EP0306420A1 - Process for the purification of traces of radioactive elements generated during the stockpiling of uranium resulting from the processing of irradiated nuclear fuels - Google Patents
Process for the purification of traces of radioactive elements generated during the stockpiling of uranium resulting from the processing of irradiated nuclear fuelsInfo
- Publication number
- EP0306420A1 EP0306420A1 EP88420294A EP88420294A EP0306420A1 EP 0306420 A1 EP0306420 A1 EP 0306420A1 EP 88420294 A EP88420294 A EP 88420294A EP 88420294 A EP88420294 A EP 88420294A EP 0306420 A1 EP0306420 A1 EP 0306420A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- uranium
- purification
- hexafluoride
- porous material
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/02—Treating gases
Definitions
- the invention relates to a process for purifying traces of particularly radioactive elements generated during the storage of uranium resulting from the reprocessing of irradiated nuclear fuels.
- the uranium fuel is treated in a reprocessing plant where, after cooling, said irradiated fuel undergoes a succession of operations intended to selectively separate uranium, transuranium elements, including plutonium, and fission products.
- the uranium thus obtained separated from the nuclear reaction products is called reprocessing or ex-reprocessing uranium; it must be as pure as possible in order to be able to be reused in the usual fuel cycle with a view to its enrichment and its reintroduction into a nuclear reactor.
- This thorough purification provides a reprocessed uranium whose radioactivity level meeting the specifications is low and allows its use under normal conditions.
- this uranium can be stored in the form of nitrate hexahydrate, oxide, tetrafluoride, hexafluoride, etc.
- this purification carried out by chemical means does not eliminate the isotopes of uranium and in particular U232 emitter ⁇ which remains in trace amounts, a few parts per billion (ppb), in the stored uranium which is not dangerous in itself.
- the periods range from ⁇ s to a few days, to 1, 91 years for Th 228 and 72 years for U232.
- T1 208 is particularly annoying, it is an emitter and with a strong irradiating power ⁇ (2.6 MeV), and becomes annoying as soon as U 232 has given birth to a sufficient quantity of Th 228 and that the descendants of the latter have have been generated in sufficient quantity.
- this periodic purification can be done by a treatment which consists in putting the stored product in solution, then in purifying the solution obtained by conventional means such as resins, liquid-liquid exchange with solvents, selective precipitation ... before returning it to its storage form.
- the subject of the invention is a simple non-polluting process for the purification of reprocessed uranium, therefore previously rid of the products of nuclear reactions such as transuranics and fission products, said uranium having reached a high radioactivity, following storage. prolonged, making it unsuitable for any storage or any use under normal protection conditions, this purification making it possible to lower said radioactivity to very low values, for example less than a few hundred Bq per g of U again making it possible to storage and / or use of uranium ex reprocessing under normal conditions.
- Another object of the invention is to obtain uranium ex reprocessing which can be used directly in an installation for enriching and / or manufacturing nuclear fuel.
- the method according to the invention makes it possible to resume said stock periodically to purify it in a simple and inexpensive manner before it reaches a level of inhibiting radioactivity; this therefore allows a new storage period under normal conditions, pending a new purification operation according to the invention, or another use also under normal conditions of radiation protection and contamination.
- Another object of the invention is to have a process for purifying traces of radioactive elements of filiation easy to implement inexpensive and non-polluting: the impurities are recovered in compact form and not disseminated, their storage is thus easy, also inexpensive and does not generate effluent.
- the invention is a process for purifying reprocessed uranium from uranium fuel, which as such is free, following a prior separation treatment, of the elements generated during the passage of uranium fuel, in a nuclear reactor, said reprocessing uranium having been stored and having reached during this storage a sufficiently high radioactivity capable of preventing its use under normal conditions; said purification process intended to eliminate this radioactivity due to the parentage of uranium 232 present, is characterized in that said reprocessing uranium is passed in its form of liquid or gaseous hexafluoride through a chemically inert porous material.
- the purpose of the process according to the invention is therefore to eliminate the parentage products of uranium 232 which appear during storage and which cause the radioactivity to be eliminated when it becomes too high, for example greater than a value fixed by the regulation.
- the reprocessed uranium to be purified, after storage, is put into the form of hexafluoride using known methods, insofar as it is stored in another chemical form.
- the process consists in initially disposing of hexafluoride under conditions of temperature and pressure such that it is in the liquid or gaseous state. When it is stored in a container, it is enough to that of heating the latter in an oven.
- the pressure must also have a value high enough to then be able to pass the flow of hexafluoride frontally through a porous material contained in an inert confinement enclosure, maintained at temperature by insulation and / or heating; the purified flow leaving the porous material is either recovered in a water-cooled storage container, or sent directly to a processing or use facility of any kind, for example enrichment, conversion, etc.
- this process consists in circulating a main flow of UF6 inside porous tubes, called support tubes, internally covered with an active layer, or barrier layer, asymmetrical, the enrichment being made thanks to the selective tangential extraction of light isotopes from the UF6 flux, by diffusion through the barrier layer.
- the porous tube only serves as a support for the active layer and does not come into play in the diffusion phenomenon.
- the active layer is asymmetrical, that is to say that it is practically dense on the side in contact with the upstream UF6 flow so that the diffusion takes place, and has a microporosity on the other side in contact of the support tube to promote the passage of the partially enriched extracted UF6.
- the entire flow of UF6 crosses frontally the porous material, which is itself active, the process thus appearing more to filtration than to diffusion, but the material n not acting exclusively as a filter, as will be seen later.
- the porous material can be made of fabrics stacked one on top of the other. on the others, the flow of hexafluoride passing through them perpendicular to their surface, or of a canvas wound on itself, the flow of hexafluoride passing through it parallel to its winding axis; said fabrics must be chemically inert, and withstand the conditions of pressure and temperature.
- they are metallic, for example of the reps type; all inert metals can be used, for example steels, particularly stainless steel, nickel and its alloys, inconel or better still monel.
- any porous sintered materials chemically inert, ceramic, for example alumina, nitrides, carbides, etc. or preferably made of metal, or even sintered metallic felts based on fiber, can be used, the metals which can be used are the same as those mentioned above.
- the enclosure and the porous body must be chemically inert, i.e. they must resist the action of fluorine and its derivatives, HF fluorides, UF6 ...
