EP0309158A1 - Photographic recording material comprising a magenta dye image forming coupler compound - Google Patents
Photographic recording material comprising a magenta dye image forming coupler compound Download PDFInfo
- Publication number
- EP0309158A1 EP0309158A1 EP88308567A EP88308567A EP0309158A1 EP 0309158 A1 EP0309158 A1 EP 0309158A1 EP 88308567 A EP88308567 A EP 88308567A EP 88308567 A EP88308567 A EP 88308567A EP 0309158 A1 EP0309158 A1 EP 0309158A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- recording material
- group
- substituted
- photographic recording
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 29
- 239000000463 material Substances 0.000 title claims abstract description 22
- -1 silver halide Chemical class 0.000 claims abstract description 58
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 31
- 229910052709 silver Inorganic materials 0.000 claims abstract description 27
- 239000004332 silver Substances 0.000 claims abstract description 27
- 239000004202 carbamide Substances 0.000 claims abstract description 25
- 238000010521 absorption reaction Methods 0.000 claims abstract description 22
- 125000003118 aryl group Chemical group 0.000 claims abstract description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 12
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 9
- 230000003595 spectral effect Effects 0.000 claims abstract description 9
- 125000006575 electron-withdrawing group Chemical group 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- JAAIPIWKKXCNOC-UHFFFAOYSA-N 1h-tetrazol-1-ium-5-thiolate Chemical group SC1=NN=NN1 JAAIPIWKKXCNOC-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 23
- 239000000839 emulsion Substances 0.000 claims description 22
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- MCSKRVKAXABJLX-UHFFFAOYSA-N pyrazolo[3,4-d]triazole Chemical compound N1=NN=C2N=NC=C21 MCSKRVKAXABJLX-UHFFFAOYSA-N 0.000 claims description 3
- 125000004104 aryloxy group Chemical group 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- PTFYQSWHBLOXRZ-UHFFFAOYSA-N imidazo[4,5-e]indazole Chemical compound C1=CC2=NC=NC2=C2C=NN=C21 PTFYQSWHBLOXRZ-UHFFFAOYSA-N 0.000 claims description 2
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical group O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 claims description 2
- 239000000975 dye Substances 0.000 description 44
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 24
- 239000010410 layer Substances 0.000 description 19
- 239000002904 solvent Substances 0.000 description 8
- 150000003672 ureas Chemical class 0.000 description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 238000011160 research Methods 0.000 description 5
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000002367 halogens Chemical group 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OJGMBLNIHDZDGS-UHFFFAOYSA-N N-Ethylaniline Chemical compound CCNC1=CC=CC=C1 OJGMBLNIHDZDGS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- KJWMCPYEODZESQ-UHFFFAOYSA-N 4-Dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C=C1 KJWMCPYEODZESQ-UHFFFAOYSA-N 0.000 description 1
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- HOLVRJRSWZOAJU-UHFFFAOYSA-N [Ag].ICl Chemical compound [Ag].ICl HOLVRJRSWZOAJU-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- UZKLEUIGRDLZRP-UHFFFAOYSA-N acetic acid azane ethane-1,2-diamine Chemical compound N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.NCCN UZKLEUIGRDLZRP-UHFFFAOYSA-N 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000005036 alkoxyphenyl group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- XYXNTHIYBIDHGM-UHFFFAOYSA-N ammonium thiosulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=S XYXNTHIYBIDHGM-UHFFFAOYSA-N 0.000 description 1
- 229940051880 analgesics and antipyretics pyrazolones Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910001864 baryta Inorganic materials 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000006310 cycloalkyl amino group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 1
- 125000003453 indazolyl group Chemical class N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000006501 nitrophenyl group Chemical group 0.000 description 1
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical compound O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 1
- 238000005691 oxidative coupling reaction Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 239000001043 yellow dye Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/392—Additives
- G03C7/39208—Organic compounds
- G03C7/39236—Organic compounds with a function having at least two elements among nitrogen, sulfur or oxygen
Definitions
- This invention relates to a color photographic silver halide recording material.
- the invention relates to an improved photographic recording material containing a magenta dye image-forming coupler compound.
- Color photographic recording materials generaly contain silver halide emulsion layers sensitized to each of the blue, green and red regions of the visible spectrum, with each layer having associated therewith a color-forming compound which, respectively, yields a yellow, magenta or cyan dye.
- the quality of the resulting color image is primarily based on the dye hues obtained from the respective color-forming compounds.
- Magenta dye image-forming couplers are frequently employed to provide desired magenta dye images.
- a problem encountered with such couplers is that the spectral absorption characteristics of dyes obtained therefrom may not have the particular absorption maximum and distribution that are desired.
- a dye which is obtained may have an absorption maximum as little as several nanometers removed from the optimum desired value, and therefore will not have the desired hue, notwithstanding this slight difference in absorption characteristics.
- a resulting dye may have an absorption maximum which is considerably shorter than a desired value.
- Coupler solvents are known to cause shifts in absorption values of dyes.
- U.S. Patent 3,676,137 describes use of a phosphate ester of a high boiling coupler solvent to shift absorption of a cyan dye to a shorter wavelength in order to reduce excessive red wavelength absorption.
- Japanese Patent Publication No. 59(1984) - 102234 describes the use of high boiling phenolic compounds to shift the spectral absorption of 2,5-diacylaminophenol cyan dye-forming coupler compounds to longer wavelengths.
