EP0312198B1 - Pile, in particular an anchor pile - Google Patents
Pile, in particular an anchor pile Download PDFInfo
- Publication number
- EP0312198B1 EP0312198B1 EP19880307661 EP88307661A EP0312198B1 EP 0312198 B1 EP0312198 B1 EP 0312198B1 EP 19880307661 EP19880307661 EP 19880307661 EP 88307661 A EP88307661 A EP 88307661A EP 0312198 B1 EP0312198 B1 EP 0312198B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pile
- triangle
- connecting means
- anchoring
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004873 anchoring Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 238000005728 strengthening Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 239000002689 soil Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000003351 stiffener Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/24—Anchors
- B63B21/26—Anchors securing to bed
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/54—Piles with prefabricated supports or anchoring parts; Anchoring piles
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/74—Means for anchoring structural elements or bulkheads
- E02D5/80—Ground anchors
Definitions
- This invention relates to piles, and more particularly but not exclusively to piles for anchoring against horizontal or near-horizontal loads.
- Anchor piles are sometimes employed, but tend to be large, heavy, difficult to handle and drive, and relatively expensive when designed for withstanding higher horizontal loads.
- a pile having an elongated hollow body for embedment in supporting material, connecting means on the pile for the connection of an anchoring linkage, at least a substantial fraction of the overall length of the pile body having a cross-sectional profile generally in the form of an isosceles triangle; characterised in that the two equal sides of said triangle have a length less than that of the third side.
- DE-C-806234 discloses a pile formed by the assembly of a number of identical U-section wall members to create a pile having a regular polygonal cross-section with a pair of flanges extending outwardly from each corner.
- One embodiment illustrated is in the form of an equilateral triangle, but does not exhibit the advantages as regards light weight and ease of driving provided by the present invention.
- the connecting means is preferably located on an apex of the triangle but may alternatively be located on a side of the triangle, in dependence on the nature and direction of the load to be exerted on the pile in use.
- the two equal sides are preferably the sides defining the apex on which the connecting means is located.
- the triangular profile is preferably such that two internal angles of the triangle are in the range 20° - 45°, most preferably 35°.
- One or more sides of the triangular pile body may be discontinuous along the length of the pile, and extension sections may be fitted to the body at either end or at both ends.
- a beam-like strengthening member may extend across the interior of the triangle defining the cross-sectional profile of the pile body for substantially the full vertical length of the pile body.
- the strengthening member preferably extends from the apex defined by the two equal sides of the triangle to the mid-point of the third side of the triangle.
- the strengthening member may take the form of a plate, beam, tube, or other beam-like structure.
- the connecting means is preferably located at a point on the pile such that dragging resistance from supporting material in which the pile is substantially totally buried is substantially equal above and below the connecting means.
- the connecting means may be in the form of a padeye or other apertured or hooked member for the attachment of an anchoring linkage in the form of a chain, cable, or other flexible elongate anchoring linkage.
- the connecting means may be in the form of a latch or other rigid member for direct engagement with an object or a structure to be anchored by the pile.
- the pile body is preferably constructed of plate material which may be relatively thin, with at least the lower end being open, to give the pile a relatively low resistance to being driven into the supporting material for embedment therein.
- plate material may be reinforced in the vicinity of the connecting means.
- a method of anchoring an object or a structure comprising the steps of driving at least one pile according to the first aspect of the invention into the ground, sea-bed, or other supporting material, and coupling an anchoring linkage between the object or structure and the connecting means on the pile.
- Said method may comprise the steps of driving two piles according to the first aspect of the invention into the supporting material at a relatively short distance apart, and coupling a relatively long length of flexible elongate anchoring linkage at either end to a respective connecting means, and directly or indirectly to the object or structure at a point intermediate these ends by way of a runner, pulley, or other tension balancing means.
- Piles in accordance with the invention may be used on the sea-bed, or on land.
- a pile in accordance with the first embodiment of the invention has an elongate body 4 made of thin steel plate providing a generally triangular cross-sectional profile for the body 4.
- This triangular profile is made up of side plates 6, 8 of equal length and a back plate 10 which is 2 metres wide, the angle A between each side plate 6, 8 and the back plate 10 being 35o.
- the back plate 10 extends laterally beyond the side plates 6 and 8 to form side flanges 12 and 14, thereby providing the effect of increasing the width of the body 4 without unduly increasing the required amount of material in the overall pile.
- An I-beam 2 which is 610 x 229 mm in size is welded between the centre of the back plate 10 and the apex 16 of the side plates 6, 8, so that the apex 16 is flattened to correspond with the end flange of the beam 2.
- a padeye 20 is welded to the flattened apex 16 about one-third of the distance along its length, and web stiffeners 22 (Fig. 2) are provided on each side of the central web 24 of the I-beam 2 in the area of the padeye 20 to provide local buttressing.
- the pile is driven into the sea-bed until its upper end is flush with the mudline, and the padeye 20 provides a connecting means for the connection of an anchoring linkage in the form of a mooring cable 26 between the pile and a structure to be anchored.
- the pile end of the mooring cable 26 lies above the padeye 20 because of the perspective angle and because these parts are buried in mud which bends the anchoring linkage upwards).
- the pile of this second embodiment is a fabricated structure in which the I-beam 2 of Figs. 1 and 2 is substituted by a plate 30 welded between the centre of the back plate 10 and the apex 16 of the side plates 6, 8.
- This allows the apex 16 to form a ridge instead of being flattened, and also allows the body 4 to be made in sizes other than those using standard I-beams.
- the pile of Fig. 3 is similar in structure and function to that of Figs. 1 and 2.
- the piles of these first and second embodiments are especially but not exclusively designed for use in subsea environments. Maximum restraint against loads applied through the mooring cable 26 is achieved by disposing the padeye 20 at or near the centre of horizontal soil pressure on the plates 6, 8 to minimise compressive buckling.
- the padeye would more effectively be located on the back plate 10 instead of the apex 16 to minimise compressive buckling.
- the asymmetric construction of the body about line B-B in Fig. 2 means that the peak bending stresses at the apex of the side plates 6, 8 will be greater than the peak bending stresses in the back plate 10.
- the padeye 20 can be located at any selected position to ensure maximum bending stresses are taken in tension, thereby minimising compressive stresses or buckling, thus allowing thin plate construction of the body 4.
- the point load applied to the padeye 20 in service is distributed into the soil through the open triangulated plates 6, 8, 10 surrounding the central I-beam web 2, which minimises resistance to passage of the pile into the soil during installation.
- the piles of these embodiments therefore provide maximum horizontal restraint under load with minimum vertical resistance during driving, combined with good structural integrity to distribute the applied point load over an area of weak soil.
- holes may be formed in the plates 6, 8, 10, and void formers, stiffeners and/or shear keys attached to the body 4.
- a latch mechanism such as that described in our co-pending European Patent Application EP-0,268,387-A may be used in conjunction with the piles of the present invention, as an alternative or addition to the padeye 20 (which is given as merely one example of an anchor linkage connection).
- this shows a third embodiment of pile which is generally similar to the first embodiment shown in Fig. 1, but which differs in respect of the side plates 6 and 8.
- the third embodiment has the side plates discontinuous along the vertical length of the pile, the side plates being divided into upper end portions 6A and 8A, central portions 6B and 8B, and lower end portions 6C and 8C. This results in a lighter structure consuming less plate metal, but having a generally similar performance (size for size) as the first embodiment of Fig. 1.
- Fig. 5 shows an anchoring method employing two of the Fig. 4 piles.
- the piles are driven vertically or near-vertically into the sea-bed until flush with the mudline, at a suitable mutual separation such as 26 metres or 43 metres.
- the padeyes on both piles are shackled to opposite ends of a 200 metre long anchor chain 27 which is looped across the seabed towards the structure (not shown) which is to be anchored by the piles, and thereby the chain 27 extends by about 100 metres towards the structure.
- the centre of the chain 27 is passed through a chain runner (not illustrated) which allows the chain 27 to pass relatively freely through it to equalise the tensions in the two 100-metre legs of chain.
- the chain runner is connected by a further 300 metres of anchor chain (not shown) to the structure to provide the equivalent of one heavy anchor system utilising a conventional single heavy anchor pile, but actually employing two much lighter piles with mutually balanced loadings.
- the anchoring method schematically illustrated in Fig. 5 is suitable for providing one of the distributed multiple anchorages for a floating semi-submersible oil rig in 150 metres of water, with an anchor line length of about four times water depth.
- the characteristic ratio of vertical length to maximum lateral width is in the range 2-5 to 1, whereas conventional piles typically have a length to width ratio of 20-40 to 1.
- Fig. 6 shows a similar anchoring method to that of Fig. 5, but with a pair of piles in accordance with a fourth embodiment of the invention.
- the fourth embodiment of pile has a structure generally similar to the first embodiment of Fig. 1, but in place of the I-beam 2 is a tubular pile 28, which reinforces a triangular plate structure 29 against bending as did the I-beam 2.
- the pile 28 extends below the triangular plate structure 30 at least as far as the vertical length of the triangular plate structure 29 to give deep penetration of the sea-bed.
- the triangular plate structure 29 gives enhanced resistance against dragging of the pile in the upper reaches of the sea-bed up to the mudline where lesser compaction of the sea-bed material might be expected to provide a reduced resistance to dragging.
- the ends of the anchor chain 27 are attached to each pile near the lower edge of the triangular plate structure 29 approximately at a point where overall dragging resistance above and below the chain attachment is about equal. From the attachment point, the chain cuts through the sea-bed material in an upwardly curving path until the chain emerges from the mudline.
- any of the embodiments of pile of the invention can be utilised for vertical support or vertical anchoring as an alternative or addition to the horizontal or near-horizontal anchoring function previously described.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Piles And Underground Anchors (AREA)
Description
- This invention relates to piles, and more particularly but not exclusively to piles for anchoring against horizontal or near-horizontal loads.
- Various forms of sea-anchor are known but are liable to drag (undergo unwanted horizontal movement) under high loads and/or in weak soil such as soft mud. Anchor piles are sometimes employed, but tend to be large, heavy, difficult to handle and drive, and relatively expensive when designed for withstanding higher horizontal loads.
- It is therefore an object of the invention to provide a pile suitable for use as an anchor pile, and which obviates or mitigates these disadvantages.
- According to a first aspect of the present invention there is provided a pile having an elongated hollow body for embedment in supporting material, connecting means on the pile for the connection of an anchoring linkage, at least a substantial fraction of the overall length of the pile body having a cross-sectional profile generally in the form of an isosceles triangle; characterised in that the two equal sides of said triangle have a length less than that of the third side.
- DE-C-806234 discloses a pile formed by the assembly of a number of identical U-section wall members to create a pile having a regular polygonal cross-section with a pair of flanges extending outwardly from each corner. One embodiment illustrated is in the form of an equilateral triangle, but does not exhibit the advantages as regards light weight and ease of driving provided by the present invention.
- The connecting means is preferably located on an apex of the triangle but may alternatively be located on a side of the triangle, in dependence on the nature and direction of the load to be exerted on the pile in use. The two equal sides are preferably the sides defining the apex on which the connecting means is located. The triangular profile is preferably such that two internal angles of the triangle are in the
range 20° - 45°, most preferably 35°. - One or more sides of the triangular pile body may be discontinuous along the length of the pile, and extension sections may be fitted to the body at either end or at both ends.
- A beam-like strengthening member may extend across the interior of the triangle defining the cross-sectional profile of the pile body for substantially the full vertical length of the pile body. The strengthening member preferably extends from the apex defined by the two equal sides of the triangle to the mid-point of the third side of the triangle. The strengthening member may take the form of a plate, beam, tube, or other beam-like structure.
- The connecting means is preferably located at a point on the pile such that dragging resistance from supporting material in which the pile is substantially totally buried is substantially equal above and below the connecting means. The connecting means may be in the form of a padeye or other apertured or hooked member for the attachment of an anchoring linkage in the form of a chain, cable, or other flexible elongate anchoring linkage. Alternatively or additionally, the connecting means may be in the form of a latch or other rigid member for direct engagement with an object or a structure to be anchored by the pile.
- The pile body is preferably constructed of plate material which may be relatively thin, with at least the lower end being open, to give the pile a relatively low resistance to being driven into the supporting material for embedment therein. Such plate material may be reinforced in the vicinity of the connecting means.
- According to a second aspect of the invention there is provided a method of anchoring an object or a structure, said method comprising the steps of driving at least one pile according to the first aspect of the invention into the ground, sea-bed, or other supporting material, and coupling an anchoring linkage between the object or structure and the connecting means on the pile.
- Said method may comprise the steps of driving two piles according to the first aspect of the invention into the supporting material at a relatively short distance apart, and coupling a relatively long length of flexible elongate anchoring linkage at either end to a respective connecting means, and directly or indirectly to the object or structure at a point intermediate these ends by way of a runner, pulley, or other tension balancing means.
- Piles in accordance with the invention may be used on the sea-bed, or on land.
- Embodiments of the invention will now be described by way of example with reference to the accompanying drawings wherein:
- Fig. 1 is a perspective view of a first embodiment of pile in accordance with the present invention;
- Fig. 2 is a plan view from above of the first embodiment of Fig. 1;
- Fig. 3 is a plan view from above of a second embodiment of pile;
- Fig. 4 is a perspective view of a third embodiment of pile;
- Fig. 5 is a perspective view of an anchoring method employing two piles of the third embodiment of Fig. 4; and
- Fig. 6 is a perspective view of the anchoring method of Fig. 5 employing two piles in accordance with a fourth embodiment.
- Referring first to Fig. 1, a pile in accordance with the first embodiment of the invention has an
elongate body 4 made of thin steel plate providing a generally triangular cross-sectional profile for thebody 4. This triangular profile is made up ofside plates back plate 10 which is 2 metres wide, the angle A between eachside plate back plate 10 being 35o. - The
back plate 10 extends laterally beyond theside plates side flanges body 4 without unduly increasing the required amount of material in the overall pile. - An I-
beam 2 which is 610 x 229 mm in size is welded between the centre of theback plate 10 and theapex 16 of theside plates apex 16 is flattened to correspond with the end flange of thebeam 2. - A
padeye 20 is welded to theflattened apex 16 about one-third of the distance along its length, and web stiffeners 22 (Fig. 2) are provided on each side of thecentral web 24 of the I-beam 2 in the area of thepadeye 20 to provide local buttressing. In use, the pile is driven into the sea-bed until its upper end is flush with the mudline, and thepadeye 20 provides a connecting means for the connection of an anchoring linkage in the form of amooring cable 26 between the pile and a structure to be anchored. (In Fig. 1, the pile end of themooring cable 26 lies above thepadeye 20 because of the perspective angle and because these parts are buried in mud which bends the anchoring linkage upwards). - Referring now to Fig. 3, the pile of this second embodiment is a fabricated structure in which the I-
beam 2 of Figs. 1 and 2 is substituted by aplate 30 welded between the centre of theback plate 10 and theapex 16 of theside plates apex 16 to form a ridge instead of being flattened, and also allows thebody 4 to be made in sizes other than those using standard I-beams. In other respects the pile of Fig. 3 is similar in structure and function to that of Figs. 1 and 2. - The piles of these first and second embodiments are especially but not exclusively designed for use in subsea environments. Maximum restraint against loads applied through the
mooring cable 26 is achieved by disposing thepadeye 20 at or near the centre of horizontal soil pressure on theplates - However, if it was required to apply the load at the mudline, rather than below the mudline, the padeye would more effectively be located on the
back plate 10 instead of theapex 16 to minimise compressive buckling. The asymmetric construction of the body about line B-B in Fig. 2 means that the peak bending stresses at the apex of theside plates back plate 10. Thepadeye 20 can be located at any selected position to ensure maximum bending stresses are taken in tension, thereby minimising compressive stresses or buckling, thus allowing thin plate construction of thebody 4. - The point load applied to the
padeye 20 in service is distributed into the soil through the open triangulatedplates beam web 2, which minimises resistance to passage of the pile into the soil during installation. - The piles of these embodiments therefore provide maximum horizontal restraint under load with minimum vertical resistance during driving, combined with good structural integrity to distribute the applied point load over an area of weak soil.
- Modifications and improvements can be made without departing from the scope of the invention; for example, holes may be formed in the
plates body 4. Further, a latch mechanism such as that described in our co-pending European Patent Application EP-0,268,387-A may be used in conjunction with the piles of the present invention, as an alternative or addition to the padeye 20 (which is given as merely one example of an anchor linkage connection). - Referring now to Fig. 4, this shows a third embodiment of pile which is generally similar to the first embodiment shown in Fig. 1, but which differs in respect of the
side plates upper end portions 6A and 8A,central portions 6B and 8B, andlower end portions - Fig. 5 shows an anchoring method employing two of the Fig. 4 piles. The piles are driven vertically or near-vertically into the sea-bed until flush with the mudline, at a suitable mutual separation such as 26 metres or 43 metres. The padeyes on both piles are shackled to opposite ends of a 200 metre
long anchor chain 27 which is looped across the seabed towards the structure (not shown) which is to be anchored by the piles, and thereby thechain 27 extends by about 100 metres towards the structure. Next, the centre of thechain 27 is passed through a chain runner (not illustrated) which allows thechain 27 to pass relatively freely through it to equalise the tensions in the two 100-metre legs of chain. Finally, the chain runner is connected by a further 300 metres of anchor chain (not shown) to the structure to provide the equivalent of one heavy anchor system utilising a conventional single heavy anchor pile, but actually employing two much lighter piles with mutually balanced loadings. Thus the anchoring method schematically illustrated in Fig. 5 is suitable for providing one of the distributed multiple anchorages for a floating semi-submersible oil rig in 150 metres of water, with an anchor line length of about four times water depth. - In the above embodiments of pile in accordance with the invention, the characteristic ratio of vertical length to maximum lateral width is in the range 2-5 to 1, whereas conventional piles typically have a length to width ratio of 20-40 to 1.
- Fig. 6 shows a similar anchoring method to that of Fig. 5, but with a pair of piles in accordance with a fourth embodiment of the invention. The fourth embodiment of pile has a structure generally similar to the first embodiment of Fig. 1, but in place of the I-
beam 2 is atubular pile 28, which reinforces atriangular plate structure 29 against bending as did the I-beam 2. Thepile 28 extends below thetriangular plate structure 30 at least as far as the vertical length of thetriangular plate structure 29 to give deep penetration of the sea-bed. Thetriangular plate structure 29 gives enhanced resistance against dragging of the pile in the upper reaches of the sea-bed up to the mudline where lesser compaction of the sea-bed material might be expected to provide a reduced resistance to dragging. In the fourth embodiment of Fig. 6, the ends of theanchor chain 27 are attached to each pile near the lower edge of thetriangular plate structure 29 approximately at a point where overall dragging resistance above and below the chain attachment is about equal. From the attachment point, the chain cuts through the sea-bed material in an upwardly curving path until the chain emerges from the mudline. - While certain modifications and variations have been described above, the invention is not restricted thereto, and other modifications and variations can be adopted without departing from the scope of the invention. For example, by welding a cover or other suitable member over the top of the pile (but with the provision of resting to ensure unimpeded pile driving), any of the embodiments of pile of the invention can be utilised for vertical support or vertical anchoring as an alternative or addition to the horizontal or near-horizontal anchoring function previously described.
Claims (8)
- A pile having an elongated hollow body (4) for embedment in supporting material, connecting means (20) on the pile for the connection of an anchoring linkage (26), at least a substantial fraction of the overall length of the pile body (4) having a cross-sectional profile generally in the form of an isosceles triangle; characterised in that the two equal sides (6, 8) of said triangle have a length less than that of the third side (10).
- A pile as claimed in Claim 1, wherein the two equal internal angles of the isosceles triangle are in the range 20° to 45°.
- A pile as claimed in any preceding Claim, wherein a beam-like strengthening member (24) extends across the interior of the triangle defining the cross-sectional profile of the pile body (4) for substantially the full vertical length of the pile body (4).
- A pile as claimed in Claim 3, wherein the beam-like strengthening member (24) extends from the apex defined by the two equal sides (6, 8) of the isosceles triangle to the mid-point of the third side (10) of the triangle.
- A pile as claimed in Claim 4, wherein the connecting means (20) is located on the apex of the triangle in the vicinity of the middle of the vertical length of the pile.
- A pile as claimed in any preceding Claim, wherein the pile body (4) is constructed of plate material with at least the lower end of the pile body being open.
- A method of anchoring an object or a structure, said method comprising the steps of driving at least one pile according to any one of Claims 1 to 6 into the ground, sea-bed, or other supporting material, and coupling an anchoring linkage (26) between the object or structure and the connecting means (20) on the pile.
- A method as claimed in Claim 7 comprising the steps of driving two piles according to any of Claims 1 to 6 into the supporting material at a relatively short distance apart, and coupling a relatively long length of flexible elongate anchoring linkage (27) at either end to a respective connecting means (20), and directly or indirectly to the object or structure at a point intermediate these ends by way of a runner, pulley, or other tension balancing means.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8719577 | 1987-08-19 | ||
GB878719577A GB8719577D0 (en) | 1987-08-19 | 1987-08-19 | Pile |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0312198A1 EP0312198A1 (en) | 1989-04-19 |
EP0312198B1 true EP0312198B1 (en) | 1993-03-10 |
Family
ID=10622487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880307661 Expired - Lifetime EP0312198B1 (en) | 1987-08-19 | 1988-08-18 | Pile, in particular an anchor pile |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0312198B1 (en) |
DE (1) | DE3879079D1 (en) |
ES (1) | ES2039629T3 (en) |
GB (1) | GB8719577D0 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3976459A4 (en) * | 2019-06-03 | 2023-07-05 | Dr. Tech. Olav Olsen AS | Unconsolidated material anchor device and process for arranging an anchor pile in unconsolidated materials |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8917819D0 (en) * | 1989-08-03 | 1989-09-20 | Anchortech Ltd | Wellhead protector |
WO2008024281A2 (en) * | 2006-08-23 | 2008-02-28 | Benford Joe M | A connector assembly and method for connecting misaligned elongated members and a connection formed by the connector assembly |
SE536504C2 (en) * | 2012-01-19 | 2014-01-07 | Sture Kahlman | Pile device and use thereof |
NO20230018A1 (en) * | 2023-01-10 | 2024-07-11 | Grant Prideco Inc | Plate type pile anchor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE806234C (en) * | 1950-02-25 | 1951-06-11 | Dortmund Hoerder Huettenver A | Hollow driven pile welded together from channel-shaped individual profiles |
-
1987
- 1987-08-19 GB GB878719577A patent/GB8719577D0/en active Pending
-
1988
- 1988-08-18 EP EP19880307661 patent/EP0312198B1/en not_active Expired - Lifetime
- 1988-08-18 ES ES88307661T patent/ES2039629T3/en not_active Expired - Lifetime
- 1988-08-18 DE DE8888307661T patent/DE3879079D1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3976459A4 (en) * | 2019-06-03 | 2023-07-05 | Dr. Tech. Olav Olsen AS | Unconsolidated material anchor device and process for arranging an anchor pile in unconsolidated materials |
Also Published As
Publication number | Publication date |
---|---|
EP0312198A1 (en) | 1989-04-19 |
DE3879079D1 (en) | 1993-04-15 |
ES2039629T3 (en) | 1993-10-01 |
GB8719577D0 (en) | 1987-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101797263B1 (en) | Undersea anchoring system and method | |
US8950981B2 (en) | Earth retaining system such as a sheet pile wall with integral soil anchors | |
US6395372B1 (en) | Cell confinement structure | |
US4728225A (en) | Method of rehabilitating a waterfront bulkhead | |
US5439060A (en) | Tensioned riser deepwater tower | |
CA2100186C (en) | Natural bottom culvert and method for installation | |
JP3281376B2 (en) | Sheet pile | |
US4754588A (en) | Foundation piling system | |
US11149395B2 (en) | Cellular sheet pile retaining systems with unconnected tail walls, and associated methods of use | |
US4363568A (en) | Conductors for a guyed tower and method for installing same | |
EP0312198B1 (en) | Pile, in particular an anchor pile | |
US5642966A (en) | Compliant tower | |
KR101976742B1 (en) | Steel deck reinforce slab bridge and method for constructing this same | |
US3352120A (en) | Reinforced concrete pile | |
JP5150596B2 (en) | Anchor device and anchor construction method | |
US20220298739A1 (en) | Weak soil anchor device to anchor one or several structures and method to arrange an anchor in weak soil | |
US5385432A (en) | Water area structure using placing member for underwater ground | |
KR102448211B1 (en) | Reinforcing structure for pile head | |
EP0051091B1 (en) | Riser pipe assembly for use in production systems | |
JPH0433676B2 (en) | ||
US7059807B2 (en) | Elongated structural members for use in forming barrier walls | |
JP3043320B2 (en) | Piling pier construction method and pile pier structure | |
JP2003027461A (en) | Oblique tie material connection type double-wall cofferdam steel sheet pile wall | |
US5226750A (en) | Offshore drilling platform support | |
JP2002129533A (en) | Double sheet pile wall type revetment construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19891016 |
|
17Q | First examination report despatched |
Effective date: 19910411 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930310 Ref country code: FR Effective date: 19930310 |
|
REF | Corresponds to: |
Ref document number: 3879079 Country of ref document: DE Date of ref document: 19930415 |
|
ITF | It: translation for a ep patent filed | ||
EN | Fr: translation not filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19930823 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930831 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2039629 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 19940819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19991007 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070724 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20080817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20080817 |