/or tallow and/or coconut oil and/or palm oil fatty acids with water-soluble alkanolamines such as ethanolamine, di- or tri-ethanolamine, N-methylethanol- amine, N-ethylethanolamine, 2-methylethanolamine and 2,2-dimethyl ethanolamine and N-containing ring compounds such as morpholine, 2′-pyrrolidone and their methyl derivatives.
- water-soluble alkanolamines such as ethanolamine, di- or tri-ethanolamine, N-methylethanol- amine, N-ethylethanolamine, 2-methylethanolamine and 2,2-dimethyl ethanolamine and N-containing ring compounds such as morpholine, 2′-pyrrolidone and their methyl derivatives.
- the fabric softening agent is a mixture of soap and either a cationic fabric softening agent or a fatty amine.
- the fabric softening additive comprises the fabric softening agent and the cellulose ether in intimate mixture. This means that substantially all the particles of the additive contain both components. Of course, it is possible for a minor amount of the additive to be in the form of particles which do not contain both components, but there is no advantage in this.
- Example II describes a solid composition containing a quaternary ammonium fabric softener, a cellulose ether which is described as a methyl cellulose with a DS (methyl) of 2.31 and a gel point of 40°C and a large excess (90%) of sodium carbonate.
- a quaternary ammonium fabric softener a cellulose ether which is described as a methyl cellulose with a DS (methyl) of 2.31 and a gel point of 40°C and a large excess (90%) of sodium carbonate.
- Such compositions where the softener and the cellulose ether constitute only a minor part of the composition do not form part of the present invention.
- a suitable method of preparing the additive, when the fabric softening agent has a suitably low melting point, is to melt the fabric softening agent and then to disperse the cellulose ether therein. The liquid mixture is then cooled to a solid, which may be ground and sieved to the required particle size.
- An alternative method of forming the additive is to spray-dry the two components either in the absence of other materials or in the presence of minor amounts thereof.
- compositions to which the fabric softening additives according to the invention can be added contain a non-soap anionic detergent active material, which may be mixed with other non-soap detergent compounds selected from nonionic, zwitterionic and amphoteric synthetic detergent active materials.
- a non-soap anionic detergent active material which may be mixed with other non-soap detergent compounds selected from nonionic, zwitterionic and amphoteric synthetic detergent active materials.
- suitable detergent compounds are commercially available and are fully described in the literature, for example in "Surface Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch.
- Anionic detergent active materials are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C8-C 18) alcohols produced for example from tallow or coconut oil, sodium and potassium alkyl (C9-C20) benzene sulphonates, particularly sodium linear secondary alkyl (C10-C15) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty monoglyceride sulphates and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (C8-C18) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; sodium and potassium salts of fatty acid amides of methyl taurine; alkane monos
- Suitable nonionic detergent compounds which may be used include in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- Specific nonionic detergent compounds are alkyl (C6-C22) phenols-ethylene oxide condensates, generally 5 to 25 EO, ie 5 to 25 units of ethylene oxide per molecule, the condensation products of aliphatic (C8-C18) primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine.
- Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- Mixtures of anionic and nonionic compounds may be used in the detergent compositions, particularly to provide controlled low sudsing properties. This is beneficial for compositions intended for use in suds-intolerant automatic washing machines.
- Amounts of amphoteric or zwitterionic detergent compounds can also be used in the compositions of the invention but this is not normally desired due to their relatively high cost. If any amphoteric or zwitterionic detergent compounds are used it is generally in small amounts.
- the effective amount of the detergent active compound or compounds used in the composition of the present invention is generally in the range of from 2 to 50%, preferably from 5 to 40% by weight, most preferably not more than 30% by weight of the composition.
- compositions, to which the additives of the invention may be added will generally include a detergency builder to improve the efficiency of the detergent active, in particular to remove calcium hardness ions from the water and to provide alkalinity.
- the builder material may be selected from precipitating builder materials (such as alkali metal carbonates, bicarbonates, borates, orthophosphates and silicates), sequestering builder materials (such as alkali metal pyrophosphates, polyphosphates, amino polyacetates, phytates, polyphosphonates, aminopolymethylene phosphonates and polycarboxylates), ion-exchange builder materials (such as zeolites and amorphous aluminosilicates), or mixtures of any one or more of these materials.
- precipitating builder materials such as alkali metal carbonates, bicarbonates, borates, orthophosphates and silicates
- sequestering builder materials such as alkali metal pyrophosphates, poly
- builder materials include sodium tripolyphosphate, mixtures thereof with sodium orthophosphate, sodium carbonate, mixtures thereof with calcite as a seed crystal, sodium citrate, zeolite and the sodium salt of nitrilo- triacetic acid.
- the level of builder material in the compositions may be up to 80% by weight, preferably from 20% to 70% by weight and most preferably from 30% to 60% by weight.