- a phenolic compound of this publication does not provide a sufficient level of hue shifting as compared with that obtained with the present invention.
- Japanese Patent Publication No. 59(1984) - 204041 describes use of urea compounds with cyan dye image-forming couplers to improve light fastness, to reduce unwanted green absorption and to reduce loss of density caused by bleach operations in dyes obtained from such couplers.
- This publication also suggests addition of other compounds that form dyes by oxidative coupling with primary amine color developing agents, such as magenta and yellow coupler compounds.
- magenta and yellow coupler compounds such as magenta and yellow coupler compounds.
- particular urea compounds can be used to alter absorption characteristics of dyes derived from magenta dye forming coupler compounds.
- the object of the present invention is to provide a color photographic silver halide recording material having the capability of imparting slight as well as relatively large alterations in absorption properties of a magenta dye to obtain a spectral absorption value different from the inherent absorption characteristics of the dye.
- a color photographic recording material which comprises a support having thereon a light-sensitive silver halide emulsion layer, a magenta dye image-forming coupler capable of forming a dye by reaction with oxidized color developing agent and, associated with the coupler, a urea compound which is capable of altering the spectral absorption of the magenta dye formed from the coupler, said urea compound having the structural formula: wherein; R1 is a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group; R2 is hydrogen or a substituted or unsubstituted alkyl group; R3 is a substituted or unsubstituted alkyl or a substituted or unsubstituted alkoxy group or an electron-withdrawing group with the proviso that R3 is not a 5-mercaptotetrazole group; and n is from 0 to 3;
- This invention also relates to a color photographic record comprising a magenta dye formed by a coupling reaction between a magenta dye image-forming coupler and oxidized silver halide developing agent, which recording material comprises, in association with the dye, a urea compound having the structural formula: wherein; R1 is a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group; R2 is hydrogen or a substituted or unsubstituted alkyl group; R3 is a substituted or unsubstituted alkyl or a substituted or unsubstituted alkoxy group or an electron-withdrawing group; and n is from 0 to 3.
- R1 can be represented by alkyl groups having from 1 to about 20 carbon atoms, preferably from 1 to about 12 carbon atoms, which groups can be straight or branched chain and optionally can be substituted.
- Aryl groups which can be represented by R1 have from about 6 to about 12 carbon atoms, which groups are optionally substituted.
- Useful R2 groups are hydrogen or alkyl as defined for R1.
- the most preferred urea compounds are those where R1 is an alkyl group having from about 4 to about 10 carbon atoms and where R2 is hydrogen.
- R3 substituents can be alkyl or alkoxy groups having from 1 to about 20 carbon atoms, preferably from 1 to about 12 carbon atoms, which groups can be straight or branched chain and which can be substituted.
- Substituents which can be present on the R1 and R2 groups include halogen atoms, such as chlorine and bromine, and alkoxy or carboalkoxy groups wherein the total number of carbon atoms in such groups is from 2 to about 12.
- R1 is aryl the substituents can also be alkyl, preferably alkyl having from 1 to about 12 carbon atoms.
- Electron-withdrawing groups represented by R3 include -CN, -NO2, a halogen atom, - R4 and -SO2R4, where R4 is an alkyl or an alkoxy group having from 1 to about 20 carbon atoms or an aryl or an aryloxy group having from about 6 to about 12 carbon atoms.
- Chlorine is a preferred halogen substituent on the phenyl group inasmuch as it provides good stability properties and is least expensive to manufacture.
- the described urea compounds can be easily synthesized in quantitative yield by adding amines to isocyanates according to the procedures known in the art. Two or more urea compounds may be used in combination to alter the spectral absorption properties of magenta dyes as described herein.
- the quantity of a urea compound which can be employed with a magenta dye image-forming compound either alone or in combination with known coupler solvents there are no particular restrictions on the quantity of a urea compound which can be employed with a magenta dye image-forming compound either alone or in combination with known coupler solvents. Generally, it is desirable that the quantity of urea compound, with respect to each part by weight of the magenta coupler, be from about 0.05 to about 10 parts, preferably from about 0.2 to about 3 parts by weight of the coupler compound. As the amount of urea compound increases, relative to the amount of magenta coupler compound employed, there is usually a detectable increase in the extent of hue shift in the magenta dye. However, the particular choice of magenta coupler, of urea compound or the presence of one or more coupler solvents, all tend to influence the type and the extent of spectral absorption change in the resulting magenta dye.
- the coupler can first be dissolved in one or more known coupler solvents, such as di-n-butyl phthalate (DBP), and then be mixed with a urea compound as described herein. If desired, the magenta coupler compound can be mixed with a urea compound where these compounds are sufficiently compatible so that known coupler solvents may not be needed. The resulting mixture or solution is then dispersed in aqueous gelatin, preferably containing a surfactant, and the dispersion is added to a silver halide emulsion which can then be coated by known techniques.
- DBP di-n-butyl phthalate
- Specific urea compounds which are useful for shifting the absorption values of magenta dyes obtained from the reaction of magenta dye-forming couplers with oxidized color developing agent include the following:
- Couplers which form magenta dyes upon reaction with oxidized color developing agents are described in such representative patents and publications as: U.S. Patent Nos. 1,969,479; 2,311,082; 2,343,703; 2,369,489; 2,600,788; 2,908,573; 3,061,432; 3,062,653; 3,152,896; 3,519,429; 3,725,067; 4,443,536; European Patent Publication 170164; European Patent Publication Nos. 177,765; and copending U. S. Patent Applications Ser. No. 23,517 of S. Normandin et al, filed March 9, 1987; Ser. No. 23,518 of R. Romanet et al, filed March 9, 1987; Ser. No. 23,519 of A. Bowne et al, filed March 9, 1987 and Ser. No. 23,520 of A. Bowne et al, filed March 9, 1987, the disclosures of which are incorporated herein by reference.