- the quantity by weight of parentage products to be purified is minute, practically non-dosable as such, given the very small quantity of uranium 232 present at the start (a few ppb); therefore care must be taken that the sampling for analysis is always representative. Also their analysis is usually done through their radioactivity and preferably on very large samples or even all of the hexafluoride used.
- parentage products are in the form of solid or gaseous fluorides and that in the case where they are in the form of particles of solid fluorides in liquid UF6, or in gaseous UF6, these are probably of minute or even molecular size, due to the mode of generation "in situ" of parentage products.
- the porous material fixes all of the parentage products although its structure and its breaking capacity can be chosen from a very wide range.
- the latter can be chosen in a very wide range, too low values reducing the possible flow rates of hexafluoride for the same surface, too high values requiring a greater thickness of the porous material.
- the equivalent diameter of the pores must be less than 100 ⁇ m and preferably less than 50 ⁇ m. This diameter is measured by bulloscopy according to standard ISO 4003-1977 (F).
- the thickness of the porous material is generally at least 100 mm when it is canvas or metallic sintered felt. In the case of sintered porous materials the thickness is generally between 0.5 and 10 mm and preferably between 1.5 and 5 mm.
- the speed of passage of the liquid or gaseous hexafluoride is usually chosen to be less than 250 m / h and preferably between 15 and 100 m / h; the contact time with the porous material is usually greater than a few hundredths of a second and preferably between 0.1 and 10 sec.
- the method according to the invention makes it possible to eliminate at least 98% of the radioactivity present in the starting hexafluoride and due to the parentage of uranium 232, and this purification even generally reaches more than 99.7%.
- the process is applicable to uranium reprocessing of any isotopic uranium 235 content; it is particularly advantageous to use it for enriched uranium which is therefore also enriched in U232 and whose storage periods at low irradiation are all the shorter the higher the U232 content.
- the emitting container containing the product to be cleaned, is connected to the purification device which itself is connected to the receiving container; these connections are made of stainless steel and are fitted with the necessary shut-off or isolation valves and pressure gauges from 0 to 6 bar, located near the containers.
- a primary vacuum pump designed to remove inert gases present in the circuit and the receiving container prior to the purification operation has been mounted on this circuit.
- the receiving container is equipped with an external water circulation cooling coil. It is installed on a weighing device, which tracks the progress of the transfer.
- the purification device consists of a cylindrical stainless steel enclosure with a diameter of 59 mm, at the ends of which open the connection tubes with the transmitter and receiver containers. A disc of porous material with a diameter of 50 mm is positioned transversely in the enclosure. A differential pressure gauge gives the pressure drop between the upstream and downstream of the porous material.
- the transmitter canister and the purification device are in the same heating oven.
- a vacuum is first made in the installation to eliminate the inert substances.
- the oven is then heated so that the transmitter canister is at about 80 ° C and its pressure is stabilized.
- the receiver can be cooled.
- valves are operated so as to effect the transfer of gaseous UF6 through the porous body.
- the decontamination of hexafluoride is measured by comparison of radiochemical analyzes of the activity of the descendants of U232 carried out on the starting UF6 and the purified UF6.
- the purification rates, representing the ratio of these two measurements and obtained with the various porous bodies used are grouped in the following table: Test No.
- the installation used in this example makes it possible to treat cylinders containing up to 14 t of UF6; it is similar to that of Example 1, with the exception of the cooling of the receiving container by means of a watering boom and the purification device.
- the latter consists of a cylindrical enclosure inside which are arranged, in parallel, five identical cartridges of porous material; they are cylindrical and closed at one end.
- This availability makes it possible to increase the access surface to the porous material which in this case is 0.5 m2, while keeping a reduced space requirement of the enclosure: diameter 30 cm and volume 65 l.
- the porous material is sintered monel, the equivalent pore diameter of which is 50 ⁇ m, the useful thickness of each cartridge is 2 mm.
- the UF6 cylinder is brought to 80 ° C., the pressure in the emitting cylinder varies between 1.2 and 1.8 bar and that of the receiving cylinder between 0.6 and 1.2 bar, during the treatment. .
- the flow rate of gaseous UF6 was varied between 57 kg / h and 331 kg / h, for a total transferred amount of 14 t of UF6.
- the purification rate obtained after counting the activity of the descendants of U 232 carried out by spectrometry of the representative samples taken before and after treatment is 99.7%.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Procédé de purification de l'uranium issu du retraitement, préalablement séparé des produits des fissions générés dans un réacteur nucléaire, consistent à éliminer les descendants de l'U232 apparaissant au cours du stockage, en faisant passer ledit uranium, sous sa forme hexafluorure, à travers un matériau poreux inerte chimiquement.Process for the purification of uranium resulting from reprocessing, previously separated from the fission products generated in a nuclear reactor, consists in eliminating the descendants of U232 appearing during storage, by passing said uranium, in its hexafluoride form, to through a chemically inert porous material.
Description
L'invention est relative à un procédé d'épuration de traces d'éléments particulièrement radioactifs générés lors du stockage de l'uranium issu du retraitement des combustibles nucléaires irradiés.The invention relates to a process for purifying traces of particularly radioactive elements generated during the storage of uranium resulting from the reprocessing of irradiated nuclear fuels.
Après combustion dans un réacteur nucléaire, le combustible uranifière est traité dans une usine de retraitement où après refroidissement ledit combustible irradié subit une succession d'opération destinées à séparer sélectivement l'uranium, des transuraniens, dont le plutonium, et des produits de fission.After combustion in a nuclear reactor, the uranium fuel is treated in a reprocessing plant where, after cooling, said irradiated fuel undergoes a succession of operations intended to selectively separate uranium, transuranium elements, including plutonium, and fission products.
L'uranium ainsi obtenu séparé des produits de la réaction nucléaire est appelé uranium de retraitement ou ex retraitement; il doit être le plus pur possible afin de pouvoir être réutilisé dans le cycle du combustible habituel en vue de son réenrichissement et de sa réintroduction dans un réacteur nucléaire.The uranium thus obtained separated from the nuclear reaction products is called reprocessing or ex-reprocessing uranium; it must be as pure as possible in order to be able to be reused in the usual fuel cycle with a view to its enrichment and its reintroduction into a nuclear reactor.
Cette purification poussée fournit un uranium de retraitement dont le niveau de radioactivité répondant aux spécification est faible et permet son utilisation dans des conditions normales. Avant réemploi cet uranium peut être stocké sous forme de nitrate hexahydraté, d'oxyde, de tétrafluorure, d'hexafluorure....
Mais cette purification effectuée par voie chimique pour aussi poussée qu'elle soit, ne permet pas d'éliminer les isotopes de l'uranium et notamment U232 émetteurα qui reste à l'état de traces, quelques parties par billion (ppb), dans l'uranium stocké et qui n'est pas dangereux en lui-même.This thorough purification provides a reprocessed uranium whose radioactivity level meeting the specifications is low and allows its use under normal conditions. Before reuse, this uranium can be stored in the form of nitrate hexahydrate, oxide, tetrafluoride, hexafluoride, etc.
However, this purification carried out by chemical means, however advanced it may be, does not eliminate the isotopes of uranium and in particular U232 emitterα which remains in trace amounts, a few parts per billion (ppb), in the stored uranium which is not dangerous in itself.
Par contre, au cours du stockage, il génère des produits de filiation gênants, qui par désintégrations successives de périodes généralement courtes donnent des émetteurs α et β qui conduisent finalement au Pb 208 stable.On the other hand, during storage, it generates annoying parentage products, which by successive disintegrations of generally short periods give α and β emitters which ultimately lead to stable Pb 208.
Cette descendance est constituée successivement par : Th 228, Ra 224, Rn 220, Po 216, Pb 212, Bi 212, Tl 208, Po 212, Pb 208. Les périodes s'étalent de la µ s à quelques jours, à 1,91 an pour Th 228 et à 72 ans pour U232. Parmi eux le T1 208 est particulièrement gênant, il est émetteurβet à un fort pouvoir irradiant γ (2,6 MeV), et devient gênant dès que U 232 a donné naissance à une quantité suffisante de Th 228 et que les descendants de ce dernier ont été générés en quantité suffisante.These descendants are successively made up of: Th 228, Ra 224, Rn 220, Po 216, Pb 212, Bi 212, Tl 208, Po 212, Pb 208. The periods range from µ s to a few days, to 1, 91 years for Th 228 and 72 years for U232. Among them, T1 208 is particularly annoying, it is an emitter and with a strong irradiating power γ (2.6 MeV), and becomes annoying as soon as U 232 has given birth to a sufficient quantity of Th 228 and that the descendants of the latter have have been generated in sufficient quantity.
En pratique au bout de 2 ans de stockage on obtient la moitié de la radioactivité d'équilibre; en valeur absolue, le niveau de radioactivité atteint dépend évidemment de la quantité d'U232 présente dans l'uranium ex retraitement de départ.In practice, after 2 years of storage, half of the equilibrium radioactivity is obtained; in absolute value, the level of radioactivity reached obviously depends on the quantity of U232 present in the uranium ex initial reprocessing.
Par exemple un uranium ayant les caractéristiques suivantes après retraitement
U232 = 1,15 ppb/U
activité des descendants de U232=100Bq/g d'U
se retrouve, après un stockage de 3,25 ans, avec une activité de 4000 Bq/g d'U, valeur qui pose de très sérieux problèmes à l'utilisateur.For example uranium having the following characteristics after reprocessing
U232 = 1.15 ppb / U
activity of descendants of U232 = 100Bq / g of U
is found, after a storage of 3.25 years, with an activity of 4000 Bq / g of U, value which poses very serious problems for the user.
Ainsi on voit qu'il est nécessaire d'éliminer périodiquement les descendants de l'U232 au cours d'un stockage prolongé pour ramener l'activité de l'uranium à sa valeur de départ observée après retraitement.Thus we see that it is necessary to periodically eliminate the descendants of U232 during prolonged storage to reduce the activity of uranium to its starting value observed after reprocessing.
Lorsque en général l'uranium ex retraitement est stockée sous forme de nitrate solide, d'oxyde ou de tétrafluorure, cette purification périodique peut être faite par un traitement qui consiste à mettre le produit stocké en solution, puis à purifier la solution obtenue par des moyens conventionnels comme les résines, l'échange liquide-liquide avec des solvants, la précipitation sélective...avant de le remettre sous sa forme de stockage.When in general the uranium ex reprocessing is stored in the form of solid nitrate, oxide or tetrafluoride, this periodic purification can be done by a treatment which consists in putting the stored product in solution, then in purifying the solution obtained by conventional means such as resins, liquid-liquid exchange with solvents, selective precipitation ... before returning it to its storage form.
Outre leur complexité, ces traitements présentent les inconvénients de contaminer les installations les produits ou les réactifs utilisés de façon préoccupante et de générer des effluents radioactifs qu'il est nécessaire de traiter avant rejet.In addition to their complexity, these treatments have the drawbacks of contaminating the installations with the products or reagents used in a worrying manner and of generating radioactive effluents which it is necessary to treat before discharge.
L'invention a pour objet un procédé simple non polluant de purification de l'uranium de retraitement, donc préalablement débarrassé des produits des réactions nucléaires tels que les transuraniens et les produits de fission, ledit uranium ayant atteint une radioactivité élevée, suite à un stockage prolongé, le rendant impropre à tout stockage ou toute utilisation dans des conditions de protection normales, cette purification permettant d'abaisser ladite radioactivité à des valeurs très basses, par exemple moins de quelques centaines de Bq par g d'U rendant de nouveau possible le stockage et/ou l'utilisation de l'uranium ex retraitement dans des conditions normales.The subject of the invention is a simple non-polluting process for the purification of reprocessed uranium, therefore previously rid of the products of nuclear reactions such as transuranics and fission products, said uranium having reached a high radioactivity, following storage. prolonged, making it unsuitable for any storage or any use under normal protection conditions, this purification making it possible to lower said radioactivity to very low values, for example less than a few hundred Bq per g of U again making it possible to storage and / or use of uranium ex reprocessing under normal conditions.
Elle a ainsi pour but d'éliminer les traces des produits radioactifs de filiation générés par l'uranium 232, et de fournir un uranium ex retraitement qui puisse être manipulé, utilisé ou de nouveau stocké dans des conditions habituelles ne nécessitant pas de moyens de protection lourds.It thus aims to eliminate the traces of radioactive parentage generated by uranium 232, and to provide uranium ex reprocessing which can be handled, used or again stored under usual conditions not requiring protective means heavy.
