EP0307677A1 - Method for target field clarification - Google Patents

Method for target field clarification Download PDF

Info

Publication number
EP0307677A1
EP0307677A1 EP88113836A EP88113836A EP0307677A1 EP 0307677 A1 EP0307677 A1 EP 0307677A1 EP 88113836 A EP88113836 A EP 88113836A EP 88113836 A EP88113836 A EP 88113836A EP 0307677 A1 EP0307677 A1 EP 0307677A1
Authority
EP
European Patent Office
Prior art keywords
signals
signature
time
objects
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88113836A
Other languages
German (de)
French (fr)
Other versions
EP0307677B1 (en
Inventor
Josef-Ferdinand Dipl.-Ing. Menke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT88113836T priority Critical patent/ATE96916T1/en
Publication of EP0307677A1 publication Critical patent/EP0307677A1/en
Application granted granted Critical
Publication of EP0307677B1 publication Critical patent/EP0307677B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/789Systems for determining direction or deviation from predetermined direction using rotating or oscillating beam systems, e.g. using mirrors, prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/781Details

Definitions

  • the invention relates to a method for displaying moving objects (targets), by means of which two temporally staggered object signatures are imaged in a grid on a detector.
  • the objects in the optical or thermal wavelength range are imaged on the detector, and the aim is to also detect objects with small angular dimensions at a great distance.
  • this can e.g. can be accomplished by using a multi-element array to perform parallel horizontal scanning all around or in a large sector in one or more superimposed strips.
  • the moving object can then be identified by comparing two scans taken in succession.
  • Such a comparison requires an enormous amount of memory in this method.
  • the repetition rate for such methods is in the range of seconds.
  • an object (target) which moves with such a low angular velocity that it is still of interest can have shifted by so many pixels that it is difficult to unambiguously assign the information of the two images.
  • angular velocity is understood to mean the speed of the lateral deviation of the moving object (target), for example an approaching missile, from the line of sight between the observer and the missile. It follows from this that an object that moves at high angular velocity is of no interest because it will fly past the observer, while the smaller this angular velocity, the greater the interest in the object. If the latter is zero, the object moves on a straight line directly towards the observer.
  • the invention is based on the object of specifying a method which firstly requires a significantly smaller storage capacity and secondly permits a significantly higher repetition rate of the scans, so that objects which move with only a low angular velocity can also be clearly defined.
  • the object is achieved by a method which comprises the method steps specified in the claim.
  • the memory requirement is reduced considerably compared to the method according to the prior art (all-round scanning), for example by a factor of 60.
  • it increases the possible repetition rate of the samples from the second range to a range in which a sampling rate (frequency) of approx. 50 ms is possible.
  • Figure 1 illustrates the task. The figure explains the evaluation of a target using two flight targets.
  • Approach 1 is a direct approach.
  • the computer determines that the coordinates are the same, but that the signal amplitudes of the missile have changed, namely increased, due to the reduced distance.
  • Approach 2 is a flyby. This results in an offset of the position of the target information of the 1st scan to the position of the target information of the 2nd scan. By subtracting both pieces of information, a residual signal is obtained which is further processed as a target signal by a fire control system.
  • Fig. 2 shows in principle a device for performing the invented method.
  • 1 designates a lens with which the optical or thermal rays emanating from the target are fed to a scanner 2, which scans the object field in a grid pattern for height and lines.
  • a scanner of the type described in principle in US Pat. No. 4,266,847 can be used as such a scanner.
  • a rotating triple mirror wheel of the type shown in FIGS. 3-6 is used for line scanning. It is a prismatic wheel, the outer circumference of which is occupied by recessed triple mirrors lying next to each other and arranged in opposite directions. When rotating through an incident beam, these triple mirrors reflect 50% of this beam on one side and 50% of this beam on the other side (FIG. 4), the two reflected beams being staggered in time, namely by the time which 1 Triple mirror needed to turn past the beam from its first half to its second half.
  • the triple mirror thus provides two beams of the same pixel, which are offset at a slightly different time, and which are directed to a multi-element detector 3 via further optical components, not shown.
  • a detector e.g. a sprite detector with 8 elements can be used, as supplied by the Mullard company in England.
  • the signals of two object signatures staggered in time are thus present at the output of this detector 3.
  • the signals of the first object signature are fed to a computer-controlled electronic buffer 4 and stored there until the signals of the second object signature with a time offset are also available.
  • the signals from both object signatures are simultaneously fed to a computer-controlled electronic subtraction element 5, in which the signals from both object signatures are subtracted from one another.
  • the remaining signals which are not congruent with each other, originate from the targeted target, which moves a certain distance in the time between the first object field scan and the second object field scan (offset in time by the time that one half of the triple mirror moves up to the second half of a triple mirror) Has.
  • the electronic buffer and the subtraction element are constructed from conventional components, computers, etc., which are available to any person skilled in the art.