- Preferred magenta couplers include pyrazolones having the structural formulae: pyrazolotriazoles having the structural formulae: pyrazolobenzimidazoles having the structural formulae: and indazoles having the structural formula: wherein R6 is halogen (e.g., chloro, fluoro), alkyl or alkoxy having from 1 to 4 carbon atoms, phenyl or substituted phenyl (e.g., 2,4,6-trihalophenyl); R7 is a ballast group; R8 is hydrogen or a monovalent organic radical, for example a saturated or unsaturated alkyl group having from 1 to about 20 carbon atoms (methyl, ethyl, propyl, butyl, decyl, dodecyl, heptadecyl, octadecyl); a cycloalkyl group (e.g.
- cyclohexyl an aralkyl group (e.g. benzyl); an aryl group (e.g. phenyl, alkylphenyl or alkoxyphenyl in which the alkyl or alkoxy radical has from 1 to about 20 carbon atoms, nitrophenyl, aminophenyl, acylaminophenyl, alkyl- aminophenyl, naphthyl, diphenyl, diphenylether, diphenylthioether); a heterocyclic group (e.g.
- a-furyl, a-benzofuryl, q-pyridyl an amino, hydroxy or carboxylic acid group, it being possible for the hydrogen atoms of these groups to be substituted, for instance by a mono- or dialkylamino group in which the alkyl groups have from 1 to about 20 carbon atoms; a cycloalkylamino group; an amino group in which one hydrogen atom is replaced by a pyrazolo-[1,5-a]-benzimidazolyl radical which is bonded in 3- position to said nitrogen atom so that couplers result in which two pyrazolo-[1,5-a]-benzimidazolyl radicals are connected by an amino group, and in which the remaining hydrogen atom may be replaced by a substituent such as an alkyl-, aryl-, aralkyl- or acyl- radical; an acylamino group in which the acyl radical is derived from an aliphatic, aromatic or heterocyclic carboxylic
- R14 can be an aromatic or heterocyclic radical (phenyl, naphthyl, diphenyl, diphenylether, benzthiazolyl, pyridyl, quinolyl or pyrazolyl) which may be substituted such as by an alkyl group having from 1 to about 20 carbon atoms, hydroxy, alkoxy, halogen, amino, substituted amino, nitro, sulphonic acid or carboxylic acid groups;
- R10 represents a divalent radical such as wherein R11 can be alkyl, aralkyl, especially phenyl, phenyl substituted preferably in the p-position by a tertiary amino group such as a dialkylamino group in which at least one of the alkyl groups is substituted by carboxy, sulpho, hydroxy, alkoxy, carboxylalkyl, cyano or the divalent radical wherein R12 and R13 represent alipha-phenyl, naphthyl, diphenyl
- magenta dye forming coupler compounds which are useful in the practice of this invention include:
- Photographic elements in which the photographic couplers of this invention are incorporated can be simple elements comprising a support and a single silver halide emulsion layer, or they can be multilayer, multicolor elements.
- the coupler compounds of this invention can be incorporated in the silver halide emulsion layer or in another layer, such as an adjacent layer, where they will come into reactive association with oxidized color developing agent which has developed silver halide in the emulsion layer.
- the silver halide emulsion layer can contain, or have associated therewith, other photographic coupler compounds, such as color forming couplers, colored masking couplers, etc. These other photographic coupler compounds can form dyes of the same or different color and hue as the photographic coupler compounds of this invention. Additionally, the silver halide emulsion layer can contain addenda conventionally contained in such layers.
- a typical multilayer, multicolor photographic element comprises a support having thereon a red-sensitive silver halide emulsion layer having associated therewith a cyan dye image-forming coupler compound, a green-sensitive silver halide emulsion layer having associated therewith a magenta dye image-forming coupler compound and a blue-sensitive silver halide emulsion layer having associated therewith a yellow dye image-forming coupler compound, wherein the magenta dye image-forming coupler compound has associated therewith a urea compound as described herein.
- Each silver halide emulsion layer can be composed of one or more layers and the layers can be arranged in different locations with respect to one another. Typical arrangements are described in U.S. Patent Nos. 3,227,554; 3,620,747; 3,843,369; and 4,400,463 and in U.K. Patent No. 923,045.
- the light sensitive silver halide emulsions can include coarse, regular or fine grain silver halide crystals or mixtures thereof and can be comprised of such silver halides as silver chloride, silver bromide, silver bromoiodide, silver chlorobromide, silver chloroiodide, silver chlorobromoiodide and mixtures thereof.
- the emulsions can be negative-working or direct-positive emulsions. They can form latent images predominantly on the surface of the silver halide grains or predominantly on the interior of the silver halide grains. They can be chemically and spectrally sensitized.
- the emulsions typically will be gelatin emulsions although other hydrophilic colloids can be used in accordance with usual practice.
- the support can be of any suitable material used with photographic elements.
- a flexible support is employed, such as a polymeric film or paper support.
- Such supports include cellulose nitrate, cellulose acetate, polyvinyl acetal, polyethylene terephthalate, polycarbonate and resinous materials as well as glass, paper or metal.
- Paper supports can be acetylated or coated with baryta and/or an ⁇ -olefin polymer, particularly a polymer of an ⁇ -olefin containing 2 to 10 carbon atoms such as polyethylene, polypropylene or ethylene-butene copolymers.
- association is intended to mean that materials can be in either the same or different layers, so long as the materials are accessible to one another.
- Single layer coatings containing silver bromoiodide emulsion (6.5 mole % I) comprising unsensitized polydisperse medium-large grains (0.91 gAg/m2) were prepared on cellulose acetate-butyrate supports. Each layer also contained gelatin (3.8 g/m2) and the magenta coupler C-4 (1.3 g/m2) as described above. The coupler was dispersed in di-n-butyl phthalate (DBP) (1.3 g/m2 when used alone) or in combination of DBP and a urea compound (each at 0.65 g/m2) as described below in Table 1. Each coating was exposed imagewise through a graduated-density test object to provide a maximum density image and was processed at 33°C employing the color developer solution described below, and then subjected to 1.5 minutes in the bleach-fix bath described below, washed and dried.
- DBP di-n-butyl phthalate
- a urea compound each at 0.65 g/m2 as described
- hue shifts are highly subtle and vary only a few nanometers from the control. Such variations in wavelength shifts offer a high degree of manipulative control and provide an excellent, inexpensive means to obtain particularly desired hue values.
- Example 2 This example is similar to Example 1, except that pyrazolotriazole magenta coupler C-14 (1.3 g/m2) as described above, was used:
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
R¹ is a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group;
R² is hydrogen or a substituted or unsubstituted alkyl group;
R³ is a substituted or unsubstituted alkyl or a substituted or unsubstituted alkoxy group or an electron-withdrawing group with the proviso that R³ is not a 5-mercaptotetrazole group; and
n is from 0 to 3.
which is capable of altering the spectral absorption properties of a dye formed by reaction of the coupler compound with oxidized developing agent.
Description
- This invention relates to a color photographic silver halide recording material. In particular, the invention relates to an improved photographic recording material containing a magenta dye image-forming coupler compound.
- Color photographic recording materials generaly contain silver halide emulsion layers sensitized to each of the blue, green and red regions of the visible spectrum, with each layer having associated therewith a color-forming compound which, respectively, yields a yellow, magenta or cyan dye. The quality of the resulting color image is primarily based on the dye hues obtained from the respective color-forming compounds.
- Magenta dye image-forming couplers are frequently employed to provide desired magenta dye images. A problem encountered with such couplers is that the spectral absorption characteristics of dyes obtained therefrom may not have the particular absorption maximum and distribution that are desired. Frequently, a dye which is obtained may have an absorption maximum as little as several nanometers removed from the optimum desired value, and therefore will not have the desired hue, notwithstanding this slight difference in absorption characteristics. Conversely, a resulting dye may have an absorption maximum which is considerably shorter than a desired value.
- Attempts to alter absorption characteristics of dyes, including those obtained from magenta dye image-forming coupler compounds, are usually focused on alterations of the structures of coupler compounds. This approach, while enjoying some measure of success, is time consuming and involves the expense of highly focused research programs. Success with such research is not predictable so that improvements in final hue values have been elusive even after concentrated research efforts.
- Some coupler solvents are known to cause shifts in absorption values of dyes. For example, U.S. Patent 3,676,137 describes use of a phosphate ester of a high boiling coupler solvent to shift absorption of a cyan dye to a shorter wavelength in order to reduce excessive red wavelength absorption. Alternatively, Japanese Patent Publication No. 59(1984) - 102234 describes the use of high boiling phenolic compounds to shift the spectral absorption of 2,5-diacylaminophenol cyan dye-forming coupler compounds to longer wavelengths. However, as is shown below by comparative data, a phenolic compound of this publication does not provide a sufficient level of hue shifting as compared with that obtained with the present invention.
- Japanese Patent Publication No. 59(1984) - 204041 describes use of urea compounds with cyan dye image-forming couplers to improve light fastness, to reduce unwanted green absorption and to reduce loss of density caused by bleach operations in dyes obtained from such couplers. This publication also suggests addition of other compounds that form dyes by oxidative coupling with primary amine color developing agents, such as magenta and yellow coupler compounds. However, there is no teaching or suggestion in this publication that particular urea compounds can be used to alter absorption characteristics of dyes derived from magenta dye forming coupler compounds.
- Accordingly, the object of the present invention is to provide a color photographic silver halide recording material having the capability of imparting slight as well as relatively large alterations in absorption properties of a magenta dye to obtain a spectral absorption value different from the inherent absorption characteristics of the dye.