Un autre objet de l'invention est d'obtenir un uranium ex retraitement qui puisse être utilisé directement dans une installation d'enrichissement et/ou de fabrication de combustible nucléaire.Another object of the invention is to obtain uranium ex reprocessing which can be used directly in an installation for enriching and / or manufacturing nuclear fuel.
Quand l'uranium doit être stocké sur une longue période, le procédé selon l'invention permet de reprendre ledit stock périodiquement pour l'épurer de façon simple et peu onéreuse avant qu'il n'atteigne un niveau de radioactivité rédhibitoire; ceci permet donc une nouvelle période de stockage dans des conditions normales, en attendant une nouvelle opération de purification selon l'invention, ou une autre utilisation également dans des conditions normales de radioprotection et de contamination.When the uranium must be stored over a long period, the method according to the invention makes it possible to resume said stock periodically to purify it in a simple and inexpensive manner before it reaches a level of inhibiting radioactivity; this therefore allows a new storage period under normal conditions, pending a new purification operation according to the invention, or another use also under normal conditions of radiation protection and contamination.
Un autre objet de l'invention est d'avoir un procédé d'épuration des traces d'éléments radioactifs de filiation facile à mettre en oeuvre peu onéreux et non polluant: les impuretés sont récupérées sous forme compacte et non disséminée, leur stockage est ainsi aisé, également peu coûteux et ne génère pas d'effluent.Another object of the invention is to have a process for purifying traces of radioactive elements of filiation easy to implement inexpensive and non-polluting: the impurities are recovered in compact form and not disseminated, their storage is thus easy, also inexpensive and does not generate effluent.
L'invention est un procédé de purification de l'uranium de retraitement, issu d'un combustible uranifère, qui en tant que tel est exempt, suite à un traitement de séparation préalable, des éléments générés lors du passage du combustible uranifère, dans un réacteur nucléaire, ledit uranium de retraitement ayant été stocké et ayant atteint au cours de ce stockage une radioactivité suffisamment élevée pouvant empêcher son emploi dans des conditions normales; ledit procédé de purification ayant pour but d'éliminer cette radioactivité due aux produits de filiation de l'uranium 232 présent, est caractérisé en ce que l'on fait passer ledit uranium de retraitement sous sa forme d'hexafluorure liquide ou gazeux à travers un matériau poreux inerte chimiquement.The invention is a process for purifying reprocessed uranium from uranium fuel, which as such is free, following a prior separation treatment, of the elements generated during the passage of uranium fuel, in a nuclear reactor, said reprocessing uranium having been stored and having reached during this storage a sufficiently high radioactivity capable of preventing its use under normal conditions; said purification process intended to eliminate this radioactivity due to the parentage of uranium 232 present, is characterized in that said reprocessing uranium is passed in its form of liquid or gaseous hexafluoride through a chemically inert porous material.
Le procédé selon l'invention a donc pour but d'éliminer les produits de filiation de l'uranium 232 qui apparaissent au cours du stockage et qui provoquent la radioactivité à éliminer quand elle devient trop importante, par exemple supérieure à une valeur fixée par la réglementation.The purpose of the process according to the invention is therefore to eliminate the parentage products of uranium 232 which appear during storage and which cause the radioactivity to be eliminated when it becomes too high, for example greater than a value fixed by the regulation.
L'uranium de retraitement à purifier, après stockage, est mis sous forme d'hexafluorure à l'aide de procédés connus, dans la mesure où il est stocké sous une autre forme chimique. Mais il est particulièrement avantageux de le stocker sous forme d'hexafluorure dans les conteneurs habituels prévus à cet effet, pour pouvoir ensuite leur appliquer de façon simple le procédé de purification selon l'invention.The reprocessed uranium to be purified, after storage, is put into the form of hexafluoride using known methods, insofar as it is stored in another chemical form. However, it is particularly advantageous to store it in the form of hexafluoride in the usual containers provided for this purpose, so that the purification process according to the invention can then be applied to them in a simple manner.
Le procédé consiste à disposer au départ, de l'hexafluorure dans des conditions de température et de pression telles qu'il soit à l'état liquide ou gazeux. Quand il est stocké en conteneur, il suffit pour cela de chauffer ce dernier dans une étuve.
La pression doit également avoir une valeur suffisamment élevée pour pouvoir faire alors passer le flux d'hexafluorure frontalement à travers un matériau poreux contenu dans une enceinte de confinement inerte, maintenue en température par calorifugeage et/ou chauffage; le flux épuré sortant du matériau poreux est soit récupéré dans un conteneur de stockage refroidi à l'eau, soit acheminé directement vers une installation de transformation ou d'utilisation quelconque, par exemple enrichissement, conversion, etc...The process consists in initially disposing of hexafluoride under conditions of temperature and pressure such that it is in the liquid or gaseous state. When it is stored in a container, it is enough to that of heating the latter in an oven.
The pressure must also have a value high enough to then be able to pass the flow of hexafluoride frontally through a porous material contained in an inert confinement enclosure, maintained at temperature by insulation and / or heating; the purified flow leaving the porous material is either recovered in a water-cooled storage container, or sent directly to a processing or use facility of any kind, for example enrichment, conversion, etc.
Un tel traitement de la totalité du flux d'hexafluorure,est différente du phénomène d'enrichissement isotopique de l'UF6 qui se produit dans les usines d'enrichissement par diffusion gazeuse.Such treatment of the entire flow of hexafluoride is different from the isotopic enrichment phenomenon of UF6 which occurs in enrichment plants by gas diffusion.
En effet, ce procédé consiste à faire circuler un flux principal d'UF6 à l'intérieur de tubes poreux, dits tubes supports, recouverts intérieurement d'une couche active, ou couche barrière, asymétrique, l'enrichissement se faisant grâce à l'extraction tangentielle sélective des isotopes légers du flux d'UF6, par diffusion à travers la couche barrière. Le tube poreux ne sert que de support à la couche active et n'entre pas en jeu dans le phénomène de diffusion. La couche active, est asymétrique, c'est-à-dire qu'elle est pratiquement dense du côté en contact avec le flux d'UF6 amont pour que s'opère la diffusion, et a une microporosité de l'autre côté au contact du tube support pour favoriser le passage de l'UF6 extrait partiellement enrichi. Ainsi on introduit à une extrémité du tube poreux, recouvert intérieurement de sa couche active, un flux d'UF6, dont une partie enrichie en isotope léger est extraite par diffusion à travers la couche active, et dont la partie restante, la plus importante, ressort appauvrie à l'autre extrémité du tube. Seule une légère pression règne à l'intérieur du tube poreux.Indeed, this process consists in circulating a main flow of UF6 inside porous tubes, called support tubes, internally covered with an active layer, or barrier layer, asymmetrical, the enrichment being made thanks to the selective tangential extraction of light isotopes from the UF6 flux, by diffusion through the barrier layer. The porous tube only serves as a support for the active layer and does not come into play in the diffusion phenomenon. The active layer is asymmetrical, that is to say that it is practically dense on the side in contact with the upstream UF6 flow so that the diffusion takes place, and has a microporosity on the other side in contact of the support tube to promote the passage of the partially enriched extracted UF6. Thus a stream of UF6 is introduced at one end of the porous tube, internally covered with its active layer, of which a part enriched in light isotope is extracted by diffusion through the active layer, and of which the most important remaining part, depleted spring at the other end of the tube. Only a slight pressure prevails inside the porous tube.
Au contraire, selon l'invention, la totalité du flux d'UF6 traverse frontalement le matériau poreux, qui est lui-même actif, le procédé s'apparatant de ce fait davantage à une filtration qu'à une diffusion, mais le matériau n'agissant pas exclusivement comme un filtre, comme cela sera vu plus loin.
Le matériau poreux peut être constitué de toiles empilées les unes sur les autres, le flux d'hexafluorure les traversant perpendiculairement à leur surface, ou bien d'une toile enroulée sur elle même, le flux d'hexafluorure la traversant parallèlement à son axe d'enroulement; lesdites toiles doivent être inertes chimiquement, et résister aux conditions de pression et de température. De préférence elles sont métalliques, par exemple du type reps; tous les métaux inertes peuvent être utilisés, par exemple les aciers, particulièrement les inox, le nickel et ses alliages, l'inconel ou mieux encore le monel.On the contrary, according to the invention, the entire flow of UF6 crosses frontally the porous material, which is itself active, the process thus appearing more to filtration than to diffusion, but the material n not acting exclusively as a filter, as will be seen later.
The porous material can be made of fabrics stacked one on top of the other. on the others, the flow of hexafluoride passing through them perpendicular to their surface, or of a canvas wound on itself, the flow of hexafluoride passing through it parallel to its winding axis; said fabrics must be chemically inert, and withstand the conditions of pressure and temperature. Preferably they are metallic, for example of the reps type; all inert metals can be used, for example steels, particularly stainless steel, nickel and its alloys, inconel or better still monel.
De même on peut utiliser tous matériaux frittés poreux, inertes chimiquement, en céramique par exemple l'alumine, les nitrures, carbures etc...ou de préférence en métal, ou encore les feutres métalliques frittés à base de fibre, les métaux utilisables sont les mêmes que ceux cités précédemment.Likewise, any porous sintered materials, chemically inert, ceramic, for example alumina, nitrides, carbides, etc. or preferably made of metal, or even sintered metallic felts based on fiber, can be used, the metals which can be used are the same as those mentioned above.
L'enceinte et le corps poreux doivent être inertes chimiquement, c'est-à-dire qu'ils doivent résister à l'action du fluor et de ses dérivés, fluorures HF, UF₆...The enclosure and the porous body must be chemically inert, i.e. they must resist the action of fluorine and its derivatives, HF fluorides, UF₆ ...
Leur corrosion doit être faible de façon à éviter le bouchage du corps poreux et la pollution de l'hexafluorure sortant.Their corrosion must be low so as to avoid clogging of the porous body and pollution of the outgoing hexafluoride.
La quantité pondérale des produits de filiation à épurer est infime, pratiquement non dosable en tant que tels, étant donné la très faible quantité d'uranium 232 présente au départ (quelques ppb); de ce fait il faut veiller à ce que l'échantillonnage pour analyse soit toujours représentatif. Aussi leur analyse se fait habituellement par le biais de leur radioactivité et de préférence sur de très gros échantillons voire sur la totalité de l'hexafluorure mis en oeuvre.The quantity by weight of parentage products to be purified is minute, practically non-dosable as such, given the very small quantity of uranium 232 present at the start (a few ppb); therefore care must be taken that the sampling for analysis is always representative. Also their analysis is usually done through their radioactivity and preferably on very large samples or even all of the hexafluoride used.
Il est vraisemblable que la majeure partie de ces produits de filiation se trouve sous forme de fluorures solides ou gazeux et que dans le cas où ils se trouvent sous forme de particules de fluorures solides dans l'UF₆ liquide, ou dans l'UF₆ gazeux, cellesci sont vraisemblablement d'une taille infime voire moléculaire, du fait du mode de génération "in situ" des produits de filiation.It is likely that the major part of these parentage products is in the form of solid or gaseous fluorides and that in the case where they are in the form of particles of solid fluorides in liquid UF₆, or in gaseous UF₆, these are probably of minute or even molecular size, due to the mode of generation "in situ" of parentage products.
Ainsi de façon surprenante le matériau poreux fixe l'ensemble des produits de filiation bien que sa structure et son pouvoir de coupure puissent être choisis dans une très vaste gamme.
En particulier ce dernier peut être choisi dans un domaine très étendu, les valeurs trop faibles réduisant les débits possibles d'hexafluorure pour une même surface, les valeurs trop élevées nécessitant une épaisseur plus importante du matériau poreux.Thus, surprisingly, the porous material fixes all of the parentage products although its structure and its breaking capacity can be chosen from a very wide range.
In particular, the latter can be chosen in a very wide range, too low values reducing the possible flow rates of hexafluoride for the same surface, too high values requiring a greater thickness of the porous material.
En pratique, dans le but d'avoir une bonne efficacité de l'épuration, le diamètre équivalent des pores doit être inférieur à 100 µm et de préférence inférieur à 50 µm. Ce diamètre est mesuré par bulloscopie selon la norme ISO 4003-1977 (F).
Parallèlement l'épaisseur du matériau poreux est généralement d'au moins 100 mm quand il s'agit de toile ou de feutre fritté métallique. Dans le cas de matériaux poreux frittés l'épaisseur est généralement comprise entre 0,5 et 10 mm et de préférence entre 1,5 et 5 mm.
La vitesse de passage de l'hexafluorure liquide ou gazeux est habituellement choisie inférieure à 250 m/h et de préférence comprise entre 15 et 100 m/h; le temps de contact avec le matériau poreux est habituellement supérieur à quelques centièmes de seconde et de préférence compris entre 0,1 et 10 sec.In practice, in order to have good purification efficiency, the equivalent diameter of the pores must be less than 100 μm and preferably less than 50 μm. This diameter is measured by bulloscopy according to standard ISO 4003-1977 (F).
At the same time, the thickness of the porous material is generally at least 100 mm when it is canvas or metallic sintered felt. In the case of sintered porous materials the thickness is generally between 0.5 and 10 mm and preferably between 1.5 and 5 mm.
The speed of passage of the liquid or gaseous hexafluoride is usually chosen to be less than 250 m / h and preferably between 15 and 100 m / h; the contact time with the porous material is usually greater than a few hundredths of a second and preferably between 0.1 and 10 sec.
On voit d'après ces paramètres que les débits peuvent être élevés ce qui est particulièrement intéressant quand on utilise l'hexafluorure gazeux, et qu'à vitesse ou temps de séjour constant il est plus intéressant de traiter l'hexafluorure liquide.It is seen from these parameters that the flow rates can be high, which is particularly advantageous when using gaseous hexafluoride, and that at constant speed or residence time it is more advantageous to treat the liquid hexafluoride.
On voit que l'on peut également traiter des débits importants d'hexafluorure tout en utilisant des corps poreux dont la surface d'accès est relativement faible, par exemple pour des débits de 500 kg UF6/h, une surface de l'ordre de 0,5 m2 peut suffir, ceci illustre l'encombrement réduit du dispositif d'épuration.We see that we can also treat large flow rates of hexafluoride while using porous bodies whose access surface is relatively small, for example for flow rates of 500 kg UF6 / h, an area of the order of 0.5 m2 may be sufficient, this illustrates the reduced size of the purification device.
Le procédé selon l'invention permet d'éliminer au moins 98% de la radioactivité présente dans l'hexafluorure de départ et due aux produits de filiation de l'uranium 232, et cette purification atteint même généralement plus de 99,7%. Ces résultats sont obtenus par la comparaison avant et après traitement soit de mesures de l'irradiation γ faites au contact du conteneur ou des canalisations, soit de préférence de mesures de spectrométrie de l'ensemble du conteneur ou d'un échantillon représentatif.The method according to the invention makes it possible to eliminate at least 98% of the radioactivity present in the starting hexafluoride and due to the parentage of uranium 232, and this purification even generally reaches more than 99.7%. These results are obtained by comparing before and after treatment either measurements of γ irradiation made in contact with the container or the pipes, or preferably spectrometry measurements of the entire container or a representative sample.
Quand le matériau poreux est suffisamment contaminé par les produits qu'il a fixés au cours du traitement, ce que l'on note en mesurant l'irradiation au contact de son enceinte de confinement, ladite enceinte et son matériau poreux contenu sont alors remplacés par un ensemble neuf. Du fait de sa compacité l'ensemble est facilement manipulable, même à distance, facilement éliminable en décharge contrôlée, tel quel ou après conditionnement, ou mieux stockable pour laisser décroître sa radioactivité avant réemploi.When the porous material is sufficiently contaminated by the products which it has fixed during the treatment, which is noted by measuring the irradiation in contact with its confinement enclosure, said enclosure and its contained porous material are then replaced by a new set. Because of its compactness, the assembly is easy to handle, even at a distance, easily eliminable in a controlled landfill, as it is or after packaging, or better storable to allow its radioactivity to decrease before re-use.
Le procédé est applicable à l'uranium de retraitement de toute teneur isotopique en uranium 235; il est particulièrement intéressant de le mettre en oeuvre pour de l'uranium enrichi qui de ce fait est également enrichi en U232 et dont les périodes de stockage à faible irradiation sont d'autant plus courtes que la teneur en U232 est plus importante.The process is applicable to uranium reprocessing of any isotopic uranium 235 content; it is particularly advantageous to use it for enriched uranium which is therefore also enriched in U232 and whose storage periods at low irradiation are all the shorter the higher the U232 content.
On voit que le procédé est particulièrement simple et avantageux à mettre en oeuvre quand l'uranium de retraitement est stocké sous forme UF₆ et qu'il permet son stockage sur de très longues périodes, puisqu'il suffit de faire de temps à autre un transfert d'un conteneur émetteur dans un conteneur récepteur par l'intermédiaire d'un corps poreux selon l'invention.We see that the process is particularly simple and advantageous to implement when the reprocessed uranium is stored in UF₆ form and that it allows its storage over very long periods, since it suffices to make a transfer from time to time from a transmitter container to a receiver container via a porous body according to the invention.
Les exemples non limitatifs suivants permettront de mieux voir comment mettre en oeuvre l'invention.The following nonlimiting examples will make it easier to see how to implement the invention.
On part d'un hexafluorure d'uranium de retraitement stocké en conteneur d'alliage à base d'Al; le conteneur récepteur est identique.We start with a reprocessing uranium hexafluoride stored in an Al-based alloy container; the receiving container is identical.
Le conteneur émetteur, contenant le produit à épurer est relié au dispositif d'épuration qui lui-même est relié au conteneur récepteur; ces liaisons sont en inox et sont munies des vannes d'arrêt ou isolement nécessaire et de manomètres gradués de 0 à 6 bar, situé à proximité des conteneurs.The emitting container, containing the product to be cleaned, is connected to the purification device which itself is connected to the receiving container; these connections are made of stainless steel and are fitted with the necessary shut-off or isolation valves and pressure gauges from 0 to 6 bar, located near the containers.
On a monté en déviation sur ce circuit une pompe à vide primaire destinée à éliminer les gaz inertes présents dans le circuit et le conteneur récepteur avant l'opération d'épuration.A primary vacuum pump designed to remove inert gases present in the circuit and the receiving container prior to the purification operation has been mounted on this circuit.
Le conteneur récepteur est équipé d'un serpentin extérieur de refroidissement à circulation d'eau. Il est installé sur un dispositif de pesage, qui permet de suivre l'avancement du transfert.
Le dispositif d'épuration est constitué d'une enceinte cylindrique en inox de diamètre 59 mm aux extrémités de laquelle débouchent les tubes des liaisons avec les conteneurs émetteur et récepteur. Un disque de matériau poreux de diamètre 50 mm est positionné transversalement dans l'enceinte. Un manomètre différentiel donne la perte de charge entre l'amont et l'aval du matériau poreux.The receiving container is equipped with an external water circulation cooling coil. It is installed on a weighing device, which tracks the progress of the transfer.
The purification device consists of a cylindrical stainless steel enclosure with a diameter of 59 mm, at the ends of which open the connection tubes with the transmitter and receiver containers. A disc of porous material with a diameter of 50 mm is positioned transversely in the enclosure. A differential pressure gauge gives the pressure drop between the upstream and downstream of the porous material.
Le bidon émetteur et le dispositif d'épuration sont dans une même étuve de chauffage.The transmitter canister and the purification device are in the same heating oven.
Différents corps poreux seront essayés.
Pour conduire l'épuration selon l'invention, on fait d'abord le vide dans l'installation pour éliminer les inertes. L'étuve est ensuite mise en chauffage de façon à ce que le bidon émetteur soit à 80°C environ et que sa pression soit stabilisée. Dans le même temps on met en refroidissement le bidon récepteur.Different porous bodies will be tested.
To conduct the purification according to the invention, a vacuum is first made in the installation to eliminate the inert substances. The oven is then heated so that the transmitter canister is at about 80 ° C and its pressure is stabilized. At the same time, the receiver can be cooled.
Une fois les pressions stabilisées on manoeuvre les vannes de façon à opérer le transfert de UF₆ gazeux à travers le corps poreux.Once the pressures have stabilized, the valves are operated so as to effect the transfer of gaseous UF₆ through the porous body.
La décontamination de l'hexafluorure est mesurée par comparaisons des analyses radiochimiques de l'activité des descendants de U232 effectuées sur l'UF₆ de départ et l'UF₆ épuré.
Les taux de purification, représentant le rapport de ces deux mesures et obtenus avec les divers corps poreux utilisés sont regroupés dans le tableau suivant:
The purification rates, representing the ratio of these two measurements and obtained with the various porous bodies used are grouped in the following table:
L'installation utilisée dans cet exemple permet de traiter des cylindres contenant jusqu'à 14 t d'UF₆; elle est semblable à celle de l'exemple 1, à l'exception du refroidissement du bidon récepteur effectué par une rampe d'arrosage à l'eau et du dispositif d'épuration.The installation used in this example makes it possible to treat cylinders containing up to 14 t of UF₆; it is similar to that of Example 1, with the exception of the cooling of the receiving container by means of a watering boom and the purification device.
Ce dernier est constitué par une enceinte cylindrique à l'intérieur de laquelle sont disposées, en parallèle, cinq cartouches identiques de matériau poreux; elles sont cylindriques et fermées à une extrémité. Cette dispopsition permet d'augmenter la surface d'accès au matériau poreux qui dans ce cas est de 0,5 m2, tout en gardant un encombrement réduit de l'enceinte: diamètre 30 cm et volume 65 l.The latter consists of a cylindrical enclosure inside which are arranged, in parallel, five identical cartridges of porous material; they are cylindrical and closed at one end. This availability makes it possible to increase the access surface to the porous material which in this case is 0.5 m2, while keeping a reduced space requirement of the enclosure: diameter 30 cm and volume 65 l.
Le matériau poreux est du monel fritté, dont le diamètre équivalent de pore est de 50 µm, l'épaisseur utile de chaque cartouche est de 2 mm.
Comme précédemment, on porte le cylindre d'UF₆ à 80°C, la pression dans le cylindre émetteur varie entre 1,2 et 1,8 bar et celle du cylindre récepteur entre 0,6 et 1,2 bar, au cours du traitement. On a fait varier le débit de UF₆ gazeux entre 57 kg/h et 331 kg/h, pour une quantité transférée totale de 14 t d'UF₆.The porous material is sintered monel, the equivalent pore diameter of which is 50 μm, the useful thickness of each cartridge is 2 mm.
As before, the UF₆ cylinder is brought to 80 ° C., the pressure in the emitting cylinder varies between 1.2 and 1.8 bar and that of the receiving cylinder between 0.6 and 1.2 bar, during the treatment. . The flow rate of gaseous UF₆ was varied between 57 kg / h and 331 kg / h, for a total transferred amount of 14 t of UF₆.
La vitesse a correlativement varié de 36 m/h à 82 m/h et le temps de séjour dans le matériau poreux de 0,6 sec à 0,26 sec.The speed correlatively varied from 36 m / h to 82 m / h and the residence time in the porous material from 0.6 sec to 0.26 sec.
Dans ces conditions, le taux de purification obtenu après comptage de l'activité des descendants de l'U 232 effectué par spectrométrie des échantillons représentatifs prélevés avant et après traitement est de 99,7%.Under these conditions, the purification rate obtained after counting the activity of the descendants of U 232 carried out by spectrometry of the representative samples taken before and after treatment is 99.7%.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8712705 | 1987-09-01 | ||
FR8712705A FR2619952B1 (en) | 1987-09-01 | 1987-09-01 | PROCESS FOR CLEANING TRACES OF RADIOACTIVE ELEMENTS GENERATED DURING STORAGE OF URANIUM FROM THE PROCESSING OF IRRADIATED NUCLEAR FUELS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0306420A1 true EP0306420A1 (en) | 1989-03-08 |
EP0306420B1 EP0306420B1 (en) | 1991-11-27 |
Family
ID=9354869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88420294A Expired - Lifetime EP0306420B1 (en) | 1987-09-01 | 1988-08-31 | Process for the purification of traces of radioactive elements generated during the stockpiling of uranium resulting from the processing of irradiated nuclear fuels |
Country Status (5)
Country | Link |
---|---|
US (1) | US4891192A (en) |
EP (1) | EP0306420B1 (en) |
JP (1) | JPH01138495A (en) |
DE (1) | DE3866477D1 (en) |
FR (1) | FR2619952B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3771185B2 (en) | 2002-04-02 | 2006-04-26 | 株式会社エムアイシー | Swivel device |
RU2499306C1 (en) * | 2012-05-15 | 2013-11-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Method of cleaning irradiated nuclear fuel |
EP2899725B1 (en) * | 2014-01-27 | 2018-04-25 | Urenco Limited | Controlling the temperature of uranium material in a uranium enrichment facility |
RU2576530C1 (en) * | 2014-09-25 | 2016-03-10 | Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") | Method of cleaning uranium products from treatment of spent nuclear fuel from ruthenium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2309271A1 (en) * | 1973-07-26 | 1976-11-26 | Commissariat Energie Atomique | PROCESS FOR MANUFACTURING MICROPOROUS METAL FILTERS |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3925536A (en) * | 1947-06-19 | 1975-12-09 | Us Energy | Method of recovering uranium hexafluoride |
US3178258A (en) * | 1962-08-30 | 1965-04-13 | George I Cathers | Separation of plutonium hexafluoride from uranium hexafluoride by selective sorption |
US3978194A (en) * | 1971-06-21 | 1976-08-31 | Westinghouse Electric Corporation | Production of sized particles of uranium oxides and uranium oxyfluorides |
US4031029A (en) * | 1975-07-02 | 1977-06-21 | General Electric Company | Process for producing uranium oxide rich compositions from uranium hexafluoride using fluid injection into the reaction zone |
US4522794A (en) * | 1983-08-25 | 1985-06-11 | The United States Of America As Represented By The Department Of Energy | Fluorination process using catalyst |
US4642186A (en) * | 1984-02-02 | 1987-02-10 | Tokyo Shibaura Denki Kabushiki Kaisha | Clarifying apparatus |
-
1987
- 1987-09-01 FR FR8712705A patent/FR2619952B1/en not_active Expired
-
1988
- 1988-08-26 US US07/236,907 patent/US4891192A/en not_active Expired - Lifetime
- 1988-08-29 JP JP63214729A patent/JPH01138495A/en active Granted
- 1988-08-31 DE DE8888420294T patent/DE3866477D1/en not_active Expired - Fee Related
- 1988-08-31 EP EP88420294A patent/EP0306420B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2309271A1 (en) * | 1973-07-26 | 1976-11-26 | Commissariat Energie Atomique | PROCESS FOR MANUFACTURING MICROPOROUS METAL FILTERS |
Also Published As
Publication number | Publication date |
---|---|
FR2619952B1 (en) | 1989-11-17 |
JPH0574038B2 (en) | 1993-10-15 |
US4891192A (en) | 1990-01-02 |
FR2619952A1 (en) | 1989-03-03 |
DE3866477D1 (en) | 1992-01-09 |
JPH01138495A (en) | 1989-05-31 |
EP0306420B1 (en) | 1991-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2474000B1 (en) | Process for the production of porous nuclear fuel on the basis of at least one minor actinide | |
US4579069A (en) | Volume reduction of low-level radioactive wastes | |
EP1218104B1 (en) | Method and installation for eliminating metal cations from a liquid with polyazacycloalkane resins grafted on a support | |
FR2600454A1 (en) | METHOD AND DEVICE FOR DECONTAMINATING THE EXHAUST GAS OF A FUSION REACTOR COMBUSTION CIRCUIT FOR COMPONENTS CONTAINING CHEMICAL BONDS WITH TRITIUM AND / OR DEUTERIUM | |
FR2985595A1 (en) | PROCESS FOR FILTRATION OF HARMFUL GASEOUS EFFLUENTS OF A NUCLEAR POWER PLANT | |
EP0306420B1 (en) | Process for the purification of traces of radioactive elements generated during the stockpiling of uranium resulting from the processing of irradiated nuclear fuels | |
FR2492271A1 (en) | PROCESS FOR SEPARATING RARE GAS FROM XENON AND KRYPTON FISSION, NUCLEAR FACILITY RELEASE GASES AND COLUMN SYSTEM FOR EXECUTING IT | |
EP0293730B1 (en) | Process and device for purifying a gas containing isotopes of hydrogen | |
EP2311044B1 (en) | Method of treating a structure containing sodium and a radioactive substance | |
EP0241349B1 (en) | Process and device for treating fluids containing particles in suspension | |
FR2896705A1 (en) | PROCESS FOR THE SEPARATION IN AQUEOUS MEDIUM OF AT LEAST ONE ACTINIDE ELEMENT OF LANTHANIDE ELEMENTS BY COMPLEXATION AND MEMBRANE FILTRATION | |
FR2601181A1 (en) | METHOD AND DEVICE FOR THE DECONTAMINATION OF REJECTED FUEL CYCLE GAS OF A FUSION NUCLEAR REACTOR GAS REJECTED CONTAMINATED BY COMPONENTS CONTAINING TRITIUM AND / OR DEUTERIUM IN COMBINED CHEMICALLY COMBINED FORM | |
FR2483673A1 (en) | PROCESS FOR TREATING NUCLEAR FUEL PELLETS CONTAINING FISSILE MATERIAL | |
BE1011754A3 (en) | Method and metal surfaces decontamination installation. | |
EP1592498B1 (en) | Method and device for capturing ruthenium present in a gaseous effluent | |
EP2774155B1 (en) | Method for treating a cladding containing sintered calcium hydride | |
WO1996011478A1 (en) | METHOD FOR PARTIALLY α-DECONTAMINATING AN AQUEOUS EFFLUENT | |
Browning Jr et al. | Characterization of millimicron radioactive aerosols and their removal from gases | |
FR2500162A1 (en) | GAS SAMPLER FOR AEROSOL ATMOSPHERE | |
Brown et al. | Treatment of irradiated graphite from french bugey reactor–13424 | |
Beitz et al. | Photochemical removal of NpF 6 and PuF 6 from UF 6 gas streams | |
Gendre | Preparation of plutonium hexafluoride. Recovery of plutonium from waste dross (1962) | |
Fermandjian | Study of the sodium oxide aerosol behavior in a containment building | |
Stevens et al. | Treatment of irradiated graphite from French Bugey reactor | |
Wilhelm et al. | FUEL FABRICATION AND REPROCESSING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE GB |
|
17P | Request for examination filed |
Effective date: 19890414 |
|
17Q | First examination report despatched |
Effective date: 19910419 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE GB |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3866477 Country of ref document: DE Date of ref document: 19920109 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930712 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950503 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070829 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20071018 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Owner name: CIE GENERALE DES MATIERES *NUCLEAIRES Effective date: 20080831 Owner name: SOC.POUR LA CONVERSION DE L'URANIUM EN METAL ET HE Effective date: 20080831 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20080830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20080830 |