EP0303016A1 - Method of making a gas pressure vessel of austenitic stainless steel by cryogenic forming - Google Patents
Method of making a gas pressure vessel of austenitic stainless steel by cryogenic forming Download PDFInfo
- Publication number
- EP0303016A1 EP0303016A1 EP88109402A EP88109402A EP0303016A1 EP 0303016 A1 EP0303016 A1 EP 0303016A1 EP 88109402 A EP88109402 A EP 88109402A EP 88109402 A EP88109402 A EP 88109402A EP 0303016 A1 EP0303016 A1 EP 0303016A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure medium
- container
- coolant
- making
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 13
- 239000002826 coolant Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 11
- 239000007789 gas Substances 0.000 claims abstract description 11
- 239000010959 steel Substances 0.000 claims abstract description 11
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229940029284 trichlorofluoromethane Drugs 0.000 claims abstract description 5
- 229910000734 martensite Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 15
- 238000007710 freezing Methods 0.000 abstract description 3
- 230000008014 freezing Effects 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 2
- AFYPFACVUDMOHA-UHFFFAOYSA-N chlorotrifluoromethane Chemical compound FC(F)(F)Cl AFYPFACVUDMOHA-UHFFFAOYSA-N 0.000 description 2
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/04—Hardening by cooling below 0 degrees Celsius
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/041—Means for controlling fluid parameters, e.g. pressure or temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
- B21D26/049—Deforming bodies having a closed end
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/10—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
- C21D7/12—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
Definitions
- the invention relates to a method for producing a pressurized gas container from austenitic steels by cryoforming according to the preamble of claim 1.
- the strength properties of metastable austenitic steels can be improved by cryoforming by deforming them below their respective martensite transformation temperatures Md or Ms.
- Md is the temperature above which no martensitic transformation takes place even when deformed
- Ms is the temperature below which martensite formation begins even without deformation.
- the preferred coolant used is liquid nitrogen, with which the steels, if desired, can be cooled down to -196 ° C.
- DE-OS 1 452 533 also discloses the use of this method for producing high-strength pressure vessels.
- the simultaneous use of liquid nitrogen as the coolant and pressure medium is preferred.
- the container to be deformed is filled with liquid nitrogen and brought to the high pressure required for the deformation by means of an appropriate cryopump or by injecting a gas.
- the use of a pressure medium different from the coolant is also mentioned, but appears to be too complex, for example in the form of explosion deformation, or undesirable condensations from the pressure medium are to be expected, possibly freezing the pressure medium with excessive cold removal from the container wall.
- the invention is therefore based on the object of improving the process for producing pressurized gas containers from austenitic steels by cryogenic shaping in such a way that it does not have the disadvantages mentioned when the coolant is simultaneously used as the pressurizing medium, nor does the difficulties described when using its own pressurizing medium occur.
- the trichlorofluoromethane CFCl3 used according to the invention which is known as a refrigerant under the designation R11, has properties that enable its use as a separate pressure medium that is independent of the coolant, although this is not actually to be expected due to the temperature range in which it is present as a liquid is.
- Trichlorofluoromethane solidifies at a temperature which, because of the expedient use of liquid nitrogen as the coolant, is clearly above the temperature at which the cryogenic stretching is carried out.
- chlorofluorocarbons such as dichlorofluoromethane (CCl2F2, R12) and chlorotrifluoromethane (CClF3, R 13) are also suitable as pressure medium for cryogenic stretching of containers.
- Cl2F2, R12 dichlorofluoromethane
- ClF3, R 13 chlorotrifluoromethane
- the drawing illustrates a device for carrying out the method according to the invention in schematic form.
- the compressed gas container 1 to be deformed is located in an insulated cooling chamber 2, in which it is cooled to the temperature required for the formation of martensite.
- Liquid nitrogen which flows through the line 3 and nozzles 4 into the cooling chamber 2, serves as the coolant is sprayed where it evaporates.
- the temperature reached is indicated by the thermometer 5.