- This object is achieved with a color photographic recording material which comprises a support having thereon a light-sensitive silver halide emulsion layer, a magenta dye image-forming coupler capable of forming a dye by reaction with oxidized color developing agent and, associated with the coupler, a urea compound which is capable of altering the spectral absorption of the magenta dye formed from the coupler, said urea compound having the structural formula:
R¹ is a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group;
R² is hydrogen or a substituted or unsubstituted alkyl group;
R³ is a substituted or unsubstituted alkyl or a substituted or unsubstituted alkoxy group or an electron-withdrawing group with the proviso that R³ is not a 5-mercaptotetrazole group; and
n is from 0 to 3; - This invention also relates to a color photographic record comprising a magenta dye formed by a coupling reaction between a magenta dye image-forming coupler and oxidized silver halide developing agent, which recording material comprises, in association with the dye, a urea compound having the structural formula:
R¹ is a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group;
R² is hydrogen or a substituted or unsubstituted alkyl group;
R³ is a substituted or unsubstituted alkyl or a substituted or unsubstituted alkoxy group or an electron-withdrawing group; and
n is from 0 to 3. - R¹ can be represented by alkyl groups having from 1 to about 20 carbon atoms, preferably from 1 to about 12 carbon atoms, which groups can be straight or branched chain and optionally can be substituted. Aryl groups which can be represented by R¹ have from about 6 to about 12 carbon atoms, which groups are optionally substituted.
- Useful R² groups are hydrogen or alkyl as defined for R¹.
- The most preferred urea compounds are those where R¹ is an alkyl group having from about 4 to about 10 carbon atoms and where R² is hydrogen.
- R³ substituents can be alkyl or alkoxy groups having from 1 to about 20 carbon atoms, preferably from 1 to about 12 carbon atoms, which groups can be straight or branched chain and which can be substituted.
- Substituents which can be present on the R¹ and R² groups include halogen atoms, such as chlorine and bromine, and alkoxy or carboalkoxy groups wherein the total number of carbon atoms in such groups is from 2 to about 12. When R¹ is aryl the substituents can also be alkyl, preferably alkyl having from 1 to about 12 carbon atoms.
-
- Chlorine is a preferred halogen substituent on the phenyl group inasmuch as it provides good stability properties and is least expensive to manufacture.
- The described urea compounds can be easily synthesized in quantitative yield by adding amines to isocyanates according to the procedures known in the art. Two or more urea compounds may be used in combination to alter the spectral absorption properties of magenta dyes as described herein.
- There are no particular restrictions on the quantity of a urea compound which can be employed with a magenta dye image-forming compound either alone or in combination with known coupler solvents. Generally, it is desirable that the quantity of urea compound, with respect to each part by weight of the magenta coupler, be from about 0.05 to about 10 parts, preferably from about 0.2 to about 3 parts by weight of the coupler compound. As the amount of urea compound increases, relative to the amount of magenta coupler compound employed, there is usually a detectable increase in the extent of hue shift in the magenta dye. However, the particular choice of magenta coupler, of urea compound or the presence of one or more coupler solvents, all tend to influence the type and the extent of spectral absorption change in the resulting magenta dye.
- When the magenta coupler compound is added to a silver halide emulsion, conventional procedures may be employed. For example, the coupler can first be dissolved in one or more known coupler solvents, such as di-n-butyl phthalate (DBP), and then be mixed with a urea compound as described herein. If desired, the magenta coupler compound can be mixed with a urea compound where these compounds are sufficiently compatible so that known coupler solvents may not be needed. The resulting mixture or solution is then dispersed in aqueous gelatin, preferably containing a surfactant, and the dispersion is added to a silver halide emulsion which can then be coated by known techniques.
-
- Couplers which form magenta dyes upon reaction with oxidized color developing agents are described in such representative patents and publications as: U.S. Patent Nos. 1,969,479; 2,311,082; 2,343,703; 2,369,489; 2,600,788; 2,908,573; 3,061,432; 3,062,653; 3,152,896; 3,519,429; 3,725,067; 4,443,536; European Patent Publication 170164; European Patent Publication Nos. 177,765; and copending U. S. Patent Applications Ser. No. 23,517 of S. Normandin et al, filed March 9, 1987; Ser. No. 23,518 of R. Romanet et al, filed March 9, 1987; Ser. No. 23,519 of A. Bowne et al, filed March 9, 1987 and Ser. No. 23,520 of A. Bowne et al, filed March 9, 1987, the disclosures of which are incorporated herein by reference.
- Preferred magenta couplers include pyrazolones having the structural formulae:
R⁶ is halogen (e.g., chloro, fluoro), alkyl or alkoxy having from 1 to 4 carbon atoms, phenyl or substituted phenyl (e.g., 2,4,6-trihalophenyl);
R⁷ is a ballast group;
R⁸ is hydrogen or a monovalent organic radical, for example a saturated or unsaturated alkyl group having from 1 to about 20 carbon atoms (methyl, ethyl, propyl, butyl, decyl, dodecyl, heptadecyl, octadecyl); a cycloalkyl group (e.g. cyclohexyl); an aralkyl group (e.g. benzyl); an aryl group (e.g. phenyl, alkylphenyl or alkoxyphenyl in which the alkyl or alkoxy radical has from 1 to about 20 carbon atoms, nitrophenyl, aminophenyl, acylaminophenyl, alkyl- aminophenyl, naphthyl, diphenyl, diphenylether, diphenylthioether); a heterocyclic group (e.g. a-furyl, a-benzofuryl, q-pyridyl); an amino, hydroxy or carboxylic acid group, it being possible for the hydrogen atoms of these groups to be substituted, for instance by a mono- or dialkylamino group in which the alkyl groups have from 1 to about 20 carbon atoms; a cycloalkylamino group; an amino group in which one hydrogen atom is replaced by a pyrazolo-[1,5-a]-benzimidazolyl radical which is bonded in 3- position to said nitrogen atom so that couplers result in which two pyrazolo-[1,5-a]-benzimidazolyl radicals are connected by an amino group, and in which the remaining hydrogen atom may be replaced by a substituent such as an alkyl-, aryl-, aralkyl- or acyl- radical; an acylamino group in which the acyl radical is derived from an aliphatic, aromatic or heterocyclic carboxylic acid; a carboxylic acid group which is esterified by means of an aliphatic, cycloaliphatic or aromatic alcohol or by an aromatic compound having a phenolic hydroxy group; or a carboxyamido group in which the amido group may be substituted for example by a saturated or unsaturated alkyl, aralkyl, aryl or heterocyclic group;
R⁹ represents a hydrogen atom, a sulphonic acid or a carboxylic group; a halogen atom (e.g. chlorine or bromine); or an azo radical -N=NR¹⁴, wherein R¹⁴ can be an aromatic or heterocyclic radical (phenyl, naphthyl, diphenyl, diphenylether, benzthiazolyl, pyridyl, quinolyl or pyrazolyl) which may be substituted such as by an alkyl group having from 1 to about 20 carbon atoms, hydroxy, alkoxy, halogen, amino, substituted amino, nitro, sulphonic acid or carboxylic acid groups;
R¹⁰ represents a divalent radical such as
X represents hydrogen or a coupling off group. -
- Photographic elements in which the photographic couplers of this invention are incorporated can be simple elements comprising a support and a single silver halide emulsion layer, or they can be multilayer, multicolor elements. The coupler compounds of this invention can be incorporated in the silver halide emulsion layer or in another layer, such as an adjacent layer, where they will come into reactive association with oxidized color developing agent which has developed silver halide in the emulsion layer. The silver halide emulsion layer can contain, or have associated therewith, other photographic coupler compounds, such as color forming couplers, colored masking couplers, etc. These other photographic coupler compounds can form dyes of the same or different color and hue as the photographic coupler compounds of this invention. Additionally, the silver halide emulsion layer can contain addenda conventionally contained in such layers.
- A typical multilayer, multicolor photographic element according to this invention comprises a support having thereon a red-sensitive silver halide emulsion layer having associated therewith a cyan dye image-forming coupler compound, a green-sensitive silver halide emulsion layer having associated therewith a magenta dye image-forming coupler compound and a blue-sensitive silver halide emulsion layer having associated therewith a yellow dye image-forming coupler compound, wherein the magenta dye image-forming coupler compound has associated therewith a urea compound as described herein. Each silver halide emulsion layer can be composed of one or more layers and the layers can be arranged in different locations with respect to one another. Typical arrangements are described in U.S. Patent Nos. 3,227,554; 3,620,747; 3,843,369; and 4,400,463 and in U.K. Patent No. 923,045.
- The light sensitive silver halide emulsions can include coarse, regular or fine grain silver halide crystals or mixtures thereof and can be comprised of such silver halides as silver chloride, silver bromide, silver bromoiodide, silver chlorobromide, silver chloroiodide, silver chlorobromoiodide and mixtures thereof. The emulsions can be negative-working or direct-positive emulsions. They can form latent images predominantly on the surface of the silver halide grains or predominantly on the interior of the silver halide grains. They can be chemically and spectrally sensitized. The emulsions typically will be gelatin emulsions although other hydrophilic colloids can be used in accordance with usual practice.
- The support can be of any suitable material used with photographic elements. Typically, a flexible support is employed, such as a polymeric film or paper support. Such supports include cellulose nitrate, cellulose acetate, polyvinyl acetal, polyethylene terephthalate, polycarbonate and resinous materials as well as glass, paper or metal. Paper supports can be acetylated or coated with baryta and/or an α-olefin polymer, particularly a polymer of an α-olefin containing 2 to 10 carbon atoms such as polyethylene, polypropylene or ethylene-butene copolymers.
- Further details regarding silver halide emulsions and elements, and addenda incorporated therein can be found in Research Disclosure, December 1971, Item 9232, Paragraphs I through XVIII. Research Disclosure is published by Industrial Opportunities Ltd., Homewell, Havant, Hampshire, PO9 1EF, United Kingdom.
- The term "in association" is intended to mean that materials can be in either the same or different layers, so long as the materials are accessible to one another.
- The following examples further illustrate the invention. Unless otherwise indicated all parts, percents and ratios are by weight.
- Single layer coatings containing silver bromoiodide emulsion (6.5 mole % I) comprising unsensitized polydisperse medium-large grains (0.91 gAg/m²) were prepared on cellulose acetate-butyrate supports. Each layer also contained gelatin (3.8 g/m²) and the magenta coupler C-4 (1.3 g/m²) as described above. The coupler was dispersed in di-n-butyl phthalate (DBP) (1.3 g/m² when used alone) or in combination of DBP and a urea compound (each at 0.65 g/m²) as described below in Table 1. Each coating was exposed imagewise through a graduated-density test object to provide a maximum density image and was processed at 33°C employing the color developer solution described below, and then subjected to 1.5 minutes in the bleach-fix bath described below, washed and dried.
- Triethanolamine 11 mL
Benzyl alcohol 14.2 mL
Lithium chloride 2.1 g
Potassium bromide 0.6 g
Hydroxylamine sulfate 3.2 g
Potassium sulfite (45% solution) 2.8 mL
1-Hydroxyethylene-1,1-di phosphoric acid (60%) 0.8 mL
4-Amino-3-methyl-N-ethyl-N-β-methanesulfonamido)ethylaniline sulfate hydrate 4.35 g
Potassium carbonate (anhydrous) 28 g
Water to make 1.0 liter
- Ammonium thiosulfate 104 g
Sodium hydrogen sulfite 13 g
Ferric ammonium ethylenediamine tetraacetic acid 65.6 g
Ethylenediamine tetraacetic acid 6.56 g
Ammonium hydroxide (28%) 27.9 mL
Water to make 1 liter
- Transmission density versus wavelength data were obtained to determine the λ-max of the dye in an environment with the addition of different dispersants. The data show a desirable and noticeable shift in hue to longer wavelength with addition of urea compounds.
Table I Urea Compound Weight Ratio Coupler:DBP:Urea λ-max (nm) none 2:2:0 549 1 2:1:1 551 3 2:1:1 551 - As can be seen from the data in Table I, hue shifts are highly subtle and vary only a few nanometers from the control. Such variations in wavelength shifts offer a high degree of manipulative control and provide an excellent, inexpensive means to obtain particularly desired hue values.
- This example is similar to Example 1, except that pyrazolotriazole magenta coupler C-14 (1.3 g/m²) as described above, was used:
- Coatings were prepared, exposed, processed, and evaluated as in Example 1. The same color developing agent and DBP (di-n-butyl phthalate) coupler solvent were used. Resulting data are reported in the following Table:
Table II Urea Compound Weight Ratio Coupler:DBP:Urea λ-max (nm) none 2:2:0 552 1 2:1:1 556 3 2:1:1 556 - In another evaluation, not involving coupling to form a dye within a silver halide emulsion photographic system, the hue shifting of preformed magenta dyes was examined. A dye, a urea compound as described in Table III and the coupler solvent DBP (di-n-butyl phthalate) were mixed, dispersed in a gelatin vehicle and then coated in a single layer.
- Evaluations of transmission density vs wavelength data were obtained and are reported in Table III.
Table III Magenta Dye Urea Compound Weight Ratio Dye:DBP:Urea λ-max (nm) A none 1:3:0 532 A * 1:2:1 533 A 1 1:2:1 536 A 1 1:0:3 545 A 2 1:2:1 537 A 10 1:2:1 538 A 4 1:2:1 536 A 4 1:0:3 540 B none 1:3:0 533 B * 1:2:1 535 B 1 1:2:1 553 B 1 1:0:3 560 B 2 1:2:1 555 *Instead of a urea compound this example utilized the high boiling, hue shifting compound p-dodecyl phenol as described in Japanese Patent Publication No. 59(1984)-102234 - Inasmuch as the dyes utilized in Table III were all preformed and therefore avoided conventional aqueous processing, it can be appreciated that the concept of altering the spectral absorption of dyes is applicable to other than conventional photographic systems.
Claims (11)
R¹ is a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group;
R² is hydrogen or a substituted or unsubstituted alkyl group;
R³ is a substituted or unsubstituted alkyl or a substituted or unsubstituted alkoxy group or an electron-withdrawing group with the proviso that R³ is not a 5-mercaptotetrazole group; and
n is from 0 to 3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9917187A | 1987-09-21 | 1987-09-21 | |
US99171 | 1987-09-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0309158A1 true EP0309158A1 (en) | 1989-03-29 |
EP0309158B1 EP0309158B1 (en) | 1993-02-10 |
Family
ID=22273295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880308567 Expired - Lifetime EP0309158B1 (en) | 1987-09-21 | 1988-09-16 | Photographic recording material comprising a magenta dye image forming coupler compound |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0309158B1 (en) |
JP (1) | JPH01101547A (en) |
DE (1) | DE3878368T2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0399541A2 (en) * | 1989-05-25 | 1990-11-28 | Fuji Photo Film Co., Ltd. | Silver halide color photographic material |
US5593816A (en) * | 1993-01-11 | 1997-01-14 | Fuji Photo Film Co., Ltd. | Silver halide color photographic material and color image forming method |
WO2012014954A1 (en) | 2010-07-30 | 2012-02-02 | 富士フイルム株式会社 | Novel azo compound, aqueous solution, ink composition, ink for inkjet recording, inkjet recording method, ink cartridge for inkjet recording and inkjet recording |
WO2012014955A1 (en) | 2010-07-30 | 2012-02-02 | 富士フイルム株式会社 | Novel azo compound, aqueous solution, ink composition, ink for inkjet recording, inkjet recording method, ink cartridge for inkjet recording and inkjet recording |
EP2455431A1 (en) | 2003-10-23 | 2012-05-23 | Fujifilm Corporation | Ink and ink set for inkjet recording |
EP2712894A1 (en) | 2012-09-26 | 2014-04-02 | Fujifilm Corporation | Azo compound, aqueous solution, ink composition, ink for inkjet recording, inkjet recording method, ink cartridge for inkjet recording, and inkjet recorded material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3226163A1 (en) * | 1981-07-13 | 1983-01-20 | Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa | COLOR PHOTOGRAPHIC, LIGHT-SENSITIVE SILVER HALOGENIDE MATERIAL |
EP0232624A2 (en) * | 1985-12-28 | 1987-08-19 | Konica Corporation | Silver halide photographic light-sensitive material |
EP0268496A2 (en) * | 1986-11-19 | 1988-05-25 | Konica Corporation | Silver halide photographic light-sensitive material suitable for rapid processing |
-
1988
- 1988-09-16 DE DE19883878368 patent/DE3878368T2/en not_active Expired - Fee Related
- 1988-09-16 EP EP19880308567 patent/EP0309158B1/en not_active Expired - Lifetime
- 1988-09-20 JP JP23381488A patent/JPH01101547A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3226163A1 (en) * | 1981-07-13 | 1983-01-20 | Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa | COLOR PHOTOGRAPHIC, LIGHT-SENSITIVE SILVER HALOGENIDE MATERIAL |
EP0232624A2 (en) * | 1985-12-28 | 1987-08-19 | Konica Corporation | Silver halide photographic light-sensitive material |
EP0268496A2 (en) * | 1986-11-19 | 1988-05-25 | Konica Corporation | Silver halide photographic light-sensitive material suitable for rapid processing |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 72 (P-345)[1795], 2nd April 1985; & JP-A-59 204 041 (FUJI SHASHIN FILM K.K.) 19-11-1984 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0399541A2 (en) * | 1989-05-25 | 1990-11-28 | Fuji Photo Film Co., Ltd. | Silver halide color photographic material |
EP0399541A3 (en) * | 1989-05-25 | 1991-04-03 | Fuji Photo Film Co., Ltd. | Silver halide color photographic material |
US5120636A (en) * | 1989-05-25 | 1992-06-09 | Fuji Photo Film Co., Ltd. | Silver halide color photographic material containing magenta coupler, specific organic solvent and bisphenol compound |
US5593816A (en) * | 1993-01-11 | 1997-01-14 | Fuji Photo Film Co., Ltd. | Silver halide color photographic material and color image forming method |
EP2455431A1 (en) | 2003-10-23 | 2012-05-23 | Fujifilm Corporation | Ink and ink set for inkjet recording |
WO2012014954A1 (en) | 2010-07-30 | 2012-02-02 | 富士フイルム株式会社 | Novel azo compound, aqueous solution, ink composition, ink for inkjet recording, inkjet recording method, ink cartridge for inkjet recording and inkjet recording |
WO2012014955A1 (en) | 2010-07-30 | 2012-02-02 | 富士フイルム株式会社 | Novel azo compound, aqueous solution, ink composition, ink for inkjet recording, inkjet recording method, ink cartridge for inkjet recording and inkjet recording |
EP2712894A1 (en) | 2012-09-26 | 2014-04-02 | Fujifilm Corporation | Azo compound, aqueous solution, ink composition, ink for inkjet recording, inkjet recording method, ink cartridge for inkjet recording, and inkjet recorded material |
Also Published As
Publication number | Publication date |
---|---|
DE3878368D1 (en) | 1993-03-25 |
DE3878368T2 (en) | 1993-09-09 |
JPH01101547A (en) | 1989-04-19 |
EP0309158B1 (en) | 1993-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4656125A (en) | Photographic recording material | |
US3936303A (en) | Photographic photosensitive element and developing method thereof | |
US4277559A (en) | Novel magenta-forming color couplers and their use in photography | |
EP0273712B1 (en) | Light-sensitive silver halide photographic material | |
US3935016A (en) | Silver halide color photographic materials containing 3-anilino-5-pyrazolone couplers | |
US4327175A (en) | Silver halide color photographic light-sensitive material | |
DE3781305T2 (en) | COLOR PHOTOGRAPHIC LIGHT-SENSITIVE SILVER HALOGENIDE MATERIAL. | |
US4477560A (en) | Light-sensitive silver halide color photographic material | |
EP0309159B1 (en) | Photographic recording material comprising a dye image-forming coupler compound | |
EP0433947B1 (en) | Color photographic element and process | |
EP0309160B1 (en) | Photographic recording material comprising a dye image-forming compound | |
US4935321A (en) | Photographic recording material comprising a dye image-forming compound | |
EP0309158B1 (en) | Photographic recording material comprising a magenta dye image forming coupler compound | |
JPH01554A (en) | Silver halide color photographic material containing pyrazoloazole cyan coupler | |
EP0225555A2 (en) | Sterically hindered phenolic ester photographic coupler dispersion addenda and photographic elements employing same | |
US4973535A (en) | Photographic recording material comprising a dye image-forming coupler compound | |
US4681837A (en) | Silver halide color photographic material | |
US4808502A (en) | Photographic recording material comprising a magenta dye image forming coupler compound | |
EP0545248B1 (en) | Use of heterocyclic nitrogen addenda to reduce continued coupling of magenta dye-forming couplers | |
EP0459340A1 (en) | Photographic element | |
US5100772A (en) | Magenta dye forming coupler for photographic material | |
US3859095A (en) | Color-photographic material with improved color reproduction | |
EP0800113B1 (en) | Silver halide color photographic light-sensitive material | |
EP0410754B1 (en) | Color photographic element and process | |
EP0543921B1 (en) | Photographic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19890921 |
|
17Q | First examination report despatched |
Effective date: 19910516 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE CH DE FR GB IT LI NL |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 3878368 Country of ref document: DE Date of ref document: 19930325 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19950913 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19950926 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950929 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19960930 Ref country code: LI Effective date: 19960930 Ref country code: BE Effective date: 19960930 |
|
BERE | Be: lapsed |
Owner name: EASTMAN KODAK CY (A NEW JERSEY CORP.) Effective date: 19960930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970401 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970401 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050809 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050902 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050916 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050930 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070403 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060916 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061002 |