Abstract

A method for displaying moving objects (targets) is described by means of which two object signatures offset in time are imaged on a detector. The position coordinates of the objects are defined by subtracting the detector output signals of the two object signatures from one another. The method is distinguished by the fact that the first signature scan is delayed in time by means of a buffer store, in such a manner that it is available at the same time as the second signature scan. After subtraction of the signals of these signature scans, the coordinates of the moving objects are defined by the individual signals which are not erased and remain in the store, and are electronically output. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Anzeige sich bewegen­der Objekte (Ziele),durch das zwei zeitlich versetzte Objekt­signaturen auf einem Detektor rasterförmig abgebildet werden.The invention relates to a method for displaying moving objects (targets), by means of which two temporally staggered object signatures are imaged in a grid on a detector.

Bei Verfahren dieser Art werden die Objekte im optischen oder thermischen Wellenlängenbereich auf dem Detektor abge­bildet, und es wird angestrebt, auch Objekte mit geringen Winkelausdehnungen bereits in großer Entfernung zu erfassen.In methods of this type, the objects in the optical or thermal wavelength range are imaged on the detector, and the aim is to also detect objects with small angular dimensions at a great distance.

Nach dem gegenwärtigen Stand der Technik kann dies z.B. dadurch bewerkstelligt werden, daß mit einem Vielelementen­array eine parallele Horizontalabtastung rundum oder in einem großen Sektor in einem oder mehreren übereinanderlie­genden Streifen erfolgt. Aus dem Vergleich zweier zeitlich nacheinander erfolgten Abtastungen läßt sich dann das bewegte Objekt erkennen. Ein solcher Vergleich erfordert bei diesem Verfahren jedoch einen enormen Speicherbedarf. Außerdem liegt die Wiederholrate bei derartigen Verfahren im Sekundenbereich. In dieser Zeit kann sich jedoch ein Objekt (Ziel), welches sich mit so geringer Winkelgeschwindigkeit bewegt, daß es noch von Interesse ist, um so viele Bildpunkte verschoben haben, daß eine eindeutige Zuordnung der Informationen der zwei Bilder schwierig ist.According to the current state of the art this can e.g. can be accomplished by using a multi-element array to perform parallel horizontal scanning all around or in a large sector in one or more superimposed strips. The moving object can then be identified by comparing two scans taken in succession. Such a comparison, however, requires an enormous amount of memory in this method. In addition, the repetition rate for such methods is in the range of seconds. During this time, however, an object (target) which moves with such a low angular velocity that it is still of interest can have shifted by so many pixels that it is difficult to unambiguously assign the information of the two images.

Unter Winkelgeschwindigkeit ist hier die Geschwindigkeit der seitlichen Abweichung des bewegten Objektes (Zieles), z.B. einer anfliegenden Rakete, von der Visierlinie zwischen Beo­bachter und Rakete verstanden. Hieraus ergibt sich, daß ein Objekt, daß sich mit großer Winkelgeschwindigkeit bewegt nicht von Interesse ist, weil es an dem Beobachter vorbei­fliegen wird, während das Interesse an dem Objekt umso größer ist, je kleiner diese Winkelgeschwindigkeit ist. Ist letztere gleich Null, so bewegt sich das Objekt auf einer Geraden direkt auf den Beobachter zu.Here, angular velocity is understood to mean the speed of the lateral deviation of the moving object (target), for example an approaching missile, from the line of sight between the observer and the missile. It follows from this that an object that moves at high angular velocity is of no interest because it will fly past the observer, while the smaller this angular velocity, the greater the interest in the object. If the latter is zero, the object moves on a straight line directly towards the observer.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzu­geben, das erstens mit einer wesentlich geringeren Speicher­kapazität auskommt und zweitens eine wesentlich höhere Wiederholrate der Abtastungen gestattet, so daß auch Objekte, die sich mit nur geringer Winkelgeschwindigkeit bewegen, eindeutig definierbar sind.The invention is based on the object of specifying a method which firstly requires a significantly smaller storage capacity and secondly permits a significantly higher repetition rate of the scans, so that objects which move with only a low angular velocity can also be clearly defined.

Die Aufgabe ist durch ein Verfahren gelöst, das die im Anspruch angegebenen Verfahrensschritte umfaßt.The object is achieved by a method which comprises the method steps specified in the claim.

Weil bei dem erfundenen Verfahren zur Feststellung einer Be­wegung des Objektes nur noch die Koordinaten noch nicht unter­drückter Objekte gespeichert werden müssen, verringert sich der Speicherbedarf gegenüber dem Verfahren nach dem Stand der Technik (Rundumabtastung) ganz erheblich, z.B. um den Faktor 60. Gleichzeitig erhöht sich die mögliche Wiederholrate der Abtastungen aus dem Sekundenbereich in einen Bereich, in dem eine Abtastrate (Frequenz) von ca. 50 ms möglich ist.Because only the coordinates of objects that have not yet been suppressed have to be stored in the invented method for determining a movement of the object, the memory requirement is reduced considerably compared to the method according to the prior art (all-round scanning), for example by a factor of 60. At the same time, it increases the possible repetition rate of the samples from the second range to a range in which a sampling rate (frequency) of approx. 50 ms is possible.

Figur 1 verdeutlicht die Aufgabenstellung. Die Figur erklärt an Hand zweier Flugziele die Auswertung eines Zieles.
Anflug 1 ist ein Direktanflug. Bei Auswertung der Bildkoordi­naten zweier zeitlich versetzter Objektsignaturen stellt der Rechner fest, daß die Koordinaten zwar die gleichen sind, daß sich aber die Signalamplituden des Flugkörpers ver­ändert haben, nämlich erhöht haben, auf Grund des geringer gewordenen Abstandes.
Figure 1 illustrates the task. The figure explains the evaluation of a target using two flight targets.
Approach 1 is a direct approach. When evaluating the image coordinates of two temporally offset object signatures, the computer determines that the coordinates are the same, but that the signal amplitudes of the missile have changed, namely increased, due to the reduced distance.

Anflug 2 ist ein Vorbeiflug. Dadurch ergibt sich ein Versatz der Lage der Zielinformationen des 1. Scans zur Lage der Zielinformationen des 2. Scans. Durch Subtraktion beider Informationen erhält man ein Restsignal, welches als Ziel­signal von einer Feuerleitanlage weiterverarbeitet wird.Approach 2 is a flyby. This results in an offset of the position of the target information of the 1st scan to the position of the target information of the 2nd scan. By subtracting both pieces of information, a residual signal is obtained which is further processed as a target signal by a fire control system.