- CFCl3 as a pressure medium, which is removed from a reservoir 6 and pressed by means of the pump 7 via the line 8 into the interior of the container 1.
- the pressure is indicated by the manometer 9.
- the filled pressurized gas container 1 is closed with a releasable, pressure-tight closure 10 and connected to the pump 7 and the line 8 via a filling pipe 11 which extends into the middle of the container.
- the filling pipe 11 has thermal insulation 12 which prevents the pressure medium from freezing.
- CFCl3 has a significantly lower thermal conductivity than the container steel, only an edge layer that comes into direct contact with the inner surface of the container can solidify during the deformation process. It is therefore also possible to replace the cooling chamber 2 with a Dewar vessel filled with liquid nitrogen, into which the container 1 is immersed.
- the process according to the invention can be carried out even under these extreme conditions, provided that care is taken that the container 1 is not immersed in the liquid nitrogen for longer than the time required for the deformation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Die Herstellung hochfester Druckgasbehälter (1) aus austenitischen Stählen durch Kryoverformung erfolgt bevorzugt mit flüssigem Stickstoff als Kühlmittel und als Druckmittel. Neben manchen Vorteilen hat diese Methode auch einige Nachteile, u.a. sicherheitstechnischer Art. Die Verwendung eines vom Kühlmittel unterschiedlichen Druckmittels ist jedoch wegen der Gefahr des Auskondensierens von Bestandteilen oder des Einfrierens mit unerwünschter Erwärmung des Druckgasbehälters ebenfalls sehr nachteilig. Zwecks Vermeidung dieser Nachteile wird als vom Kühlmittel unterschiedliches Druckmittel Trichlorfluormethan (CFCl3) verwendet.The manufacture of high-strength pressurized gas containers (1) from austenitic steels by cryoforming is preferably carried out using liquid nitrogen as the coolant and as the pressure medium. In addition to some advantages, this method also has some disadvantages, including Safety-related type. However, the use of a pressure medium different from the coolant is also very disadvantageous because of the risk of components condensing out or of freezing with undesired heating of the pressure gas container. To avoid these disadvantages, trichlorofluoromethane (CFCl3) is used as the pressure medium different from the coolant.
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines Druckgasbehälters aus austenitischen Stählen durch Kryoverformung nach dem Oberbegriff des Anspruches 1.The invention relates to a method for producing a pressurized gas container from austenitic steels by cryoforming according to the preamble of claim 1.
Die Festigkeitseigenschaften metastabiler austenitischer Stähle können durch Kryoverformung verbessert werden, indem sie unterhalb ihrer jeweiligen Martensitumwandlungstemperatur Md oder Ms verformt werden. Md ist dabei die Temperatur, oberhalb der auch bei Verformung keine martensitische Umwandlung stattfindet, Ms ist dagegen die Temperatur, unterhalb der auch ohne Verformung die Martensitbildung einsetzt. Ein derartiges Verfahren zur Verbesserung der Festigkeitseigenschaften austenitischer Stähle ist aus der DE-PS 26 54 702 bekannt.The strength properties of metastable austenitic steels can be improved by cryoforming by deforming them below their respective martensite transformation temperatures Md or Ms. Md is the temperature above which no martensitic transformation takes place even when deformed, while Ms is the temperature below which martensite formation begins even without deformation. Such a method for improving the strength properties of austenitic steels is known from DE-PS 26 54 702.
Da insbesondere die Ms-Temperaturen sehr niedrig liegen, verwendet man als Kühlmittel bevorzugt flüssigen Stickstoff, mit dem die Stähle, falls gewüschnt, bis auf -196°C abgekühlt werden können.Since the Ms temperatures in particular are very low, the preferred coolant used is liquid nitrogen, with which the steels, if desired, can be cooled down to -196 ° C.
Aus der DE-OS 1 452 533 ist ferner die Anwendung dieses Verfahrens zur Herstellung hochfester Druckbehälter bekannt. Bevorzugt wird hierbei die gleichzeitige Verwendung von flüssigem Stickstoff als Kühlmittel und Druckmittel. In diesem Fall wird der zu verformende Behälter mit flüssigem Stickstoff gefüllt und mit Hilfe einer entsprechenden Kryopumpe oder durch Aufdrücken eines Gases auf den für die Verformung erforderlichen hohen Druck gebracht. Die Verwendung eines vom Kühlmittel unterschiedlichen Druckmittels wird ebenfalls genannt, erscheint jedoch zu aufwendig, beispielsweise in Form von Explosionsverformung, oder es sind unerwünschte Kondensationen aus dem Druckmittel zu erwarten, ggf. Einfrieren des Druckmittels mit übermäßigem Kälteentzug aus der Behälterwand.DE-OS 1 452 533 also discloses the use of this method for producing high-strength pressure vessels. The simultaneous use of liquid nitrogen as the coolant and pressure medium is preferred. In this case, the container to be deformed is filled with liquid nitrogen and brought to the high pressure required for the deformation by means of an appropriate cryopump or by injecting a gas. The use of a pressure medium different from the coolant is also mentioned, but appears to be too complex, for example in the form of explosion deformation, or undesirable condensations from the pressure medium are to be expected, possibly freezing the pressure medium with excessive cold removal from the container wall.
In der Praxis hat sich jedoch bei der gleichzeitigen Verwendung von flüssigem Stickstoff als Kühl- und Druckmittel eine Reihe von Nachteilen und Schwierigkeiten herausgestellt.In practice, however, a number of disadvantages and difficulties have emerged when using liquid nitrogen as the coolant and pressure medium.
Wenn die Druckübertragung auf die Behälterwand über den flüssigen Stickstoff als Medium erfolgt, erfordert dies die Verwendung aufwendiger, wärmeisolierter Einrichtungen wie Kryopumpen, isolierten Rohrleitungen und Kryobehältern. Bewußt erzeugte oder unvermeidlich entstehende Gaspolster im Behälter oder seinen Zuleitungen erhöhen das Sicherheitsrisiko bei einem eventuellen Versagen des Behälters während des Kryostreckprozesses. Dazu kommt, daß auch der flüssige Stickstoff bei den relativ hohen erforderlichen Streckdrücken (einige 100 bar) selbst eine merkliche Kompressibilität besitzt, was die bei einem Versagen freigesetzte Energie deutlich erhöht. Deswegen sind für das Kryostrecken aufwendige und die technische Anwendung des Verfahrens behindernde Sicherheitseinrichtungen erforderlich.If the pressure is transferred to the container wall via the liquid nitrogen as a medium, this requires the use of complex, heat-insulated devices such as cryopumps, insulated pipes and cryogenic containers. Deliberately created or inevitably created gas cushions in the container or its supply lines increase the safety risk in the event of a possible failure of the container during the cryostressing process. In addition, the liquid nitrogen at the relatively high required Stretching pressures (some 100 bar) itself have a noticeable compressibility, which significantly increases the energy released in the event of failure. For this reason, complex safety devices are required for cryogenic stretching and hinder the technical application of the method.
Der Erfindung liegt daher die Aufgabe zugrunde, das Verfahren zur Herstellung von Druckgasbehältern aus austenitischen Stählen durch Kryoverformung so zu verbessern, daß es weder die bei gleichzeitiger Verwendung des Kühlmittels als Druckmittel genannten Nachteile aufweist, noch die bei Verwendung eines eigenen Druckmittels beschriebenen Schwierigkeiten auftreten.The invention is therefore based on the object of improving the process for producing pressurized gas containers from austenitic steels by cryogenic shaping in such a way that it does not have the disadvantages mentioned when the coolant is simultaneously used as the pressurizing medium, nor does the difficulties described when using its own pressurizing medium occur.
Ausgehend von dem im Oberbegriff des Anspruches 1 berücksichtigten Stand der Technik ist diese Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen.Starting from the prior art taken into account in the preamble of claim 1, this object is achieved according to the invention with the features specified in the characterizing part of claim 1.
Eine vorteilhafte Weiterbildung der Erfindung ist im Unteranspruch angegeben.An advantageous development of the invention is specified in the subclaim.
Das gemäß der Erfindung verwendete Trichlorfluormethan CFCl₃, welches als Kältemittel unter der Bezeichnung R11 bekannt ist, besitzt Eigenschaften, die seinen Einsatz als separates, vom Kühlmittel unabhängiges Druckmittel ermöglichen, obwohl dies aufgrund des Temperaturbereiches, in dem es als Flüssigkeit vorliegt, eigentlich nicht zu erwarten ist.The trichlorofluoromethane CFCl₃ used according to the invention, which is known as a refrigerant under the designation R11, has properties that enable its use as a separate pressure medium that is independent of the coolant, although this is not actually to be expected due to the temperature range in which it is present as a liquid is.
Trichlorfluormethan erstarrt bei einer Temperatur, die wegen der zweckmäßigen Verwendung von flüssigem Stickstoff als Kühlmittel deutlich über der Temperatur liegt, bei der das Kryostrecken durchgeführt wird.Trichlorofluoromethane solidifies at a temperature which, because of the expedient use of liquid nitrogen as the coolant, is clearly above the temperature at which the cryogenic stretching is carried out.
Bei Raumtemperatur ist es flüssig, so daß es mit einer normalen hydraulischen Pumpe in den zu verformenden Behälter gepreßt werden kann. Daß es diesen Aggregatzustand während des Kryostreckvorganges beibehalten kann, obwohl der zu verformende Behälter von außen mit flüssigem Stickstoff gekühlt wird, verdankt es seiner, im Vergleich zum Stahl, geringen Wärmeleitfähigkeit und großen spezifischen Wärme. λ Stahl (-196 °C) ∼ 6 [W/mK];λ CFCL₃(-120 °C)<O.2 [W/mK]
cp Stahl (-196 °C)=0.15 [J/gk];cp CFCl₃(-120 °C)=0.79[J/gK]
It is liquid at room temperature so that it can be pressed into the container to be deformed using a normal hydraulic pump. The fact that it can maintain this state of matter during the cryostressing process, even though the container to be deformed is cooled from the outside with liquid nitrogen, is due to its low thermal conductivity and high specific heat compared to steel. λ steel (-196 ° C) ∼ 6 [W / mK]; λ CFCL₃ (-120 ° C) <O.2 [W / mK]
cp steel (-196 ° C) = 0.15 [J / gk]; cp CFCl₃ (-120 ° C ) = 0.79 [J / gK]
Durch diese Eigenschaften wird ein schneller Temperaturausgleich zwischen der von außen gekühlten Behälterwand und dem Druckmedium im Behälter verhindert.These properties prevent rapid temperature compensation between the externally cooled container wall and the pressure medium in the container.
Neben Trichlorfluormethan sind prinzipiell auch noch andere Fluorchlorkohlenwasserstoffe wie Dichlorfluormethan (CCl₂F₂, R12) und Chlortrifluormethan (CClF₃, R 13) als Druckmedium zum Kryotrecken von Behältern geeignet. Allerdings haben diese den Nachteil, daß sie bei Raumtemperatur und normalem Umgebungsdruck nicht mehr als Flüssigkeit vorliegen, sondern unter erhöhtem Druck gehalten werden müssen.In addition to trichlorofluoromethane, other chlorofluorocarbons such as dichlorofluoromethane (CCl₂F₂, R12) and chlorotrifluoromethane (CClF₃, R 13) are also suitable as pressure medium for cryogenic stretching of containers. However, these have the disadvantage that they are no longer present as a liquid at room temperature and normal ambient pressure, but must be kept under increased pressure.
Die Zeichnung veranschaulicht als Ausführungsbeispiel eine Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens in schematischer Form.As an exemplary embodiment, the drawing illustrates a device for carrying out the method according to the invention in schematic form.
Der zu verformende Druckgasbehälter 1 befindet sich in einer isolierten Kühlkammer 2, in welcher er auf die für die Martensitbildung erforderliche Temperatur abgekühlt wird. Als Kühlmittel dient flüssiger Stickstoff, der durch die Leitung 3 und Düsen 4 in die Kühlkammer 2 eingesprüht wird, wo er verdampft. Die erreichte Temperatur wird durch das Thermometer 5 angezeigt. Erfindungsgemäß wird der erforderliche Verformungsdruck mit CFCl₃ als Druckmittel aufgebracht, welches einem Reservoir 6 entnommen und mittels der Pumpe 7 über die Leitung 8 in das Innere des Behälters 1 gedrückt wird. Der Druck wird durch das Manometer 9 angezeigt.The compressed gas container 1 to be deformed is located in an insulated
Der gefüllte Druckgasbehälter 1 ist mit einem lösbaren, druckdichten Verschluß 10 verschlossen und über eine bis in die Behältermitte ragendes Füllrohr 11 mit der Pumpe 7 und der Leitung 8 verbunden. Am Eintritt in den Druckgasbehälter 1 besitzt das Füllrohr 11 eine thermische Isolierung 12, die ein Einfrieren des Druckmittels verhindert. Die für die Durchführung des erfindungsgemäßen Verfahrens erforderlichen Sicherheitsvorkehrungen gehen über das bei routinemäßig durchgeführten Wasserdruckprüfungen von Behältern übliche Maß nicht hinaus.The filled pressurized gas container 1 is closed with a releasable, pressure-
Da CFCl₃ eine deutlich geringere Wärmeleitfähigkeit als der Behälterstahl besitzt, kann während des Verformungsprozesses nur eine mit der Behälterinnenoberfläche unmittelbar in Berührung kommende Randschicht erstarren. Es ist daher auch möglich, die Kühlkammer 2 durch ein mit flüssigem Stickstoff gefülltes Dewargefäß zu ersetzen, in welches der Behälter 1 eintaucht. Das erfindungsgemäße Verfahren kann selbst unter diesen extremen Bedingungen durchgeführt werden, sofern man darauf achtet, daß der Behälter 1 nicht länger als während der für die Verformung erforderlichen Zeit in den flüssigen Stickstoff eintaucht.Since CFCl₃ has a significantly lower thermal conductivity than the container steel, only an edge layer that comes into direct contact with the inner surface of the container can solidify during the deformation process. It is therefore also possible to replace the
Claims (2)
dadurch gekennzeichnet,
daß als Druckmittel Trichlorfluormethan (CFCl₃) verwendet wird.1. A process for producing a pressurized gas container (1) from austenitic steels by cryoforming, in which the pressurized gas container is cooled below the respective martensite transformation temperature (Md; Ms) by a cryogenic coolant and expanded to the desired size by introducing a pressure medium into the interior of the container,
characterized,
that trichlorofluoromethane (CFCl₃) is used as pressure medium.
dadurch gekennzeichnet,
daß die Abkühlung durch Stickstoff erfolgt.2. The method according to claim 1,
characterized,
that the cooling is done by nitrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88109402T ATE68527T1 (en) | 1987-08-13 | 1988-06-14 | PROCESS FOR THE MANUFACTURE OF A COMPRESSED GAS TANK FROM AUSTENITIC STEELS BY CRYEOFORMING. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873726960 DE3726960A1 (en) | 1987-08-13 | 1987-08-13 | METHOD FOR PRODUCING A COMPRESSED GAS CONTAINER FROM AUSTENITIC STEELS BY CRYFORMING |
DE3726960 | 1987-08-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0303016A1 true EP0303016A1 (en) | 1989-02-15 |
EP0303016B1 EP0303016B1 (en) | 1991-10-16 |
Family
ID=6333652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88109402A Expired - Lifetime EP0303016B1 (en) | 1987-08-13 | 1988-06-14 | Method of making a gas pressure vessel of austenitic stainless steel by cryogenic forming |
Country Status (5)
Country | Link |
---|---|
US (1) | US4846900A (en) |
EP (1) | EP0303016B1 (en) |
JP (1) | JPS6465230A (en) |
AT (1) | ATE68527T1 (en) |
DE (1) | DE3726960A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0840054A2 (en) * | 1996-11-04 | 1998-05-06 | Messer Griesheim Gmbh | Composite container for gases |
WO2012175499A3 (en) * | 2011-06-22 | 2013-02-21 | Mt Aerospace Ag | Pressure vessel for receiving and storing cryogenic fluids, in particular cryogenic liquids, methods for producing said pressure vessel, and use of said pressure vessel |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63143208A (en) * | 1986-12-06 | 1988-06-15 | Nippon Piston Ring Co Ltd | Production of iron sintered parts |
JP2009012886A (en) * | 2007-07-02 | 2009-01-22 | Ricoh Co Ltd | Sheet stacking device and automatic document carrying device |
DE102011105426B4 (en) | 2011-06-22 | 2013-03-28 | Mt Aerospace Ag | Pressure vessel for receiving and storing cryogenic fluids, in particular cryogenic fluids, and method for its production and its use |
DE102017204240A1 (en) * | 2017-03-14 | 2018-09-20 | Robert Bosch Gmbh | Fuel tank for a fuel cell system and method of manufacturing a fuel tank |
CN109500195B (en) * | 2018-11-19 | 2019-11-29 | 大连理工大学 | A kind of special tubes and pipes of aluminium alloy part ultralow temperature pressure medium manufacturing process |
CN113106207B (en) * | 2021-04-20 | 2022-09-02 | 吉安锐迈管道配件有限公司 | Quenching cooling device and process for ultralow-temperature 9Ni steel heat treatment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB964929A (en) * | 1962-06-21 | 1964-07-29 | Bristol Aerojet Ltd | Improvements relating to the treatments of metals |
US3255051A (en) * | 1962-07-25 | 1966-06-07 | Aerojet General Co | Method for strengthening iron base alloys |
DE1452533A1 (en) * | 1962-03-28 | 1969-02-20 | Arde Portland Inc | Process for the production of pressure vessels with high tensile strength and device for carrying out the process |
DE2654702C3 (en) * | 1975-12-03 | 1980-04-24 | Union Carbide Corp., New York, N.Y. (V.St.A.) | Method for improving the strength and toughness properties of an austenitic steel alloy |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1333779A (en) * | 1962-05-11 | 1963-08-02 | Improvement in the forming processes of metal expansion bellows | |
DE3608563A1 (en) * | 1986-03-14 | 1987-09-17 | Messer Griesheim Gmbh | METHOD FOR REDUCING THE HEAT CONDUCTIVITY OF WORKPIECES MADE OF AUSTENITIC STEEL |
DE3614290A1 (en) * | 1986-04-26 | 1987-10-29 | Messer Griesheim Gmbh | COMPRESSED GAS TANKS FROM AN AUSTENITIC STEEL ALLOY |
-
1987
- 1987-08-13 DE DE19873726960 patent/DE3726960A1/en not_active Withdrawn
-
1988
- 1988-06-14 EP EP88109402A patent/EP0303016B1/en not_active Expired - Lifetime
- 1988-06-14 AT AT88109402T patent/ATE68527T1/en not_active IP Right Cessation
- 1988-08-08 US US07/229,836 patent/US4846900A/en not_active Expired - Fee Related
- 1988-08-09 JP JP63197309A patent/JPS6465230A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1452533A1 (en) * | 1962-03-28 | 1969-02-20 | Arde Portland Inc | Process for the production of pressure vessels with high tensile strength and device for carrying out the process |
GB964929A (en) * | 1962-06-21 | 1964-07-29 | Bristol Aerojet Ltd | Improvements relating to the treatments of metals |
US3255051A (en) * | 1962-07-25 | 1966-06-07 | Aerojet General Co | Method for strengthening iron base alloys |
DE2654702C3 (en) * | 1975-12-03 | 1980-04-24 | Union Carbide Corp., New York, N.Y. (V.St.A.) | Method for improving the strength and toughness properties of an austenitic steel alloy |
Non-Patent Citations (1)
Title |
---|
INDUSTRIE-ANZEIGER * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0840054A2 (en) * | 1996-11-04 | 1998-05-06 | Messer Griesheim Gmbh | Composite container for gases |
EP0840054A3 (en) * | 1996-11-04 | 1998-11-04 | Messer Griesheim Gmbh | Composite container for gases |
WO2012175499A3 (en) * | 2011-06-22 | 2013-02-21 | Mt Aerospace Ag | Pressure vessel for receiving and storing cryogenic fluids, in particular cryogenic liquids, methods for producing said pressure vessel, and use of said pressure vessel |
Also Published As
Publication number | Publication date |
---|---|
EP0303016B1 (en) | 1991-10-16 |
US4846900A (en) | 1989-07-11 |
DE3726960A1 (en) | 1989-02-23 |
ATE68527T1 (en) | 1991-11-15 |
JPS6465230A (en) | 1989-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69425914T2 (en) | Process for rapidly changing heating and / or cooling | |
EP1680620B1 (en) | Method for filling a pressure vessel with gas | |
DE60008838T2 (en) | Cryogenic ultracold hybrid liquefier | |
DE2557870A1 (en) | METHOD AND DEVICE FOR FREEZING BIOLOGICAL SUBSTANCES | |
EP1717510B1 (en) | System and method for filling a vessel with a gas or a gas mixture | |
EP0303016B1 (en) | Method of making a gas pressure vessel of austenitic stainless steel by cryogenic forming | |
EP1695001B1 (en) | Method for filling compressed-gas containers | |
EP0243663B1 (en) | Pressurized gas cylinder made from an austenitic steel alloy | |
EP1076794B1 (en) | Method for storing low-boiling permanent gases or gas mixtures in pressurised containers | |
EP1381807B1 (en) | Pressure container | |
US3197851A (en) | Method of forming a high tensile stength pressure vessel | |
WO2008052777A1 (en) | Method for cooling superconducting magnets | |
DE69402017T2 (en) | Storage tanks for high pressure gas and plant for the storage and delivery of high pressure gas | |
EP0840054B1 (en) | Composite container for gases | |
EP3144615B1 (en) | Device and method for manufacturing dry ice | |
DE10160902A1 (en) | Highpressure cleaning by deepcooled gas has gas source and highpressure pump and iced particles admixer and cleaning and directing nozzle to spray jet effectively onto metal glass plastics or ceramics objects. | |
DE10160275B4 (en) | Cutting food with LPG | |
DE19645492C1 (en) | System and method for maintaining or increasing pressure in a cryogenic tank | |
US3274813A (en) | Generalized stretch forming | |
DE565462C (en) | Process for the liquefaction of a gas | |
DE3608563C2 (en) | ||
DE3828136A1 (en) | METHOD AND DEVICE FOR COOLING A CONTAINER FILLED WITH LIQUID | |
DE2047363A1 (en) | Evaporated liquefied gas blanket - is utilised by feeding it directly to gas bottles | |
DE547266C (en) | Process for the production of solid carbonic acid in the form of blocks | |
EP1206662B1 (en) | Diver tank and method for the production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT FR GB IT |
|
17P | Request for examination filed |
Effective date: 19890728 |
|
17Q | First examination report despatched |
Effective date: 19901220 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19911016 Ref country code: GB Effective date: 19911016 Ref country code: FR Effective date: 19911016 |
|
REF | Corresponds to: |
Ref document number: 68527 Country of ref document: AT Date of ref document: 19911115 Kind code of ref document: T |
|
EN | Fr: translation not filed | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19920614 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |