EP0319836B1 - Method and apparatus for operating a melting gasifier - Google Patents

Method and apparatus for operating a melting gasifier Download PDF

Info

Publication number
EP0319836B1
EP0319836B1 EP88119930A EP88119930A EP0319836B1 EP 0319836 B1 EP0319836 B1 EP 0319836B1 EP 88119930 A EP88119930 A EP 88119930A EP 88119930 A EP88119930 A EP 88119930A EP 0319836 B1 EP0319836 B1 EP 0319836B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
inert gas
supply
nozzles
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88119930A
Other languages
German (de)
French (fr)
Other versions
EP0319836A1 (en
Inventor
Bogdan Vuletic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Voest Alpine Industrieanlagenbau GmbH
Original Assignee
Deutsche Voest Alpine Industrieanlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Voest Alpine Industrieanlagenbau GmbH filed Critical Deutsche Voest Alpine Industrieanlagenbau GmbH
Publication of EP0319836A1 publication Critical patent/EP0319836A1/en
Application granted granted Critical
Publication of EP0319836B1 publication Critical patent/EP0319836B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a melter gasifier for carrying it out.
  • a method for the direct production of molten pig iron from lumpy iron ore in which the iron ore is reduced to sponge iron in a reduction shaft furnace by means of a hot reducing gas and is then fed to a melter gasifier.
  • the coal and injected oxygen-containing gas are used to generate the heat and the reducing gas required to melt the sponge iron.
  • a fluidized bed is formed from the coal introduced from above and the oxygen-containing gas blown into the lower part of the carburetor, in which the iron sponge particles, which are also supplied above, are braked and be melted.
  • radial oxygen nozzles distributed at the same height over the circumference of the melting gasifier are provided, which are fed from a ring line.
  • the oxygen nozzles are inevitably water-cooled in order to be able to withstand the high temperatures which prevail inside the melter gasifier, in particular in front of these nozzles. In this area in front of the nozzles, the high temperature converts the fluidized bed into a doughy or liquid mass.
  • cooling water supply for the nozzles fails, the nozzles are inevitably damaged. A failure of the cooling water supply also automatically leads to failure of the entire system, so that there is also the risk that the liquid or pasty fluid bed mass enters the nozzles and clogs them.
  • the inert gas also serves as a cooling medium for the emergency cooling of the nozzles, and together with the water remaining in the nozzles, it solidifies the doughy fluid bed mass on the end faces of the nozzles, thereby additionally protecting the fluid bed mass that has not solidified will.
  • the amount of inert gas required depends on the operating pressure of the melter gasifier at the time of the event triggering the introduction of the inert gas. Since a certain operating pressure can be assigned to each of these events, the amount of inert gas introduced is expediently controlled as a function of the type of event triggering the introduction.
  • the iron sponge formed by reducing the iron ore passes through downpipes 3 into a melter gasifier 4, into which a solid carbon carrier, for example coal or coke, is also introduced via a line 5 and an oxygen-containing gas is blown in via nozzles 6.
  • a solid carbon carrier for example coal or coke
  • the rising oxygen-containing gas and the particles of the carbon carrier sinking in the opposite direction form a fluidized bed in the melting gasifier 4, which first slows down the falling iron sponge particles and in which these are then melted by the heat generated during the reaction of the carbon carrier with the oxygen.
  • the molten pig iron collecting at the bottom of the melter gasifier 4 and the liquid slag floating thereon are periodically tapped by means of a tap 7.
  • the gas formed in the reaction of the carbon carrier with the oxygen is led out of the melter gasifier 4 via a line 8 and cleaned in a cyclone 9, before possibly reaching the shaft furnace 1 as a reducing gas through line 2 after cooling to a suitable temperature.
  • the nozzles 6 arranged at equal intervals over the circumference of the melter gasifier 4 are connected to a ring line 10, to which the oxygen-containing gas is supplied via a line 11.
  • a control valve 12 and a flow rate measuring device 13 are located in this line 11. The supplied amount of oxygen-containing gas is thus measured by the measuring device 13 and adjusted using the control valve 12.
  • An inert gas in particular nitrogen, can be fed into the line 11 through a line 14 which opens into the line 11.
  • a control valve 15 and a flow rate measuring device 16 are also used.
  • the control valve 12 for the oxygen-containing gas is automatically closed and the control valve 15 is opened for the inert gas when the flow rate determined by the measuring device 13 falls below a predetermined value, so that this now instead of the oxygen-containing gas by Nozzles 6 flows into the melter 4.
  • the inert gas can simultaneously act as a cooling medium for the nozzles and protect them from damage caused by excessive thermal stress if the cooling water supply to them fails.
  • the supply of the inert gas is preferably controlled as a function of time, in such a way that first the maximum amount of gas for the respective event is passed through the nozzles 6 and then a controlled throttling takes place via the control valve 15.
  • the initial amount of the inert gas depends on the type of event triggering the supply of this gas or on the Operating pressure in the melter gasifier 4 at the time of this event.
  • another line 17 also opens into the line 14 for the supply of inert gas, in which a control valve 18 is inserted.
  • the inert gas can thus be supplied via two parallel lines, with a larger amount of gas being supplied via line 14 than via line 17.
  • the control valves 15 and 18 are controlled in such a way that at the start of feeding in inert gas both Fittings are opened and after a predetermined period of time the control valve 15 is closed, so that only a relatively small amount of inert gas is supplied via line 17.
  • This training has the advantage that the control valve 15 does not require continuous control, but can be designed as a simple open-close valve. This also leads to greater plant security.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 sowie einen Einschmelzvergaser zu dessen Durchführung.The invention relates to a method according to the preamble of claim 1 and a melter gasifier for carrying it out.

Aus der DE-PS 30 34 539 ist ein Verfahren zur direkten Erzeugung von flüssigem Roheisen aus stückigem Eisenerz bekannt, bei dem das Eisenerz in einem Reduktionsschachtofen mittels eines heißen Reduktionsgases zu Eisenschwamm reduziert und dann einem Einschmelzvergaser zugeführt wird. In diesem werden aus eingebrachter Kohle und eingeblasenem sauerstoffhaltigem Gas die zum Schmelzen des Eisenschwamms erforderliche Wärme und das Reduktionsgas erzeugt. Aus der von oben eingebrachten Kohle und dem im unteren Teil des Vergasers eingeblasenen sauerstoffhaltigen Gas wird ein Fließbett gebildet, in dem die ebenfalls oben zugeführten Eisenschwammpartikel abgebremst und aufgeschmolzen werden. Zum Einblasen des sauerstoffhaltigen Gases sind in gleicher Höhe über den Umfang des Einschmelzvergasers verteilte, radiale Sauerstoffdüsen vorgesehen, die aus einer Ringleitung gespeist werden. Die Sauerstoffdüsen sind zwangsläufig wassergekühlt, um den hohen Temperaturen, die im Inneren des Einschmelzvergasers insbesondere vor diesen Düsen herrschen, standhalten zu können. In diesem Bereich vor den Düsen wird das Fließbett durch die hohen Temperaturen in eine teigige bzw. flüssige Masse umgewandelt.From DE-PS 30 34 539 a method for the direct production of molten pig iron from lumpy iron ore is known, in which the iron ore is reduced to sponge iron in a reduction shaft furnace by means of a hot reducing gas and is then fed to a melter gasifier. The coal and injected oxygen-containing gas are used to generate the heat and the reducing gas required to melt the sponge iron. A fluidized bed is formed from the coal introduced from above and the oxygen-containing gas blown into the lower part of the carburetor, in which the iron sponge particles, which are also supplied above, are braked and be melted. To blow in the oxygen-containing gas, radial oxygen nozzles distributed at the same height over the circumference of the melting gasifier are provided, which are fed from a ring line. The oxygen nozzles are inevitably water-cooled in order to be able to withstand the high temperatures which prevail inside the melter gasifier, in particular in front of these nozzles. In this area in front of the nozzles, the high temperature converts the fluidized bed into a doughy or liquid mass.

Tritt ein plötzlicher Ausfall der Zuführung des sauerstoffhaltigen Gases ein, dann wird diese teigige bzw. flüssige Masse nach außen in die wassergekühlten Düsen hineingedrückt und erstarrt in diesen. Wenn dann der Einschmelzvergaser wieder in Betrieb genommen wird, kann das sauerstoffhaltige Gas wegen der Verstopfung der Düsen nicht mehr oder nur in begrenzter Menge wieder eingeblasen werden.If there is a sudden failure of the supply of the oxygen-containing gas, then this doughy or liquid mass is pressed outwards into the water-cooled nozzles and solidifies in them. Then, when the melter gasifier is put into operation again, the oxygen-containing gas can no longer be blown in, or only in limited quantities, because of the clogging of the nozzles.

Entsprechende Probleme ergeben sich auch bei einer planmäßigen Außerbetriebsetzung des Einschmelzvergasers mit einer langsamen Absenkung des Betriebsdruckes und Reduzierung der Menge des sauerstoffhaltigen Gases. Bei Unterschreiten eine bestimmten Menge ist der Fluß dieses Gases durch alle Düsen nicht mehr gewährleistet. Die teigige bzw. flüssige Masse im Innern des Einschmelzvergasers dringt dann zumindest in einen Teil der Sauerstoffdüsen ein und erstarrt wegen der Wasserkühlung in diesen. Bei der Wiederinbetriebnahme des Einschmelzvergasers strömt wegen der entstandenen Düsenverstopfungen das sauerstoffhaltige Gas in kleinen Mengen unkontrolliert durch die Kanäle zwischen den kalten Düsenansätzen und der Ausmauerung des Vergasers. An den heißen Stellen kommt es zu einer Entzündung und unkontrollierten Verbrennung, wobei sich die Flamme auch gegen die Ausmauerung und sogar gegen den Panzer des Vergasers richten kann, so daß Schäden an diesen unvermeidbar sind.Corresponding problems also arise when the melter gasifier is shut down as planned with a slow lowering of the operating pressure and a reduction in the amount of oxygen-containing gas. If the amount falls below a certain amount, the flow of this gas through all nozzles is no longer guaranteed. The doughy or liquid mass inside the melter gasifier then penetrates at least in part of the oxygen nozzles and solidifies in them due to the water cooling. When restarting the melter Because of the resulting nozzle blockages, the oxygen-containing gas flows uncontrollably in small quantities through the channels between the cold nozzle attachments and the lining of the carburetor. In the hot places there is ignition and uncontrolled combustion, whereby the flame can also be directed against the lining and even against the carburetor's tank, so that damage to these is unavoidable.

Bei einem Ausfall der Kühlwasserzuführung für die Düsen treten zwangsläufig Schäden an den Düsen auf. Ein Ausfall der Kühlwasserzuführung führt auch automatisch zum Ausfall der gesamten Anlage, so daß ebenfalls die Gefahr besteht, daß die flüssige bzw. teigige Fließbettmasse in die Düsen eintritt und diese verstopft.If the cooling water supply for the nozzles fails, the nozzles are inevitably damaged. A failure of the cooling water supply also automatically leads to failure of the entire system, so that there is also the risk that the liquid or pasty fluid bed mass enters the nozzles and clogs them.

Es ist daher die Aufgabe der vorliegenden Erfindung, im Falle der vorgenannten Störungen oder auch planmäßigen Veränderungen beim Betrieb eines Einschmelzvergasers Verstopfungen der Sauerstoffdüsen durch Eindringen und nachfolgendes Erstarren von Fließbettmaterial zu verhindern und auch für den Fall des Ausfalls der Kühlwasserzuführung zu den Düsen eine zu deren Beschädigung führende thermische Belastung zu vermeiden.It is therefore the object of the present invention to prevent blockages of the oxygen nozzles by penetration and subsequent solidification of fluidized bed material in the event of the aforementioned malfunctions or planned changes in the operation of a melter gasifier and also to damage them in the event of failure of the cooling water supply to the nozzles to avoid leading thermal stress.

Diese Aufgabe wird erfindungsgemäß bei dem Verfahren durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale bzw. beim Einsamelzvergaser durch die in Anspruch 6 erwähnten Merkmale gelöst. Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sowie bevorzugte Vorrichtungen zur Durchführung dieses Verfahrens ergeben sich aus den Unteransprüchen.According to the invention, this object is achieved in the method by the features specified in the characterizing part of claim 1 or in the single-gas carburettor by the features mentioned in claim 6. Advantageous developments of the method according to the invention and preferred devices for carrying out this method result from the subclaims.

Dadurch, daß zum Schutz der Sauerstoffdüsen bei einem Ausfall oder einer Absenkung der Sauerstoffzufuhr unter eine vorgegebene Menge sowie bei einem Ausfall der Wasserkühlung der Sauerstoffdüsen die etwa noch vorhandene Sauerstoffzufuhr unterbunden und stattdessen ein inertes Gas über die Sauerstoffdüsen in den Einschmelzvergaser eingeleitet wird, kann sichergestellt werden, daß der freie Durchgang durch die Düsen auch bei Eintritt eines Störungsfalls oder bei einer Stillsetzung des Einschmelzvergasers aufrechterhalten wird, so daß bei einer erneuten Inbetriebsetzung das sauerstoffhaltige Gas kontrolliert weider zugeführt werden und die Reaktion zwischen diesem Gas und dem Kohlenstoffträger planmäßig ablaufen kann. Beim Ausfall der Kühlwasserzuführung dient das inerte Gas gleichzeitig als Kühlmedium für die Notkühlung der Düsen und es bringt zusammen mit dem in den Düsen verbliebenen Wasser die teigige Fließbettmasse an den Stirnflächen der Düsen zum Erstarren, wodurch die Düsen zusätzlich vor einem Eindringen noch nicht erstarrter Fließbettmasse geschützt werden.The fact that, in order to protect the oxygen nozzles in the event of a failure or a reduction in the oxygen supply to a predetermined amount and in the event of a failure of the water cooling of the oxygen nozzles, any oxygen supply which is still present is prevented and instead an inert gas is introduced into the melter gasifier via the oxygen nozzles that the free passage through the nozzles is maintained even in the event of a malfunction or when the melter gasifier is shut down, so that the oxygen-containing gas can be supplied again in a controlled manner when the gas is started up again and the reaction between this gas and the carbon carrier can proceed according to plan. If the cooling water supply fails, the inert gas also serves as a cooling medium for the emergency cooling of the nozzles, and together with the water remaining in the nozzles, it solidifies the doughy fluid bed mass on the end faces of the nozzles, thereby additionally protecting the fluid bed mass that has not solidified will.

Die erforderliche Menge inerten Gases ist vom Betriebsdruck des Einschmelzvergasers zum Zeitpunkt des die Einleitung des inerten Gases auslösenden Ereignisses abhängig. Da jedem dieser Ereignisse ein bestimmter Betriebsdruck zugeordnet werden kann, wird zweckmäßig die Menge des eingeleiteten inerten Gases in Abhängigkeit von der Art des die Einleitung auslösenden Ereignisses gesteuert.The amount of inert gas required depends on the operating pressure of the melter gasifier at the time of the event triggering the introduction of the inert gas. Since a certain operating pressure can be assigned to each of these events, the amount of inert gas introduced is expediently controlled as a function of the type of event triggering the introduction.

Die Erfindung wird im folgenden anhand von in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
in schematischer Darstellung eine Anlage zur Herstellung von Roheisen gemäß einer ersten Ausführungsform und
Fig. 2
in schematischer Darstellung eine Anlage zur Herstellung von Roheisen gemäß einer zweiten Ausführungsform.

The invention is explained in more detail below with reference to exemplary embodiments shown in the figures. Show it:
Fig. 1
a schematic representation of a plant for the production of pig iron according to a first embodiment and
Fig. 2
a schematic representation of a plant for the production of pig iron according to a second embodiment.

Die Anlagen nach den Fig. 1 und 2 enthalten jeweils einen in bekannter Weise ausgebildeten Direktreduktionsschachtofen 1, dem von oben Eisenerz und gegebenenfalls Zuschlagstoffe zugeführt werden. Weiterhin wird über eine Leitung 2 Reduktionsgas in den unteren Bereich des Schachtofens 1 eingeleitet, das in diesem aufsteigt und das im Gegenstrom herabsinkende Eisenerz reduziert. Das verbrauchte Reduktionsgas wird als Gichtgas aus dem oberen Bereich des Schachtofens 1 abgeführt.1 and 2 each contain a direct reduction shaft furnace 1, which is designed in a known manner and to which iron ore and optionally additives are fed from above. Furthermore, reducing gas is introduced via a line 2 into the lower region of the shaft furnace 1, which rises in the latter and reduces the iron ore sinking in countercurrent. The used reducing gas is discharged as blast furnace gas from the upper area of the shaft furnace 1.

Der durch Reduktion des Eisenerzes entstandene Eisenschwamm gelangt über Fallrohre 3 in einen Einschmelzvergaser 4, in den außerdem über eine Leitung 5 ein fester Kohlenstoffträger, zum Beispiel Kohle oder Koks, eingebracht und über Düsen 6 ein sauerstoffhaltiges Gas eingeblasen werden. Die Fallrohre 3 und die Leitung 5 münden in den oberen Bereich und die Düsen 6 in den unteren Bereich des Einschmelzvergasers 4.The iron sponge formed by reducing the iron ore passes through downpipes 3 into a melter gasifier 4, into which a solid carbon carrier, for example coal or coke, is also introduced via a line 5 and an oxygen-containing gas is blown in via nozzles 6. The downpipes 3 and the line 5 open into the upper area and the nozzles 6 into the lower area of the melter 4.

Das aufsteigende sauerstoffhaltige Gas und die in entgegengesetzter Richtung absinkenden Teilchen des Kohlenstoffträgers bilden im Einschmelzvergaser 4 ein Fließbett, das die herabfallenden Eisenschwammteilchen zunächst abbremst und in dem diese dann durch die bei der Reaktion des Kohlenstoffträgers mit dem Sauerstoff entstehende Wärme geschmolzen werden. Das sich am Boden des Einschmelzvergasers 4 sammelnde flüssige Roheisen und die auf diesem schwimmende flüssige Schlacke werden über einen Abstich 7 periodisch abgestochen.The rising oxygen-containing gas and the particles of the carbon carrier sinking in the opposite direction form a fluidized bed in the melting gasifier 4, which first slows down the falling iron sponge particles and in which these are then melted by the heat generated during the reaction of the carbon carrier with the oxygen. The molten pig iron collecting at the bottom of the melter gasifier 4 and the liquid slag floating thereon are periodically tapped by means of a tap 7.

Das bei der Reaktion des Kohlenstoffträgers mit dem Sauerstoff entstehende Gas wird über eine Leitung 8 aus dem Einschmelzvergaser 4 herausgeführt und in einem Zyklon 9 gereinigt, bevor es gegebenenfalls nach Abkühlung auf eine geeignete Temperatur durch die Leitung 2 als Reduktionsgas in den Schachtofen 1 gelangt.The gas formed in the reaction of the carbon carrier with the oxygen is led out of the melter gasifier 4 via a line 8 and cleaned in a cyclone 9, before possibly reaching the shaft furnace 1 as a reducing gas through line 2 after cooling to a suitable temperature.

Die in gleichmäßigen Abständen über den Umfang des Einschmelzvergasers 4 in gleicher Höhe angeorrdneten Düsen 6 sind mit einer Ringleitung 10 verbunden, der das sauerstoffhaltige Gas über eine Leitung 11 zugeführt wird. In dieser Leitung 11 befinden sich eine Regelarmatur 12 und eine Durchflußmengen-Meßeinrichtung 13. Die zugeführte Menge des sauerstoffhaltigen Gases wird somit von der Meßeinrichtung 13 gemessen und mit Hilfe der Regelarmatur 12 eingestellt.The nozzles 6 arranged at equal intervals over the circumference of the melter gasifier 4 are connected to a ring line 10, to which the oxygen-containing gas is supplied via a line 11. A control valve 12 and a flow rate measuring device 13 are located in this line 11. The supplied amount of oxygen-containing gas is thus measured by the measuring device 13 and adjusted using the control valve 12.

Durch eine Leitung 14, die in die Leitung 11 mündet, kann inertes Gas, inbesondere Stickstoff, in die Leitung 11 eingespeist werden. In die Leitung 14 sind ebenfalls eine Regelarmatur 15 und eine Durchflußmengen-Meßeinrichtung 16 eingesetzt.An inert gas, in particular nitrogen, can be fed into the line 11 through a line 14 which opens into the line 11. In line 14 a control valve 15 and a flow rate measuring device 16 are also used.

Bei der Ausführungsform nach Fig. 1 wird beim Unterschreiten der von der Meßeinrichtung 13 ermittelten Durchflußmenge unterhalb einen vorgegebenen Wert die Regelarmatur 12 für das sauerstoffhaltige Gas automatisch geschlossen und die Regelarmatur 15 für das inerte Gas geöffnet, so daß nun dieses anstelle des sauerstoffhaltigen Gases durch die Düsen 6 in den Einschmelzvergaser 4 strömt. Durch das Einblasen des inerten Gases wird vermieden, daß die Düsenöffnungen durch eindringende flüssige und dann erstarrende Fließbettmasse verstopft werden. Das inerte Gas kann gleichzeitig als Kühlmedium für die Düsen wirksam sein und diese vor Schäden durch zu hohe thermische Belastung schützen, wenn die Kühlwasserzuführung zu diesen ausfällt.In the embodiment according to FIG. 1, the control valve 12 for the oxygen-containing gas is automatically closed and the control valve 15 is opened for the inert gas when the flow rate determined by the measuring device 13 falls below a predetermined value, so that this now instead of the oxygen-containing gas by Nozzles 6 flows into the melter 4. By blowing in the inert gas it is avoided that the nozzle openings are blocked by penetrating liquid and then solidifying fluidized bed material. The inert gas can simultaneously act as a cooling medium for the nozzles and protect them from damage caused by excessive thermal stress if the cooling water supply to them fails.

Die Abnahme der Zuführung des sauerstoffhaltigen Gases kann verschiedene Gründe haben. Sie kann schlagartig erfolgen, wenn ein Störungsfall eintritt, oder auch stetig durchgeführt werden, wenn die Anlage planmäßig stillgesetzt wird.There are various reasons for the decrease in the supply of oxygen-containing gas. It can take place suddenly when a malfunction occurs, or it can be carried out continuously when the system is shut down as scheduled.

Die Zuführung des inerten Gases wird vorzugsweise zeitabhängig gesteuert, derart, daß zunächst die für das jeweilige Ereignis maximale Gasmenge durch die Düsen 6 geleitet wird und dann über die Regelarmatur 15 eine gesteuerte Drosselung erfolgt. Die anfängliche Menge des inerten Gases ist abhängig von der Art des die Zuführung dieses Gases auslösenden Ereignisses bzw. von dem zum Zeitpunkt dieses Ereignisses herrschenden Betriebsdruck im Einschmelzvergaser 4. Es hat sich als zweckmäßig erwiesen, diese Menge nach einer allmählichen Absenkung des Betriebsdruckes und der Sauerstoffzufuhr bei der planmäßigen Abstellung des Einschmelzvergasers auf etwa 15%, bei störungsbedingter plötzlicher Unterbrechung der Sauerstoffzufuhr bei normalem Betriebsdruck auf etwa 25% und bei Ausfall der Wasserkühlung, bei der das inerte Gas zusätzlich eine Kühlfunktion übernehmen muß auf etwa 30% der Normalmenge des sauerstoffhaltigen Gases einzustellen.The supply of the inert gas is preferably controlled as a function of time, in such a way that first the maximum amount of gas for the respective event is passed through the nozzles 6 and then a controlled throttling takes place via the control valve 15. The initial amount of the inert gas depends on the type of event triggering the supply of this gas or on the Operating pressure in the melter gasifier 4 at the time of this event. It has proven expedient to increase this amount to approximately 15% after a gradual reduction in the operating pressure and the oxygen supply when the melter gasifier is switched off as planned, and to approximately 25 in the event of a sudden interruption of the oxygen supply at normal operating pressure due to a fault % and in the event of a failure of the water cooling, in which the inert gas must additionally take on a cooling function, set to about 30% of the normal amount of the oxygen-containing gas.

Bei dem Ausführungsbeispiel nach Fig. 2 mündet in die Leitung 14 eine weitere Leitung 17 ebenfalls zur Zuführung von inertem Gas, in die eine Regelarmatur 18 eingesetzt ist. Das inerte Gas kann somit über zwei parallele Leitungen geliefert werden, wobei über die Leitung 14 eine größere Menge Gases zugeführt wird als über die Leitung 17. Die Steuerung der Regelarmaturen 15 und 18 erfolgt in der Weise, daß zu Beginn einer Einspeisung von inertem Gas beide Armaturen geöffnet werden und nach Ablauf einer vorgegebenen Zeitspanne die Regelarmatur 15 geschlossen wird, so daß nur noch eine relativ kleine Menge inerten Gases über die Leitung 17 zugeführt wird. Diese Ausbildung hat den Vorteil, daß die Regelarmatur 15 keiner stetigen Regelung bedarf, sondern als einfache Auf-Zu-Armatur ausgestaltet sein kann. Dies führt auch zu einer größeren Sicherheit der Anlage.In the embodiment of FIG. 2, another line 17 also opens into the line 14 for the supply of inert gas, in which a control valve 18 is inserted. The inert gas can thus be supplied via two parallel lines, with a larger amount of gas being supplied via line 14 than via line 17. The control valves 15 and 18 are controlled in such a way that at the start of feeding in inert gas both Fittings are opened and after a predetermined period of time the control valve 15 is closed, so that only a relatively small amount of inert gas is supplied via line 17. This training has the advantage that the control valve 15 does not require continuous control, but can be designed as a simple open-close valve. This also leads to greater plant security.

Es hat sich in der Praxis gezeigt, daß bei Anwendung des vorliegenden Verfahrens bei einem Ausfall oder einem Außerbetriebsetzen der Anlage alle Düsenöffnungen freigehalten werden, daß die kanalartigen Verbindungen zwischen den Düsenöffnungen und der heißen Fließbettmasse aufrechterhalten werden und daß bei Ausfall der Kühlwasserzuführung keine Schäden an den Sauerstoffdüsen auftreten.It has been shown in practice that when using the present method, in the event of a failure or a shutdown of the system, all nozzle openings are kept free, that the channel-like connections between the nozzle openings and the hot fluidized bed mass are maintained and that no damage to the cooling water supply occurs Oxygen nozzles occur.

Claims (8)

1. Process for the operation of a melting gasifier in which charging materials containing iron ore or spongy iron obtained from these materials by direct reduction are melted down by the addition of carbon filler and the supply of a gas containing oxygen via oxygen nozzles in a fluidised bed formed as a result of this process and reduced to fluid pig iron or steel starting material, characterised in that to protect the oxygen nozzles (6) in the event of a failure or a reduction in the oxygen supply below a specified amount as well as in the event of a failure in the oxygen nozzle (6) water cooling the oxygen supply which may still be present is eliminated and instead an inert gas is fed via the oxygen nozzles (6) into the smelting gasifier (4).
2. Process in accordance with Claim 1, characterised in that the supply of the inert gas is reduced after a certain period of time.
3. Process in accordance with Claim 1 or 2, characterised in that the amount of inert gas supplied is controlled in relation to the type of product triggering the supply.
4. Process in accordance with Claim 3, characterised in that if the smelting gasifier is shut down after a gradual reduction in operating pressure and in the oxygen supply the amount of inert gas is set to approximately 15%, to approximately 25% if the oxygen supply is interrupted at normal operating pressure and in the event of a failure of the water cooling to approximately 30% of the normal amount of the gas containing oxygen.
5. Process in accordance with one of the Claims 1 to 4, characterised in that nitrogen is used as the inert gas.
6. Melting gasifier with a mechanism for adding carbon fillers and nozzles for the supply of a gas containing oxygen and a fluidised bed for working the process in accordance with one of the Claims 1 to 5, whereby a closed circular pipeline is provided to supply the gas containing oxygen, from which pipeline the oxygen nozzles are fed, characterised in that the closed circular pipeline (10) is connected to both a feed pipeline (11) for gas containing oxygen as well as a feed pipeline (14) for inert gas and in that flow-control valves (12, 15) are located in both feed pipelines.
7. Melting gasifier in accordance with Claim 6, characterised in that a flow-measuring mechanism (13) for gas containing oxygen is located in the feed pipeline (11) and in that the flow-control valves (12, 15) are controllable in relation to the amount of gas containing oxygen measured, such that, in the event of a specified reduction in the amount of gas containing oxygen measured the flow-control valve (12) for the gas containing oxygen is closed and the flow-control valve (15) for the inert gas is opened.
8. Melting gasifier in accordance with Claim 6 or 7, characterised in that the feed pipeline for inert gas consists of two parallel pipelines (14, 17) for varying feed amounts, each pipeline being provided with its own flow-control valve (15, 18), and in that at the start of feed of the inert gas both flow-control valves (15, 18) are initially opened and after a specified period of time only the flow-control valve (18) in the pipeline (17) is opened with the lesser feed amount.
EP88119930A 1987-12-10 1988-11-30 Method and apparatus for operating a melting gasifier Expired - Lifetime EP0319836B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3742156 1987-12-10
DE3742156A DE3742156C1 (en) 1987-12-10 1987-12-10 Process for operating a melter gasifier and melter gasifier for carrying it out

Publications (2)

Publication Number Publication Date
EP0319836A1 EP0319836A1 (en) 1989-06-14
EP0319836B1 true EP0319836B1 (en) 1991-07-24

Family

ID=6342448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119930A Expired - Lifetime EP0319836B1 (en) 1987-12-10 1988-11-30 Method and apparatus for operating a melting gasifier

Country Status (12)

Country Link
US (1) US4891062A (en)
EP (1) EP0319836B1 (en)
JP (1) JPH01283308A (en)
KR (1) KR960001709B1 (en)
AU (1) AU611215B2 (en)
BR (1) BR8806514A (en)
CA (1) CA1310826C (en)
DD (1) DD283651A5 (en)
DE (1) DE3742156C1 (en)
RU (1) RU1838428C (en)
UA (1) UA12803A (en)
ZA (1) ZA889147B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT395435B (en) * 1991-02-19 1992-12-28 Voest Alpine Ind Anlagen METHOD FOR COMMISSIONING A PLANT FOR PRODUCING RAW IRON OR STEEL PRE-MATERIAL, AND PLANT FOR IMPLEMENTING THE METHOD
US5354356A (en) * 1992-10-06 1994-10-11 Bechtel Group Inc. Method of providing fuel for an iron making process
US6197088B1 (en) 1992-10-06 2001-03-06 Bechtel Group, Inc. Producing liquid iron having a low sulfur content
US5320676A (en) * 1992-10-06 1994-06-14 Bechtel Group, Inc. Low slag iron making process with injecting coolant
US5397376A (en) * 1992-10-06 1995-03-14 Bechtel Group, Inc. Method of providing fuel for an iron making process
US5958107A (en) * 1993-12-15 1999-09-28 Bechtel Croup, Inc. Shift conversion for the preparation of reducing gas
AT407994B (en) * 1999-08-24 2001-07-25 Voest Alpine Ind Anlagen METHOD FOR OPERATING A MELT-UP CARBURETTOR
US8118085B2 (en) * 2008-02-06 2012-02-21 Leprino Foods Company Heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499638A (en) * 1967-11-13 1970-03-10 John E Allen Method of cooling damaged blast furnace cooling elements
US4047937A (en) * 1972-12-04 1977-09-13 United States Steel Corporation Method for controlling the operation of a steel refining converter
JPS54152615A (en) * 1978-05-24 1979-12-01 Ishikawajima Harima Heavy Ind Co Ltd Suspended layer type direct reduction iron making process
AT367453B (en) * 1980-04-03 1982-07-12 Voest Alpine Ag METHOD AND DEVICE FOR PRODUCING LIQUID GUT IRON OR STEEL PRE-MATERIAL
DE3034539C2 (en) * 1980-09-12 1982-07-22 Korf-Stahl Ag, 7570 Baden-Baden Method and device for the direct production of liquid pig iron from lumpy iron ore
JPS5757817A (en) * 1980-09-19 1982-04-07 Kawasaki Steel Corp Method for controlling bottom blowing gas in steel making by composite top and bottom blown converter
DE3318005C2 (en) * 1983-05-18 1986-02-20 Klöckner CRA Technologie GmbH, 4100 Duisburg Process for making iron

Also Published As

Publication number Publication date
AU611215B2 (en) 1991-06-06
JPH01283308A (en) 1989-11-14
US4891062A (en) 1990-01-02
CA1310826C (en) 1992-12-01
DD283651A5 (en) 1990-10-17
ZA889147B (en) 1989-11-29
KR960001709B1 (en) 1996-02-03
KR890010215A (en) 1989-08-07
DE3742156C1 (en) 1988-10-13
AU2459888A (en) 1989-06-15
EP0319836A1 (en) 1989-06-14
RU1838428C (en) 1993-08-30
UA12803A (en) 1997-02-28
JPH0368081B2 (en) 1991-10-25
BR8806514A (en) 1989-08-22

Similar Documents

Publication Publication Date Title
EP0341436B1 (en) Process and apparatus for cooling hot gas containing sticky or melting particles
EP0182775B1 (en) Process for the production of molten pig iron or steel pre-products as well as arrangement for carrying out the process
EP0319836B1 (en) Method and apparatus for operating a melting gasifier
EP0269609A1 (en) A process and an arrangement for gaining electric energy in addition to producing molten pig iron
EP0037809A1 (en) Method of and arrangement for producing molten pig iron or steel prematerial
DE3323270C2 (en)
DE3214618C2 (en)
EP0167895B1 (en) Process and installation for the production of steel from scrap
DE2738932A1 (en) PROCESS FOR GAS PRESSURIZING SOLID FUELS
DE3441359A1 (en) METHOD FOR GENERATING A HOT GAS FROM A CARBONATING INITIAL
EP0315825B1 (en) Pretreatment of a carbonaceous carrier
DE2607964A1 (en) PROCESS AND REACTOR FOR THE PRESSURE GASIFICATION OF LARGE CHARACTERISTICS OF FUELS
AT398783B (en) METHOD AND DEVICE FOR THE PRODUCTION OF RAW IRON
DE2834737A1 (en) STEEL MANUFACTURING PROCESS
EP0910671B1 (en) Process and device for charging a fusion gasifier with gasifying means and spongy iron
DE2607743C2 (en) Method of operating a reactor for gasifying solid fuels
AT407994B (en) METHOD FOR OPERATING A MELT-UP CARBURETTOR
DE10242594B4 (en) Method and device for blowing gasification agent into pressure-loaded gasification chambers
DD204263A1 (en) METHOD AND DEVICE FOR PREVENTING A REACTOR CLOSURE
DD235884A5 (en) METHOD AND DEVICE FOR GENERATING MEDIUM PRESSURE STEAM FOR COOLING A CARBURETOR
DE4122381A1 (en) METHOD FOR OPERATING A COUPLING OVEN
DE1958214C3 (en) Method and device for injecting a reducing gas into a blast furnace
DE2935992C2 (en) Device for pressure relief of reactors
DE2503530C2 (en) Device for the continuous production of steel from ore or the like
DD145025A3 (en) METHOD AND DEVICE FOR TEMPORARY GAS COOLING AND SLAG REGULATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT LU SE

17P Request for examination filed

Effective date: 19890715

17Q First examination report despatched

Effective date: 19901129

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT LU SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88119930.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021028

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021030

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20021105

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031130

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051130