- the detergent composition can contain any of the conventional additives in the amounts in which such additives are normally employed in fabric washing detergent compositions.
- these additives include the lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids, lather depressants, oxygen-releasing bleaching agents such as sodium perborate and sodium percarbonate, peracid bleach precursors, chlorine-releasing bleaching agents such as tricloroisocyanuric acid, inorganic salts such as sodium sulphate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as cellulases, proteases and amylases, germicides and colourants.
- lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids
- lather depressants oxygen-releasing bleaching agents such as sodium perborate and sodium percarbonate, peracid bleach precursors, chlorine-releasing bleaching agents such as tricloro
- the level of fabric softening additive in the composition is such that the fabric softening agent occupies more than 0.5% by weight, such as more than 2% by weight in order to provide a noticeable fabric softening benefit. Not more than 50% by weight, preferably not more than 20% by weight of fabric softener is present in the composition to leave room in the formulation for other ingredients.
- the fabric softening agent is a soap
- a level of less than 10% by weight of the composition is sufficient to provide a fabric softening benefit.
- compositions may be in any convenient form such as bars, powders, pastes or liquids, provided that the fabric softening agent and cellulose ether are in intimate mixture form.
- the detergent compositions may be prepared in any way appropriate to their physical form such as by dry-mixing the components, co-agglomerating them or dispersing them in a liquid carrier.
- a preferred physical form is a granule incorporating a detergency builder material and this is most conveniently manufactured by spray-drying at least part of the composition.
- Particulate fabric softening additives were prepared as follows.
- Arosurf TA100 a commercial fabric softening agent which is approximately distearyl dimethyl ammonium chloride in powder form was melted at about 70°C. An appropriate amount of cellulose ether (to give a ratio of 9:1 or 4:1) was added and dispersed by hand stirring. The mixture was then placed in a refrigerator to cool. The cooled mixture, now in solid form, was ground into a powder by use of a pestel and mortar, followed by use of a coffee grinder. A sieved fraction having a particle size of 100 to 400 microns was used in the following experiments.
- a wash liquor was prepared containing 4 g/l of the above composition including the additive in water having a hardness of 24° FH. This liquor was used to wash a fabric load containing artifically soiled test cloths together with terry towelling and polyester monitors in a laboratory scale apparatus. The liquor to cloth ratio was about 20:1, the wash time was 15 minutes at 50°C followed by a 2 minute flood at 50% dilution followed by three 5 minute rinses. The fabric load was then line-dried.
- the terry towelling monitors were assessed for softness subjectively by expert judges who assess softness by comparison of pairs of monitors leading to preference scores which are then adjusted to give a score of zero for the control. A positive score indicates better softness than the control.
- Example 1 the additive consisted of 9 parts of Arosurf to 1 part of cellulose ether and was added at a level of 4.4% on the product.
- Example 2 the additive consisted of 4 parts of Arosurf to 1 part of cellulose ether and was added at a level of 5% on the product.
- Examples IA and 2A respectively compositions were tested which were identical to those used in Examples 1 and 2 except that the Arosurf was separately dry-mixed with the other ingredients rather than being added in the form of an intimate particulate mixture with the cellulose ether polymer and the cellulose ether polymer was added to the wash liquor in the form of a 10 g/l solution.
- the cellulose ether used in these experiments was BERMOCOLL CSTO35 (ex Berol Kemi) which has a gel point of 35°C, an HLB of 3.4 and a degree of polymerisation of about 180.
- Particulate fabric softening additives were prepared as described in Examples 1 and 2. Their compositions were as follows: Example No. 3A 3B 3C 3D Ingredient % Arosurf TA100 7.5 7.5 83 83 Bermcoll CST035 1.5 - 17 - Probe D1 - 1.5 - 17 Sodium carbonate 91.0 91.0 - - Note: 1 - Probe D is a DS 2.5 methyl cellulose (ex Hoechst) having a gel point of 33°C and HLB of 3.01, and a degree of polymerization of about 650.
- Wash liquors were prepared containing 5 g/l of the commercially available fabric washing powder referred to in Examples l and 2 and 2.7 g/l of the above additives in the case of Examples 3C and 3D, but 0.24 g/l of the above additives and 2.46 g/l sodium carbonate in the case of Examples 3A and 3B. These liquors were used to wash fabrics in a similar manner to that described in Examples 1 and 2. The results were: Example No. location of sodium carbonate Softening score (3 washes) 3A in particle + 1.40 3B in particle 0 3C separate + 1.76 3D separate + 1.20
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
- This invention relates to a fabric softening additive for detergent compositions, in particular for compositions which are capable of softening natural fibre wash load articles without causing redeposition problems on any synthetic fibre fabrics in the load.
- A detergent composition of this type is described in European Patent Specification EP-A-213730 (Unilever) according to which the composition contains both a fabric softening agent and a water-soluble nonionic cellulose ether of a selected class, defined in terms of HLB, gel point and the nature of the substituents on the cellulose ether. The described compositions may be prepared by including the cellulose ether in a slurry with other ingredients and then spray-drying or it may simply be dry-mixed with other ingredients. While successful results can be obtained with these methods of incorporation we have now surprisingly discovered that better fabric softening results can be obtained if the cellulose ether is added in the form of a particulate additive which also contains the fabric softening agent.
- Thus according to the invention there is provided a particulate fabric softening additive for detergent compositions, comprising as the sole or major component, an intimate mixture of a water-soluble nonionic cellulose ether and an organic fabric softening agent in the weight ratio of from 1:1 to 0.06:1, the cellulose derivative being selected from alkyl celluloses and alkyl hydroxyalkyl celluloses in which the alkyl group is selected from methyl and ethyl and the hydroxyalkyl group is selected from hydroxyethyl and hydroxypropyl, the cellulose ether having an HLB (as herein defined) of between 3.3 and 3.8, and a gel point of between 33°C and 56°C.
- The fabric softening additive is in particulate form. Preferably a substantial majority of the particles have a size of between 50 to 1000 microns, most preferably from 50 to 500 microns. It may be added directly to a wash liquor or alternatively may be included in a fabric treatment composition which already contains a non-soap anionic detergent active material or a mixture thereof with other non-soap detergent active materials, in an amount of from 2% to 50% by weight. A suitable level for the additive in such a composition is from 1.0% to 53% by weight, so as to yield in the final composition an overall cellulose ether level of 0.5% to 3% and a fabric softening agent level of 0.5% to 50%.
- The cellulose ether and the organic fabric softening agent will normally be the only components of the additive, although minor amounts of other components may also be present. Such other components may include other cellulose ether materials, other fabric softening agents, dispersing aids and inert fillers.
- The useful substituted cellulose ethers are defined in part by their HLB. HLB is a well known measure of the hydrophilic-lyophilic balance of a material and can be calculated from its molecular structure. A suitable estimation method for emulsifiers is described by J T Davies, 2nd Int Congress of Surface Activity 1957, I pp 426-439. This method has been adopted to derive a relative HLB ranking for cellulose ethers by summation of Davies's HLB assignments for substituent groups at the three available hydroxyl sites on the anhydroglucose ring of the polymer. The HLB assignments for substituent groups include the following:
Residual hydroxyl 1.9 Methyl 0.825 Ethyl 0.350 Hydroxy ethyl 1.63 Hydroxy propyl 1.15 Hydroxy butyl 0.67 (by extrapolation from Davies) - The cellulose ethers useful herein are polymers which are water-soluble at room temperature. The gel point of polymers can be measured in a number of ways. In the present context the gel point is measured on a polymer solution prepared by dispersion at 60/70°C and cooling to 20/25°C at 10 g/1 concentration in deionised water. 50 ml of this solution placed in a beaker is heated, with stirring, at a heating rate of approximately 5°C/minute. The temperature at which the solution clouds is the gel point of the cellulose ether being tested and is measured using a Sybron/Brinkmann colorimeter at 80% transmission/450 nm.
- Provided that the HLB and gel point of the polymer fall within the required ranges, the degree of substitution (DS) of the anhydroglucose ring may be any value up to the theoretical maximum value of 3, but is preferably from about 1.9-2.9, there being a maximum of 3 hydroxyl groups on each anhydroglucose unit in cellulose. The expression 'molar substitution' (MS) is sometimes also used in connection with these polymers and refers the number of hydroxyalkyl substituents per anhydroglucose ring and may be more than 3 when the substituents themselves carry further substituents.
- The cellulose ethers preferred in the present invention have an average number of anhydroglucose units in the cellulose polymer, or weight average degree of polymerisation (DP), from about 50 to about 1,200.
-
- A number of other cellulose ethers are known from the prior art, but have been found to be unsuitable for use in the present invention. Thus, British Specification No GB 2 038 353B (COLGATE- PALMOLIVE) discloses TYLOSE MH 300 (ex Hoechst) which has a gel point of 58°C and METHOCEL XD 8861 (ex Dow Chemical Company, now coded METHOCEL HB12M) which contains about 0.1 hydroxybutyl substituents per anhydroglucose ring, while Japanese Patent Specification No 59-6293 (LION KK) discloses KLUCEL H (ex Hercules Chemical Corp) which has an HLB of about 4.4, METHOCEL K4M (ex Dow Chemical Company) which has a gel point of about 69°C, and NATROSOL 250H (ex Hercules Chemical Corp) which has an HLB of about 6.9.
- A second essential component of the additives of the present invention is an organic fabric softening agent which may be selected from quaternary ammonium compounds, imidazolinium derivatives (both of which are cationic fabric softening agents), fatty amines, soaps, organo-modified fabric softening clays and mixtures thereof.
- The fabric softening material is preferably a cold water-insoluble material, that is a material having a solubility at 20°C of less than 10 g/l in water at a pH value of about 6 or a material which will form an insoluble calcium salt in hard water.
- Highly preferred water-insoluble quaternary ammonium compounds are those having two C₁₂-C₂₄ alkyl or alkenyl chains, optionally substituted by functional groups such as --OH, --O--, --CONH, --COO-- etc.
-
- wherein R₁ and R₂ represent hydrocarbyl groups from about 12 to about 24 carbon atoms; R₃ and R₄ represent hydrocarbyl groups containing from 1 to about 4 carbon atoms; and X is an anion, preferably selected from halide, methyl sulfate and ethyl sulfate radicals. Representative examples of these quaternary softeners include ditallow dimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexadecyl dimethyl ammonium chloride; di(hydrogenated tallow alkyl) dimethyl ammonium chloride; dioctadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammonium chloride; di(coconut alkyl) dimethyl ammonium chloride. Ditallow dimethyl ammonium chloride, di(hydrogenated tallow alkyl) dimethyl ammonium chloride, di(coconut alkyl) dimethyl ammonium chloride and di(coconut alkyl) dimethyl ammonium methosulfate are preferred.
- Another class of preferred water-insoluble cationic materials are the alkylimidazolinium salts believed to have the formula:
- Preferred fabric softening agents include water-insoluble tertiary amines having the general formula:
- Preferably R₁ and R₂ each independently represent a C₁₂-C₂₂ alkyl group, preferably straight-chained and R₃ is methyl or ethyl. Suitable amines include: didecyl methylamine; dilauryl methylamine; dimyristyl methylamine; dicetyl methylamine; distearyl methylamine; diarachidyl methylamine; dibehenyl methylamine; arachidyl behenyl methylamine or di (mixed arachidyl/behenyl) methylamine; di (tallowyl) methylamine; arachidyl/behenyl dimethylamine and the corresponding ethylamines, propylamines and butylamines. Especially preferred is ditallowyl methylamine. This is commercially available as Armeen M2HT from AKZO NV, as Genamin SH301 from FARBWERKE HOECHST, and as Noram M2SH from the CECA COMPANY.
- When Y is
- Mixtures of any of these amines may be used.
- When the fabric softening agent is a soap, this includes not only the usual alkali metal and alkaline earth metal salts of fatty acids, but also the organic salts which can be formed by complexing fatty acids with organic nitrogen-containing materials such as amines and derivatives thereof. Usually, the soap comprises salts of higher fatty acids containing from 8 to 24 carbon atoms, preferably from 10 to 20 carbon atoms in the molecule, or mixtures thereof.
- Preferred examples of soaps include sodium stearate, sodium palmitate, sodium salts of tallow, coconut oil and palm oil fatty acids and complexes between stearic and/or palmitic fatty acid and/or tallow and/or coconut oil and/or palm oil fatty acids with water-soluble alkanolamines such as ethanolamine, di- or tri-ethanolamine, N-methylethanol- amine, N-ethylethanolamine, 2-methylethanolamine and 2,2-dimethyl ethanolamine and N-containing ring compounds such as morpholine, 2′-pyrrolidone and their methyl derivatives.
- Mixtures of soaps can also be employed.
- Particularly preferred are the sodium and potassium salts of the mixed fatty acids derived from coconut oil and tallow, that is sodium and potassium tallow and coconut soap.
- We have found particularly beneficial effects when the fabric softening agent is a mixture of soap and either a cationic fabric softening agent or a fatty amine.
- The fabric softening additive comprises the fabric softening agent and the cellulose ether in intimate mixture. This means that substantially all the particles of the additive contain both components. Of course, it is possible for a minor amount of the additive to be in the form of particles which do not contain both components, but there is no advantage in this.
- We are aware of United States patent specification US 3 920 561 (Des Marais) which in Example II thereof describes a solid composition containing a quaternary ammonium fabric softener, a cellulose ether which is described as a methyl cellulose with a DS (methyl) of 2.31 and a gel point of 40°C and a large excess (90%) of sodium carbonate. Such compositions where the softener and the cellulose ether constitute only a minor part of the composition do not form part of the present invention.
- A suitable method of preparing the additive, when the fabric softening agent has a suitably low melting point, is to melt the fabric softening agent and then to disperse the cellulose ether therein. The liquid mixture is then cooled to a solid, which may be ground and sieved to the required particle size.
- An alternative method of forming the additive is to spray-dry the two components either in the absence of other materials or in the presence of minor amounts thereof.
- The compositions to which the fabric softening additives according to the invention can be added contain a non-soap anionic detergent active material, which may be mixed with other non-soap detergent compounds selected from nonionic, zwitterionic and amphoteric synthetic detergent active materials. Many suitable detergent compounds are commercially available and are fully described in the literature, for example in "Surface Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch.
- Anionic detergent active materials are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C₈-C ₁₈) alcohols produced for example from tallow or coconut oil, sodium and potassium alkyl (C₉-C₂₀) benzene sulphonates, particularly sodium linear secondary alkyl (C₁₀-C₁₅) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty monoglyceride sulphates and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (C₈-C₁₈) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; sodium and potassium salts of fatty acid amides of methyl taurine; alkane monosulphonates such as those derived by reacting alpha-olefins (C₈-C₂₀) with sodium bisulphite and those derived from reacting paraffins with SO₂ and Cl₂ and then hydrolysing with a base to produce a random sulphonate; and olefin sulphonates, which term is used to describe the material made by reacting olefins, particularly C₁₀-C₂₀ alpha-olefins, with SO₃ and then neutralising and hydrolysing the reaction product. The preferred anionic detergent compounds are sodium (C₁₁-C₁₅) alkyl benzene sulphonates and sodium (C₁₆-C₁₈) alkyl sulphates.
- Suitable nonionic detergent compounds which may be used include in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are alkyl (C₆-C₂₂) phenols-ethylene oxide condensates, generally 5 to 25 EO, ie 5 to 25 units of ethylene oxide per molecule, the condensation products of aliphatic (C₈-C₁₈) primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine. Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- Mixtures of anionic and nonionic compounds may be used in the detergent compositions, particularly to provide controlled low sudsing properties. This is beneficial for compositions intended for use in suds-intolerant automatic washing machines.
- Amounts of amphoteric or zwitterionic detergent compounds can also be used in the compositions of the invention but this is not normally desired due to their relatively high cost. If any amphoteric or zwitterionic detergent compounds are used it is generally in small amounts.
- The effective amount of the detergent active compound or compounds used in the composition of the present invention is generally in the range of from 2 to 50%, preferably from 5 to 40% by weight, most preferably not more than 30% by weight of the composition.
- The compositions, to which the additives of the invention may be added, will generally include a detergency builder to improve the efficiency of the detergent active, in particular to remove calcium hardness ions from the water and to provide alkalinity. The builder material may be selected from precipitating builder materials (such as alkali metal carbonates, bicarbonates, borates, orthophosphates and silicates), sequestering builder materials (such as alkali metal pyrophosphates, polyphosphates, amino polyacetates, phytates, polyphosphonates, aminopolymethylene phosphonates and polycarboxylates), ion-exchange builder materials (such as zeolites and amorphous aluminosilicates), or mixtures of any one or more of these materials. Preferred examples of builder materials include sodium tripolyphosphate, mixtures thereof with sodium orthophosphate, sodium carbonate, mixtures thereof with calcite as a seed crystal, sodium citrate, zeolite and the sodium salt of nitrilo- triacetic acid.
- The level of builder material in the compositions may be up to 80% by weight, preferably from 20% to 70% by weight and most preferably from 30% to 60% by weight.
- Apart from the components already mentioned, the detergent composition can contain any of the conventional additives in the amounts in which such additives are normally employed in fabric washing detergent compositions. Examples of these additives include the lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids, lather depressants, oxygen-releasing bleaching agents such as sodium perborate and sodium percarbonate, peracid bleach precursors, chlorine-releasing bleaching agents such as tricloroisocyanuric acid, inorganic salts such as sodium sulphate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as cellulases, proteases and amylases, germicides and colourants.
- The level of fabric softening additive in the composition is such that the fabric softening agent occupies more than 0.5% by weight, such as more than 2% by weight in order to provide a noticeable fabric softening benefit. Not more than 50% by weight, preferably not more than 20% by weight of fabric softener is present in the composition to leave room in the formulation for other ingredients. When the fabric softening agent is a soap, a level of less than 10% by weight of the composition is sufficient to provide a fabric softening benefit.
- The compositions may be in any convenient form such as bars, powders, pastes or liquids, provided that the fabric softening agent and cellulose ether are in intimate mixture form.
- The detergent compositions may be prepared in any way appropriate to their physical form such as by dry-mixing the components, co-agglomerating them or dispersing them in a liquid carrier. However, a preferred physical form is a granule incorporating a detergency builder material and this is most conveniently manufactured by spray-drying at least part of the composition.
- The invention will now be illustrated in the following non-limiting examples.
- Particulate fabric softening additives were prepared as follows.
- Arosurf TA100, a commercial fabric softening agent which is approximately distearyl dimethyl ammonium chloride in powder form was melted at about 70°C. An appropriate amount of cellulose ether (to give a ratio of 9:1 or 4:1) was added and dispersed by hand stirring. The mixture was then placed in a refrigerator to cool. The cooled mixture, now in solid form, was ground into a powder by use of a pestel and mortar, followed by use of a coffee grinder. A sieved fraction having a particle size of 100 to 400 microns was used in the following experiments.
- A commercially available fabric washing powder having the following approximate composition was used.
Ingredient % by weight Anionic detergent active 5.6 Nonionic detergent active 3.5 Hardened tallow soap 2.8 Sodium tripolyphosphate 21.8 Sodium silicate 3.8 Sodium perborate 17.6 Sodium carbonate 5.0 Sodium sulphate 30.2 Water and miscellaneous ingredients balance - To this composition was added a given quantity of fabric softening additive prepared as described above.
- A wash liquor was prepared containing 4 g/l of the above composition including the additive in water having a hardness of 24° FH. This liquor was used to wash a fabric load containing artifically soiled test cloths together with terry towelling and polyester monitors in a laboratory scale apparatus. The liquor to cloth ratio was about 20:1, the wash time was 15 minutes at 50°C followed by a 2 minute flood at 50% dilution followed by three 5 minute rinses. The fabric load was then line-dried.
- After drying, the terry towelling monitors were assessed for softness subjectively by expert judges who assess softness by comparison of pairs of monitors leading to preference scores which are then adjusted to give a score of zero for the control. A positive score indicates better softness than the control.
- In a first Example (Example 1), the additive consisted of 9 parts of Arosurf to 1 part of cellulose ether and was added at a level of 4.4% on the product. In a second example (Example 2) the additive consisted of 4 parts of Arosurf to 1 part of cellulose ether and was added at a level of 5% on the product.
- In Examples IA and 2A respectively compositions were tested which were identical to those used in Examples 1 and 2 except that the Arosurf was separately dry-mixed with the other ingredients rather than being added in the form of an intimate particulate mixture with the cellulose ether polymer and the cellulose ether polymer was added to the wash liquor in the form of a 10 g/l solution.
- In the control, no Arosurf or cellulose ether was present.
- The cellulose ether used in these experiments was BERMOCOLL CSTO35 (ex Berol Kemi) which has a gel point of 35°C, an HLB of 3.4 and a degree of polymerisation of about 180.
- The results were:
Example No. Overall cellulose ether level (%) Softening score (3 washes) 1 0.44 +0.47 1A 0.44 +0.02 2 1.0 +0.29 2A 1.0 -0.05 Control - -0.73 - These results show that at both levels of cellulose ether, the incorporation via the additive leads to a better softening performance than separate addition, although clearly in all cases a benefit compared with the control is observed.
- When these experiments are repeated with a higher (2%) overall level of cellulose ether a significant softening benefit compared with separate addition was no longer observed, demonstrating that the invention is particularly useful at lower levels of cellulose ether.
- This example shows the importance of the mixture of the cellulose ether and the fabric softening agent constituting at least the major component of the additive, in contrast to the composition described in Example II of US 3 920 561 (Des Marais).
- Particulate fabric softening additives were prepared as described in Examples 1 and 2. Their compositions were as follows:
Example No. 3A 3B 3C 3D Ingredient % Arosurf TA100 7.5 7.5 83 83 Bermcoll CST035 1.5 - 17 - Probe D¹ - 1.5 - 17 Sodium carbonate 91.0 91.0 - - Note: 1 - Probe D is a DS 2.5 methyl cellulose (ex Hoechst) having a gel point of 33°C and HLB of 3.01, and a degree of polymerization of about 650. - Wash liquors were prepared containing 5 g/l of the commercially available fabric washing powder referred to in Examples l and 2 and 2.7 g/l of the above additives in the case of Examples 3C and 3D, but 0.24 g/l of the above additives and 2.46 g/l sodium carbonate in the case of Examples 3A and 3B. These liquors were used to wash fabrics in a similar manner to that described in Examples 1 and 2. The results were:
Example No. location of sodium carbonate Softening score (3 washes) 3A in particle + 1.40 3B in particle 0 3C separate + 1.76 3D separate + 1.20 - These results show that in the case of both cellulose ethers used, the additives according to the invention (Examples 3C and 3D) which consist only of the mixture of softener and cellulose ether give better results than when this mixture forms only a minor part of the additive, the balance being made up by sodium carbonate.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8728958 | 1987-12-11 | ||
GB878728958A GB8728958D0 (en) | 1987-12-11 | 1987-12-11 | Fabric softening additive for detergent compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0320296A2 true EP0320296A2 (en) | 1989-06-14 |
EP0320296A3 EP0320296A3 (en) | 1990-03-21 |
EP0320296B1 EP0320296B1 (en) | 1994-03-16 |
Family
ID=10628353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88311702A Expired - Lifetime EP0320296B1 (en) | 1987-12-11 | 1988-12-09 | Fabric softening additive for detergent compositions |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0320296B1 (en) |
JP (1) | JPH021800A (en) |
DE (1) | DE3888477T2 (en) |
ES (1) | ES2063052T3 (en) |
GB (1) | GB8728958D0 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369671A (en) * | 1989-07-11 | 1991-03-26 | Unilever Nv | Composite for softening fiber product |
EP0426304A1 (en) * | 1989-10-06 | 1991-05-08 | Unilever Plc | Fabric treatment composition with softening properties |
WO1992020594A1 (en) * | 1991-05-10 | 1992-11-26 | Henkel Kommanditgesellschaft Auf Aktien | Detergent product |
GB2290798A (en) * | 1994-06-30 | 1996-01-10 | Procter & Gamble | Detegent compositions |
WO1996020997A1 (en) * | 1994-12-31 | 1996-07-11 | The Procter & Gamble Company | Detergent composition comprising cellulase enzyme and nonionic cellulose ether |
GB2297978A (en) * | 1995-02-15 | 1996-08-21 | Procter & Gamble | Detergent compositions containing amylase |
EP0767827A1 (en) * | 1994-06-30 | 1997-04-16 | The Procter & Gamble Company | Detergent compositions |
US5919271A (en) * | 1994-12-31 | 1999-07-06 | Procter & Gamble Company | Detergent composition comprising cellulase enzyme and nonionic cellulose ether |
EP0956850A1 (en) * | 1998-04-21 | 1999-11-17 | Akzo Nobel N.V. | Hair care products containing an ehec ether |
WO2000022075A1 (en) * | 1998-10-13 | 2000-04-20 | The Procter & Gamble Company | Detergent compositions or components |
GB2347681A (en) * | 1999-03-11 | 2000-09-13 | Procter & Gamble | Detergent compositions or components |
WO2016113376A1 (en) * | 2015-01-16 | 2016-07-21 | Rhodia Operations | Method for reducing greying of a fabric |
EP3187574A1 (en) * | 2015-12-11 | 2017-07-05 | Henkel AG & Co. KGaA | Cellulose ether improving cleaning permormance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920561A (en) * | 1974-07-15 | 1975-11-18 | Procter & Gamble | Composition for imparting softness and soil release properties to fabrics |
FR2318224A1 (en) * | 1975-07-17 | 1977-02-11 | Berol Kemi Ab | DETERGENT COMPOSITION CONTAINING A CELLULOSIC ETHER |
FR2339672A1 (en) * | 1976-02-02 | 1977-08-26 | Procter & Gamble | DETERGENT COMPOSITIONS CONTAINING A NON-IONIC SURFACTANT AND A CELLULOSIC ETHER |
US4540499A (en) * | 1982-07-05 | 1985-09-10 | Lion Corporation | Fabric treating composition for addition to granular detergent |
EP0213730A1 (en) * | 1985-07-29 | 1987-03-11 | Unilever Plc | Detergent composition with fabric softening properties |
-
1987
- 1987-12-11 GB GB878728958A patent/GB8728958D0/en active Pending
-
1988
- 1988-12-09 EP EP88311702A patent/EP0320296B1/en not_active Expired - Lifetime
- 1988-12-09 ES ES88311702T patent/ES2063052T3/en not_active Expired - Lifetime
- 1988-12-09 DE DE3888477T patent/DE3888477T2/en not_active Expired - Fee Related
- 1988-12-09 JP JP63312766A patent/JPH021800A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920561A (en) * | 1974-07-15 | 1975-11-18 | Procter & Gamble | Composition for imparting softness and soil release properties to fabrics |
FR2318224A1 (en) * | 1975-07-17 | 1977-02-11 | Berol Kemi Ab | DETERGENT COMPOSITION CONTAINING A CELLULOSIC ETHER |
FR2339672A1 (en) * | 1976-02-02 | 1977-08-26 | Procter & Gamble | DETERGENT COMPOSITIONS CONTAINING A NON-IONIC SURFACTANT AND A CELLULOSIC ETHER |
US4540499A (en) * | 1982-07-05 | 1985-09-10 | Lion Corporation | Fabric treating composition for addition to granular detergent |
EP0213730A1 (en) * | 1985-07-29 | 1987-03-11 | Unilever Plc | Detergent composition with fabric softening properties |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369671A (en) * | 1989-07-11 | 1991-03-26 | Unilever Nv | Composite for softening fiber product |
EP0426304A1 (en) * | 1989-10-06 | 1991-05-08 | Unilever Plc | Fabric treatment composition with softening properties |
AU618690B2 (en) * | 1989-10-06 | 1992-01-02 | Unilever Plc | Fabric treatment composition with softening properties |
US5104555A (en) * | 1989-10-06 | 1992-04-14 | Lever Brothers Company, Division Of Conopco, Inc. | Fabric treatment composition with softening properties |
WO1992020594A1 (en) * | 1991-05-10 | 1992-11-26 | Henkel Kommanditgesellschaft Auf Aktien | Detergent product |
GB2290798A (en) * | 1994-06-30 | 1996-01-10 | Procter & Gamble | Detegent compositions |
EP0767827A4 (en) * | 1994-06-30 | 1999-01-27 | Procter & Gamble | Detergent compositions |
EP0767827A1 (en) * | 1994-06-30 | 1997-04-16 | The Procter & Gamble Company | Detergent compositions |
WO1996020997A1 (en) * | 1994-12-31 | 1996-07-11 | The Procter & Gamble Company | Detergent composition comprising cellulase enzyme and nonionic cellulose ether |
US5919271A (en) * | 1994-12-31 | 1999-07-06 | Procter & Gamble Company | Detergent composition comprising cellulase enzyme and nonionic cellulose ether |
EP0809687A1 (en) † | 1995-02-15 | 1997-12-03 | The Procter & Gamble Company | Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether |
US5851235A (en) * | 1995-02-15 | 1998-12-22 | The Procter & Gamble Company | Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether |
WO1996025478A1 (en) * | 1995-02-15 | 1996-08-22 | The Procter & Gamble Company | Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether |
GB2297978A (en) * | 1995-02-15 | 1996-08-21 | Procter & Gamble | Detergent compositions containing amylase |
EP0809687B2 (en) † | 1995-02-15 | 2011-10-26 | The Procter & Gamble Company | Detergent composition comprising an amylase enzyme and a nonionic polysaccharide ether |
EP0956850A1 (en) * | 1998-04-21 | 1999-11-17 | Akzo Nobel N.V. | Hair care products containing an ehec ether |
WO2000022075A1 (en) * | 1998-10-13 | 2000-04-20 | The Procter & Gamble Company | Detergent compositions or components |
US6579840B1 (en) | 1998-10-13 | 2003-06-17 | The Procter & Gamble Company | Detergent compositions or components comprising hydrophobically modified cellulosic polymers |
GB2347681A (en) * | 1999-03-11 | 2000-09-13 | Procter & Gamble | Detergent compositions or components |
WO2016113376A1 (en) * | 2015-01-16 | 2016-07-21 | Rhodia Operations | Method for reducing greying of a fabric |
EP3187574A1 (en) * | 2015-12-11 | 2017-07-05 | Henkel AG & Co. KGaA | Cellulose ether improving cleaning permormance |
Also Published As
Publication number | Publication date |
---|---|
GB8728958D0 (en) | 1988-01-27 |
JPH021800A (en) | 1990-01-08 |
EP0320296A3 (en) | 1990-03-21 |
ES2063052T3 (en) | 1995-01-01 |
EP0320296B1 (en) | 1994-03-16 |
DE3888477T2 (en) | 1994-06-23 |
DE3888477D1 (en) | 1994-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5160641A (en) | Detergent composition with fabric softening properties | |
DK166412B1 (en) | DETERGENT COMPOSITION CONTAINING AN ETHOXYLATED AMINE WITH CLAY EARTH REMOVAL AND ANTI-REMOVAL PROPERTIES | |
US4954292A (en) | Detergent composition containing PVP and process of using same | |
US4954270A (en) | Fabric softening composition: fabric softener and hydrophobically modified nonionic cellulose ether | |
EP0320296B1 (en) | Fabric softening additive for detergent compositions | |
CA1312419C (en) | Composition for softening fabrics | |
CA1152263A (en) | Detergent-compatible fabric softening and antistatic compositions | |
EP0213729A1 (en) | Detergent compositions | |
EP0426304B1 (en) | Fabric treatment composition with softening properties | |
JPH07100800B2 (en) | Detergent composition containing a cationic compound having clay stain removability / anti-redeposition property | |
JPS6164797A (en) | Detergent composition | |
EP0276999B1 (en) | Fabric conditioning composition | |
US5009800A (en) | Fabric softening additive for detergent compositions: cellulose ether and organic fabric softener | |
EP0177165B1 (en) | Detergent composition | |
SE444689B (en) | SOFT-DETERGENT COMPOSITION | |
US4411803A (en) | Detergent softener compositions | |
EP0351769A2 (en) | Antistatic laundry detergent composition | |
EP0276997B1 (en) | Detergent composition with fabric softening properties | |
AU600654B2 (en) | Detergent compositions containing polymers | |
AU616545B2 (en) | Detergent composition with fabric softening properties | |
GB2266100A (en) | Fabric softening compositions | |
EP0518870B1 (en) | Liquid detergents | |
JPH0213065B2 (en) | ||
JPH039229B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19900226 |
|
17Q | First examination report despatched |
Effective date: 19920415 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER N.V. Owner name: UNILEVER PLC |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3888477 Country of ref document: DE Date of ref document: 19940421 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2063052 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
EAL | Se: european patent in force in sweden |
Ref document number: 88311702.0 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19951110 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19951121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19951122 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19951130 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19951201 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19951212 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19951220 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19961209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19961210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19961231 Ref country code: CH Effective date: 19961231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19961209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970829 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970902 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88311702.0 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971210 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19980113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051209 |