Fig.2 zeigt im Prinzip eine Vorrichtung zur Durchführung des erfundenen Verfahrens. Mit 1 ist ein Objektiv bezeichnet, mit dem die vom Ziel ausgehenden optischen bzw. thermischen Strahlen einem Scanner 2 zugeleitet werden, der das Objekt­feld rasterförmig nach Höhe und Zeilen abtastet. Als ein solcher Scanner kann z.B. ein Scanner verwendet werden, wie er im Prinzip in der US-PS 4 266 847 beschrieben ist. Jedoch wird zum Zeilenscan ein rotierendes Tripel­spiegelrad der in den Figuren 3-6 dargestellten Art verwendet. Es handelt sich dabei um ein Prismenrad, dessen Außenumfang mit nebeneinander liegenden, umgekehrt zueinander angeordneten vertieften Tripelspiegeln besetzt ist. Diese Tripelspiegel reflektieren bei ihrer Rotation durch einen einfallenden Strahl 50% dieses Strahles nach der einen Seite und 50% dieses Strahles nach der anderen Seite (Fig.4), wobei die beiden reflektierten Strahlen zeitlich zueinander versetzt sind, nämlich um diejenige Zeit, welche 1 Tripelspiegel benötigt, um sich von seiner ersten Hälfte bis zu seiner zweiten Hälfte am Strahl vorbeizudrehen.Fig. 2 shows in principle a device for performing the invented method. 1 designates a lens with which the optical or thermal rays emanating from the target are fed to a scanner 2, which scans the object field in a grid pattern for height and lines. A scanner of the type described in principle in US Pat. No. 4,266,847 can be used as such a scanner. However, a rotating triple mirror wheel of the type shown in FIGS. 3-6 is used for line scanning. It is a prismatic wheel, the outer circumference of which is occupied by recessed triple mirrors lying next to each other and arranged in opposite directions. When rotating through an incident beam, these triple mirrors reflect 50% of this beam on one side and 50% of this beam on the other side (FIG. 4), the two reflected beams being staggered in time, namely by the time which 1 Triple mirror needed to turn past the beam from its first half to its second half.

Der Tripelspiegel liefert somit zwei zeitlich geringfügig zueinander versetzte Strahlen des gleichen Bildpunktes, die über weitere, nicht gezeigte optische Bauglieder zu einem Vielelementen-Detektor 3 geleitet werden. Als solcher Detektor kann z.B. ein Sprite-Detektor mit 8 Elementen benutzt werden, wie er von der Firma Mullard in England geliefert wird.The triple mirror thus provides two beams of the same pixel, which are offset at a slightly different time, and which are directed to a multi-element detector 3 via further optical components, not shown. As such a detector, e.g. a sprite detector with 8 elements can be used, as supplied by the Mullard company in England.

Am Ausgang dieses Detektors 3 stehen somit die Signale zweier zeitlich zueinander versetzter Objektsignaturen an. Die Signale der ersten Objektsignatur werden einem rechner­gesteuerten elektronischen Zwischenspeicher 4 zugeführt und dort solange gespeichert, bis auch die Signale der zeitlich versetzten zweiten Objektsignatur zur Verfügung stehen.The signals of two object signatures staggered in time are thus present at the output of this detector 3. The signals of the first object signature are fed to a computer-controlled electronic buffer 4 and stored there until the signals of the second object signature with a time offset are also available.

Sobald dies der Fall ist, werden die Signale beider Objekt­signaturen gleichzeitig einem rechnergesteuerten elektro­nischen Subtraktionsglied 5 zugeführt, in dem die Signale beider Objektsignaturen voneinander subtrahiert werden.As soon as this is the case, the signals from both object signatures are simultaneously fed to a computer-controlled electronic subtraction element 5, in which the signals from both object signatures are subtracted from one another.

Die danach übrigbleibenden, einander nicht deckungsgleichen Signale stammen von dem anvisierten Ziel, das sich in der Zeit zwischen der ersten Objektfeldabtastung und der zweiten Objektfeldabtastung (zeitlich versetzt um die Vorbeibewe­gungszeit der einen Tripelspiegelhälfte bis zur zweiten Tripelspiegelhälfte an einem Strahl) ja um eine gewisse Strecke bewegt hat.The remaining signals, which are not congruent with each other, originate from the targeted target, which moves a certain distance in the time between the first object field scan and the second object field scan (offset in time by the time that one half of the triple mirror moves up to the second half of a triple mirror) Has.

Diese übrigbleibenden, vom Ziel stammenden Signale 6 werden dem Rechner einer Feuerleiteinrichtung zugeführt, der in bekannter Weise die Koordinaten des Zieles ermittelt und entsprechende Feuerbefehle ausgibt.These remaining signals 6 originating from the target are fed to the computer of a fire control device, which determines the coordinates of the target in a known manner and issues corresponding fire commands.

Der elektronische Zwischenspeicher und das Subtraktionsglied sind aus konventionellen Bauelementen, Rechnern etc, aufge­baut, die jedem Fachmann zur Verfügung stehen.The electronic buffer and the subtraction element are constructed from conventional components, computers, etc., which are available to any person skilled in the art.

Claims (1)

Verfahren zur Anzeige sich bewegender Objekte (Ziele), durch das mittels einer Optik zwei zeitlich auf ein Minimum reduziert versetzte Objektsignaturen, im optischen und/oder thermischen Wellenlängenbereich, auf einem Detektor raster­förmig abgebildet werden, mit dessen Ausgangssignal bei der Subtraktion dieser zwei Objektsignaturen voneinander die Lagekoordinaten der Objekte definiert werden, gekennzeichnet durch folgende Verfahrensschritte: a) die erste Signaturabtastung wird durch einen Zwischen­speicher derart zeitlich verzögert, daß sie zeitgleich zur zweiten Signaturabtastung zur Verfügung steht; b) beide Signale der Signaturabtastung werden voneinander subtrahiert; c) mit den im Speicher übrigbleibenden nicht gelöschten Einzelsignalen werden die Koordinaten der sich bewe­genden Objekte definiert und elektronisch ausgegeben. Process for the display of moving objects (targets), by means of which optics are used to display two object signatures that are staggered to a minimum, in the optical and / or thermal wavelength range, on a detector, with its output signal when the two object signatures are subtracted from each other Position coordinates of the objects are defined, characterized by the following process steps: a) the first signature scan is delayed by a buffer in such a way that it is available at the same time as the second signature scan; b) both signals of the signature scanning are subtracted from each other; c) the coordinates of the moving objects are defined and electronically output with the undeleted individual signals remaining in the memory.
EP88113836A 1987-08-31 1988-08-25 Method for target field clarification Expired - Lifetime EP0307677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88113836T ATE96916T1 (en) 1987-08-31 1988-08-25 TARGET RECONNAISSANCE PROCEDURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3729059 1987-08-31
DE19873729059 DE3729059A1 (en) 1987-08-31 1987-08-31 TARGET FIELD CLEARANCE METHOD

Publications (2)

Publication Number Publication Date
EP0307677A1 true EP0307677A1 (en) 1989-03-22
EP0307677B1 EP0307677B1 (en) 1993-11-03

Family

ID=6334895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88113836A Expired - Lifetime EP0307677B1 (en) 1987-08-31 1988-08-25 Method for target field clarification

Country Status (5)

Country Link
US (1) US4958077A (en)
EP (1) EP0307677B1 (en)
AT (1) ATE96916T1 (en)
CA (1) CA1290057C (en)
DE (2) DE3729059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418132A1 (en) * 1989-09-13 1991-03-20 AEROSPATIALE Société Nationale Industrielle Apparatus for target detection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033807A (en) * 1989-09-05 1991-07-23 Menke Joseph F Triple mirror wheel and method of making
JPH07159236A (en) * 1993-12-03 1995-06-23 Murata Mfg Co Ltd Heat source detector
JPH07261279A (en) * 1994-02-25 1995-10-13 Eastman Kodak Co Selection system and method of photograph picture
US5999212A (en) * 1997-07-31 1999-12-07 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for infrared detection of a moving target in the presence of solar clutter
DE60026786D1 (en) * 1999-05-03 2006-05-11 Elop Electrooptics Ind Ltd Optical scanning device
US6740879B1 (en) * 2002-05-07 2004-05-25 Raytheon Company Method and apparatus for automated detection and indication of movement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2035007A (en) * 1978-10-30 1980-06-11 Licentia Gmbh Detecting and identifying a radiation source
US4266847A (en) * 1977-12-10 1981-05-12 Elektro-Optik Gmbh & Co. Kg Apparatus for line-scanning of large image fields
GB2071957A (en) * 1980-02-14 1981-09-23 Messerschmitt Boelkow Blohm Panoramic locating apparatus
EP0209929A1 (en) * 1985-06-24 1987-01-28 Koninklijke Philips Electronics N.V. Optical scanning device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475608A (en) * 1967-11-02 1969-10-28 Us Army Thermal,moving target,intrusion detector
US3617016A (en) * 1968-05-27 1971-11-02 Emil J Bolsey Image motion and change transducers and systems controlled thereby
US3781468A (en) * 1972-06-21 1973-12-25 Sanders Associates Inc Television surveillance system
US4096525A (en) * 1976-03-08 1978-06-20 William James Lathan Video scanning change discriminator
US4612441A (en) * 1984-08-09 1986-09-16 The United States Of America As Represented By The Secretary Of The Army Moving object detection system using infrared scanning
US4639774A (en) * 1985-06-21 1987-01-27 D. L. Fried Associates, Inc. Moving target indication system
US4779095A (en) * 1986-10-28 1988-10-18 H & G Systems, Inc. Image change detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266847A (en) * 1977-12-10 1981-05-12 Elektro-Optik Gmbh & Co. Kg Apparatus for line-scanning of large image fields
GB2035007A (en) * 1978-10-30 1980-06-11 Licentia Gmbh Detecting and identifying a radiation source
GB2071957A (en) * 1980-02-14 1981-09-23 Messerschmitt Boelkow Blohm Panoramic locating apparatus
EP0209929A1 (en) * 1985-06-24 1987-01-28 Koninklijke Philips Electronics N.V. Optical scanning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418132A1 (en) * 1989-09-13 1991-03-20 AEROSPATIALE Société Nationale Industrielle Apparatus for target detection

Also Published As

Publication number Publication date
US4958077A (en) 1990-09-18
CA1290057C (en) 1991-10-01
DE3885400D1 (en) 1993-12-09
ATE96916T1 (en) 1993-11-15
EP0307677B1 (en) 1993-11-03
DE3729059A1 (en) 1989-03-09

Similar Documents

Publication Publication Date Title
EP3033588B1 (en) Method and device for non-contact measuring of surface contours
DE102009015922A1 (en) Method for optically scanning and measuring a scene
EP0396865A2 (en) Optical radar
EP0449859B1 (en) Process and device for observing moire patterns on test surfaces by moireing with phase shifts
DE2448651A1 (en) Wire diameter contactless measuring device - is for the dimensional metrology of wires in a drawing plant
DE102016115277A1 (en) Optical device
EP1460454A2 (en) Method for combined processing of high resolution images and video images
EP0307677B1 (en) Method for target field clarification
DE3621661A1 (en) METHOD FOR DETECTING A DESTINATION
DE19509962A1 (en) Three spatial components of three=dimensional object surface displacement vector field determn. method
DE1917138C3 (en) Photoelectric method and device for detecting fast moving objects
DE3022906A1 (en) DEVICE FOR DETERMINING THE HISTOGRAM OF THE SIZE DISTRIBUTION OF PARTICLES, ESPECIALLY BLOOD BODIES
DE19851010A1 (en) Device for the detection and localization of laser radiation sources
DE3517671A1 (en) DEVICE FOR IMAGING POINTS DETECTING THE SURFACE FORM OF A REMOTE OBJECT
EP1116962B1 (en) Method for the autonomous detection of helicopters
EP2853468B1 (en) Method and sensor system for monitoring an area
EP2772719B1 (en) Optical device
DE3439578A1 (en) Device for measuring the MTF
EP0690317A1 (en) Method and device for optical determination of the spatial positions of single reflecting objects
DE3241896C2 (en)
DE2160877A1 (en) DEVICE FOR MEASURING THE RELATIVE MOVEMENT OF AN OBJECT
WO2018184942A1 (en) Lidar device and method for scanning a scanning angle and for evaluating a detector
DE3719679C1 (en) Method and arrangement for preventing the location and deception of a thermal camera
DE102019106411B4 (en) Laser scanning device and method for three-dimensional measurement of a scene at a great distance
DE3624782C2 (en) Device for contactless detection of the contour of a test object, in particular a motor vehicle body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890621

17Q First examination report despatched

Effective date: 19911212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19931103

Ref country code: BE

Effective date: 19931103

REF Corresponds to:

Ref document number: 96916

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3885400

Country of ref document: DE

Date of ref document: 19931209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940119

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88113836.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960813

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961022

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961114

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970825

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

EUG Se: european patent has lapsed

Ref document number: 88113836.6

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST