EP0293286A1 - Method and device for manufacturing articles for magnetic use - Google Patents
Method and device for manufacturing articles for magnetic use Download PDFInfo
- Publication number
- EP0293286A1 EP0293286A1 EP88401220A EP88401220A EP0293286A1 EP 0293286 A1 EP0293286 A1 EP 0293286A1 EP 88401220 A EP88401220 A EP 88401220A EP 88401220 A EP88401220 A EP 88401220A EP 0293286 A1 EP0293286 A1 EP 0293286A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phase
- magnetic field
- strip
- carried out
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 230000000977 initiatory effect Effects 0.000 claims abstract description 29
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 25
- 239000000956 alloy Substances 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000000137 annealing Methods 0.000 claims abstract description 11
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract 4
- 238000011282 treatment Methods 0.000 claims description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 238000009434 installation Methods 0.000 claims description 15
- 230000035800 maturation Effects 0.000 claims description 15
- 238000005520 cutting process Methods 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 238000001953 recrystallisation Methods 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 1
- 230000032683 aging Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000001330 spinodal decomposition reaction Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910002059 quaternary alloy Inorganic materials 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/04—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
Definitions
- the subject of the invention is a method and an installation for producing metal parts for magnetic use and also covers the products obtained by the method and used for the production of such parts.
- alloys are known having particular magnetic properties and used for the manufacture of usable parts, thanks to their magnetic properties, in the electrotechnical or electronic industry, for example for the manufacture of relays, counters, transducers, etc.
- quaternary alloys based on Iron, Aluminum, Nickel, Cobalt are commonly used which have advantageous magnetic properties but which are advantageously replaced, in certain cases, by ternary alloys based on Iron, Cobalt, Chromium .
- Such alloys in fact have the advantage of being able to be shaped by cutting or stamping the alloy which is in the form of elongated products such as continuous strips or wires, sheets or bars.
- the magnetic properties of the alloys can be adjusted as required by playing on the one hand on the composition of the alloy and on the other hand on the heat treatments to which it is subjected.
- the Fe, Co, Cr alloys comprising 26 to 32% of chromium and 9 to 25% of cobalt have the advantage of developing magnetic properties close to the quaternary alloys Fe, Al, Ni, Co and which can also be cut. and shaped, for example by stamping or forging. This is why we can call them formable magnets.
- the heat treatments capable of developing the desired properties are quite complicated and include various heating, temperature maintenance or cooling operations with determined rates of temperature variation.
- various heating, temperature maintenance or cooling operations with determined rates of temperature variation.
- the subject of the invention is a new method of carrying out annealing under a magnetic field, making it possible in particular to avoid the use of an electromagnet because the magnetic field used is much weaker than in the methods known before.
- the annealing operation is divided into at least two successive phases, respectively a first initiation phase, in the presence of a magnetic field, carried out on the elongated product before cutting the parts and a second phase of maturation carried out on the separate parts obtained from the product having undergone the first phase.
- the first initiation phase is carried out continuously by passing the strip or wire inside.
- a tubular furnace provided with means for producing a magnetic field preferably made up of a solenoid supplied with electric current and incorporated in the tubular furnace.
- the strip is put under tension during the first initiation phase in the presence of a magnetic field.
- the magnetic field applied during the first initiation phase can be less than 80,000 A / m (1000 Oe).
- the invention also covers the installation for carrying out the method comprising a tubular furnace associated with means for producing a magnetic field and means for controlling the movement of the strip of alloy inside the furnace.
- the installation comprises two separate ovens, respectively a tubular furnace for carrying out the first phase of initiation on the continuously moving strip and a furnace for carrying out of the second maturation phase on the cut pieces, the cutting and possibly forming installation for the pieces being placed between the two ovens.
- the invention covers the product consisting of a continuous strip of alloy having undergone the first phase of initiation of the annealing operation and which can subsequently be cut into separate pieces, these being finally subjected to the second maturation phase.
- the invention results from a study carried out on ternary alloys, Iron, Chromium, Cobalt, produced in a vacuum furnace in which carbon deoxidation of a mixture of iron and cobalt is carried out successively, the addition of chromium and then manganese, the shading, and the falling cast.
- the ingots obtained undergo several hot transformation operations for the production of bars which, after cooling, are peeled.
- a hot rolling of the bars is then carried out in order to obtain dishes or wires which are finally subjected to water quenching and, optionally to a work hardening operation.
- the heat treatment to which the alloy is subjected can be defined as a phase transformation leading to magnetic hardening by spinodal decomposition of the ⁇ phase into two phases ⁇ 1 rich in cobalt and highly magnetic and ⁇ 2, rich in chromium and little or not magnetic.
- the spinodal decomposition treatment is preferably preceded by a short-term recrystallization treatment carried out at around 900-950 ° C.
- the alloy is then subjected to an annealing operation at around 600-650 ° C. which allows the spinodal decomposition to be carried out.
- this treatment can be carried out in two phases separated from each other, respectively an initiation phase during which it is advantageous to apply to the alloy a magnetic field and a maturation phase which, on the other hand, does not require the application of the magnetic field.
- the initiation phase makes it possible to conduct a localized demixing leading to a periodic variation of the composition whose period is precisely regulated to have precipitates from the ⁇ 1 phase in the ⁇ 2 phase, the maturation phase making it possible to cause a concentration difference between the phases as high as possible.
- This maturation treatment requires a fairly long temperature maintenance time, of the order of 10 to 20 hours, at a temperature lower than the initiation treatment temperature, while the first initiation phase can be carried out more quickly.
- an installation for implementing the method will therefore comprise at least two separate heating chambers, respectively a first oven 1 for carrying out the first initiation phase and a second oven 2 for carrying out the maturation phase.
- the alloy is in the form of a strip 3 which is unwound from a coil 31 to be wound on the drum 32.
- the strip 3 thus travels in a longitudinal direction inside the furnace 1 of tubular shape . This is preferably preceded by an oven 11 inside which the recrystallization treatment is carried out at around 950 ° C.
- a cutting device 4 which makes it possible to obtain, from the strip 3, separate pieces 33 having the desired shape and which, optionally after cooling, are directed to the oven 2 to undergo the treatment there. of maturation.
- the tubular furnace 11 delimits an elongated internal space 12 in which the strip 3 is passed.
- the furnace 1 is provided with means for producing a magnetic field, for example a solenoid 13 connected to a current source. electric 14 and which is incorporated into the wall of the furnace 1 so as to completely surround the central space 12 inside which the magnetic field is thus produced by current flow.
- the magnetic field is applied to a product of very great length compared to its thickness and consequently having a weak demagnetizing field, it is not necessary to produce in the oven 1 a very high magnetizing field to develop the desired magnetic properties.
- the necessary magnetizing field which depends on the desired result and on the composition of the alloy, could even be less than 80,000 A / m (1000 Oe), whereas until now it was necessary to use a field of at least 16,000 A / m (2000 Oe for small parts. This avoids the use of an always expensive electromagnet.
- the strip 3 passes in the cutting device 4, the cutting operation does not modify the developed magnetic structure.
- FIG. 2 is a diagram indicating the treatment temperature as a function of time.
- the strip which is at room temperature and is unwound from the reel 31 first passes through the furnace 11 where its temperature rises to around 900 ° C, according to the OAB trace. From point B, the strip passes through the tubular furnace 1 in which its temperature drops to a temperature of the order of 630 ° C following the line BC which is therefore carried out in part in the presence of the magnetic field produced by the solenoid 13. the strip is then cooled rapidly according to the layout CD. Preferably, the parts 33 are cut cold. The pieces 33 are then directed into the furnace 2 where their temperature is maintained for the necessary time, for example from 10 to 20 hours, at a temperature decreasing regularly, preferably from 610 to 520 ° C.
- the duration of the temperature maintenance will be adjusted by acting on the scrolling speed and as a function of the relative lengths of the tubular furnace 1 and the recrystallization furnace 11, the recrystallization treatment being applied normally for 1/2 hour to 1 hour.
- the magnetic field created by the solenoid 13 inside the furnace 1 will be between 8000 and 12,000 A / m (100 to 1500 Oe). example 4800 A / m (600 Oe).
- the magnetic structure obtained after the first initiation phase is permanent and, therefore, the cutting operation and the second maturing phase of the treatment can be performed some time after the completion of the first phase. It is therefore possible to first treat the alloy strip by subjecting it to the first initiation phase possibly preceded by a recrystallization treatment and to deliver it to the user who will cut the parts and submit them to a second maturation phase, this for vant to be carried out in a fairly simple way since it is applied to parts of small sizes and without magnetic field.
- An ingot of composition by weight Co 10.2%, Cr 28%, Mn 0.5%, Fe remains, and the usual impurities due to the manufacturing processes are prepared by conventional methods of production and casting under vacuum.
- the ingot is then hot rolled around 1200 - 1250 ° C and rapidly cooled.
- a strip 0.75 mm thick is produced with the hot-rolled product by cold rolling.
- the cold-rolled strip is then treated on passing through the system of ovens shown in FIG. 1, so that in the first oven 11 the temperature of the strip reaches 950 ° C. for approximately 30 minutes.
- the distance between the furnace 11 and the furnace 1 as well as the thermal insulation are such that from approximately 700 ° C. the strip cools to approximately 100 ° C./h and enters the furnace 1 in which a magnetic field is applied to at least 650 ° C.
- the temperature of oven 1 is adjusted to 630 ° C and the axial magnetic field is 800 Oe (48000 Am ⁇ 1) the running time in oven 1 is at least 30 min.
- the strip is rapidly cooled and wound up.
- the magnetic properties obtained are as follows and illustrate the advantage of the process.
- Example No. 1 The same strip is used as in Example No. 1 but before proceeding to the process at the parade in the ovens 11 and 1, this strip is subjected to a treatment at 950 ° C. for one hour under hydrogen and rapidly cooled at the end. of treatment.
- This pretreated strip is then treated in the process in the ovens shown in Figure 1. During this process in the process the strip is subjected to uniaxial traction in the direction of the length of about 10 kg mm ⁇ 2.
- the temperature of the oven 11 is 700 ° C. and the strip enters the oven 1 at 650 ° C.
- the temperature of oven 1 is set at 630 ° C and the axial magnetic field is 800 Oe.
- the running time in the oven 1 is 40 min. At the outlet of the furnace 1 the strip is rapidly cooled and wound up.
- Pieces are cut from the strip thus treated under magnetic field and under tension. These parts then undergo the maturation treatment in a conventional oven where the temperature gradually drops from 620 ° C to 500 ° C in 20 hours. A complementary treatment at 500 ° C for 24 hours is beneficial.
- the properties obtained are as follows:
- the strip is then subjected to a 1/2 hour treatment at 1050 ° C. under hydrogen. This treatment ends with rapid cooling.
- the strip is then sheared to the width necessary for the application and cut into sections of 1.5 meters. These sections are then assembled into bundles of small diameter and placed in the furnace 1.
- the temperature of oven 1 is brought quickly to 700 ° C and then allowed to cool to 620 ° C at a speed of about 100 ° C / h. From 650 ° C the magnetic field of 800 Oe is applied. The duration of maintenance at 620 ° C is one hour. At the end of this treatment at 620 ° C. the bundles of strips are rapidly cooled.
- the pieces for measurement and use are cut from the strips and then treated in an oven whose temperature drops from 620 ° C to 520 ° C in 20 hours. A further 24 hour treatment at 500 ° C further improves the magnetic properties.
- the invention is not limited to the details of the embodiment which has just been described and which could be subject to variants without departing from the protective framework defined by the claims.
- the processing temperatures have been indicated for an alloy comprising substantially 10% of cobalt but could be modified according to the desired properties and the composition of the alloy.
- it would be possible to carry out more complex heat treatments including in particular different temperature stages possibly separated by more or less rapid cooling phases.
- the ovens can be placed one after the other, separating them by heat-insulated zones to achieve the various desired temperatures.
- the invention also covers the use of any elongated product, such as a continuous wire or sheets or bars, the product being able, in section transverse, be adapted to the shape of the parts. Similarly, after their cutting, they can undergo various shaping operations, for example by forging.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
- Paints Or Removers (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Magnetic Ceramics (AREA)
Abstract
Description
L'invention a pour objet un procédé et une installation de réalisation de pièces métalliques à usage magnétique et couvre également les produits obtenus par le procédé et servant à la réalisation de telles pièces.The subject of the invention is a method and an installation for producing metal parts for magnetic use and also covers the products obtained by the method and used for the production of such parts.
On connaît différents alliages ayant des propriétés magnétiques particulières et servant à la fabrication de pièces utilisables, grâce à leurs propriétés magnétiques, dans l'industrie électrotechnique ou électronique, par exemple pour la fabrication de relais, compteurs, transduteurs, etc... .Various alloys are known having particular magnetic properties and used for the manufacture of usable parts, thanks to their magnetic properties, in the electrotechnical or electronic industry, for example for the manufacture of relays, counters, transducers, etc.
En particulier, on utilise couramment des alliages quaternaires, à base de Fer, Aluminium, Nickel, Cobalt qui ont des propriétés magnétiques intéressantes mais que l'on remplace avantageusement, dans certains cas, par des alliages ternaires à base de Fer, Cobalt, Chrome. De tels alliages présentant en effet l'avantage de pouvoir être mis en forme par découpe ou estampage de l'alliage se présentant sous forme de produits allongés tels que des bandes ou des fils continus, des feuilles ou des barres.In particular, quaternary alloys based on Iron, Aluminum, Nickel, Cobalt are commonly used which have advantageous magnetic properties but which are advantageously replaced, in certain cases, by ternary alloys based on Iron, Cobalt, Chromium . Such alloys in fact have the advantage of being able to be shaped by cutting or stamping the alloy which is in the form of elongated products such as continuous strips or wires, sheets or bars.
Les propriétés magnétiques des alliages peuvent être réglées en fonction des besoins en jouant d'une part sur la composition de l'alliage et d'autre part sur les traitements thermiques auxquels il est soumis. En particulier, les alliages Fe, Co, Cr comprenant 26 à 32% de chrome et 9 à 25% de cobalt ont l'avantage de développer des propriétés magnétiques voisines des alliages quaternaires Fe, Al, Ni, Co et pouvant en outre être découpés et mis en forme, par exemple par estampage ou forgeage. C'est pourquoi on peut les appeler des aimants formables.The magnetic properties of the alloys can be adjusted as required by playing on the one hand on the composition of the alloy and on the other hand on the heat treatments to which it is subjected. In particular, the Fe, Co, Cr alloys comprising 26 to 32% of chromium and 9 to 25% of cobalt have the advantage of developing magnetic properties close to the quaternary alloys Fe, Al, Ni, Co and which can also be cut. and shaped, for example by stamping or forging. This is why we can call them formable magnets.
Les traitements thermiques susceptibles de développer les propriétés désirées sont assez compliqués et comportent différentes opérations de chauffage, de maintien en température ou de refroidissement avec des vitesses déterminées de variation de température. Cependant, depuis un certain temps, on a constaté qu'il était intéressant de sou mettre l'alliage magnétique à une opération de recuit réalisée par exemple vers 650°C et en présence d'un champ magnétique élevé, supérieur 160,000 A/m) (2000 Oe).The heat treatments capable of developing the desired properties are quite complicated and include various heating, temperature maintenance or cooling operations with determined rates of temperature variation. However, for some time it has been found to be interesting to penny put the magnetic alloy in an annealing operation carried out for example around 650 ° C. and in the presence of a high magnetic field, greater than 160,000 A / m) (2000 Oe).
Cette opération de recuit en présence d'un champ magnétique donne des résultats très intéressants mais présente l'inconvénient de nécessiter l'utilisation d'un électro-aimant ou tout appareil similaire pour la production d'un champ magnétique aussi intense. De ce fait, l'installation est assez coûteuse et difficile d'utilisation.This annealing operation in the presence of a magnetic field gives very interesting results but has the drawback of requiring the use of an electromagnet or any similar device for the production of such a strong magnetic field. Therefore, the installation is quite expensive and difficult to use.
L'invention a pour objet une nouvelle méthode de réalisation du recuit sous champ magnétique permettant notamment d'éviter l'emploi d'un électro-aimant du fait que le champ magnétique utilisé est beaucoup plus faible que dans les méthodes connues auparavant.The subject of the invention is a new method of carrying out annealing under a magnetic field, making it possible in particular to avoid the use of an electromagnet because the magnetic field used is much weaker than in the methods known before.
Conformément à l'invention, l'opération de recuit est divisée en au moins deux phases successives, respectivement une première phase d'initiation, en présence d'un champ magnétique, réalisée sur le produit allongé avant découpage des pièces et une seconde phase de maturation réalisée sur les pièces séparées obtenues à partir du produit ayant subi la première phase.According to the invention, the annealing operation is divided into at least two successive phases, respectively a first initiation phase, in the presence of a magnetic field, carried out on the elongated product before cutting the parts and a second phase of maturation carried out on the separate parts obtained from the product having undergone the first phase.
Dans le cas où le produit allongé est une bande ou un fil continu susceptible d'être déroulé à partir d'une bobine, la première phase d'initiation est réalisée en continu par défilement de la bande ou du fil à l'intérieur d'un four tubulaire muni de moyens de production d'un champ magnétique constitué, de préférence, par un solénoïde alimenté en courant électrique et incorporé au four tubulaire.In the case where the elongated product is a strip or a continuous wire capable of being unwound from a reel, the first initiation phase is carried out continuously by passing the strip or wire inside. a tubular furnace provided with means for producing a magnetic field preferably made up of a solenoid supplied with electric current and incorporated in the tubular furnace.
Dans un autre mode de réalisation de l'invention, applicable aussi bien à des bandes ou fils continus qu'à des produits sous forme de feuilles ou de barres, on fait stationner dans un four tubulaire muni de moyens de production d'un champ magnétique au moins une partie du produit de longueur correspondant à celle du four, pendant le temps nécessaire à la réalisation de la première phase du traitement.In another embodiment of the invention, applicable both to continuous strips or wires and to products in the form of sheets or bars, it is parked in a tubular oven provided with means for producing a magnetic field at least a part of the product of length corresponding to that of the oven, during the time necessary for carrying out the first phase of the treatment.
Selon une autre caractéristique intéressante, la bande est mise sous traction pendant la première phase d'initiation en présence d'un champ magnétique.According to another advantageous characteristic, the strip is put under tension during the first initiation phase in the presence of a magnetic field.
De façon particulièrement avantageuse, le champ magnétique appliqué pendant la première phase d'initiation peut être inférieur à 80.000 A/m (1000 Oe).Particularly advantageously, the magnetic field applied during the first initiation phase can be less than 80,000 A / m (1000 Oe).
L'invention couvre également l'installation pour la réalisation du procédé comprenant un four tubulaire associé à des moyens de production d'un champ magnétique et des moyens de commande du défilement de la bande d'alliage à l'intérieur du four.The invention also covers the installation for carrying out the method comprising a tubular furnace associated with means for producing a magnetic field and means for controlling the movement of the strip of alloy inside the furnace.
Lorsque l'ensemble du traitement et de la préparation des pièces est réalisé au même endroit, l'installation comporte deux fours séparés, respectivement un four tubulaire de réalisation de la première phase d'initiation sur la bande défilant en continu et un four de réalisation de la seconde phase de maturation sur les pièces découpées, l'installation de découpe et éventuellement de formage des pièces étant placées entre les deux fours.When all the treatment and preparation of the parts is carried out at the same place, the installation comprises two separate ovens, respectively a tubular furnace for carrying out the first phase of initiation on the continuously moving strip and a furnace for carrying out of the second maturation phase on the cut pieces, the cutting and possibly forming installation for the pieces being placed between the two ovens.
Mais il est possible également de séparer les deux phases du traitement de recuit et l'invention couvre le produit constitué d'une bande continue d'alliage ayant subi la première phase d'initiation de l'opération de recuit et pouvant par la suite être découpée en pièces séparées, celles-ci étant enfin soumises à la deuxième phase de maturation.However, it is also possible to separate the two phases of the annealing treatment and the invention covers the product consisting of a continuous strip of alloy having undergone the first phase of initiation of the annealing operation and which can subsequently be cut into separate pieces, these being finally subjected to the second maturation phase.
L'invention sera mieux comprise par la description détaillée d'un mode de réalisation de pièces magnétiques par le procédé de l'invention, en se référant aux dessins annexés.
- La Figure 1 représente très schématiquement et à titre d'exemple une installation pour la mise en oeuvre du procédé selon l'invention.
- La Figure 2 est un diagramme des températures du traitement thermique.
- Figure 1 shows very schematically and by way of example an installation for implementing the method according to the invention.
- Figure 2 is a diagram of the temperatures of the heat treatment.
L'invention résulte d'une étude réalisée sur des alliages ternaires, Fer, Chrome, Cobalt, élaborés dans un four sous vide dans lequel on réalise successivement une désoxydation au carbone d'un mélange de fer et de cobalt, l'addition de chrome puis du manganèse, la mise à la nuance, et la coulée en chute. Les lingots obtenus subissent plusieurs opérations de transformation à chaud pour la réalisation de barres qui, après refroidissement, sont écroutées. On réalise alors un laminage à chaud des barres pour l'obtention de plats ou de fils qui sont enfin soumis à une trempe à l'eau et, éventuellement à une opération d'écrouissage.The invention results from a study carried out on ternary alloys, Iron, Chromium, Cobalt, produced in a vacuum furnace in which carbon deoxidation of a mixture of iron and cobalt is carried out successively, the addition of chromium and then manganese, the shading, and the falling cast. The ingots obtained undergo several hot transformation operations for the production of bars which, after cooling, are peeled. A hot rolling of the bars is then carried out in order to obtain dishes or wires which are finally subjected to water quenching and, optionally to a work hardening operation.
Le traitement thermique auquel est soumis l'alliage peut se définir comme une transformation de phase conduisant au durcissement magnétique par décomposition spinodale de la phase α en deux phases α₁ riche en cobalt et fortement magnétique et α₂, riche en chrome et peu ou pas magnétique.The heat treatment to which the alloy is subjected can be defined as a phase transformation leading to magnetic hardening by spinodal decomposition of the α phase into two phases α₁ rich in cobalt and highly magnetic and α₂, rich in chromium and little or not magnetic.
Pour obtenir le maximum de phase α, le traitement de décomposition spinodale est précédé, de préférence, d'un traitement de recristallisation de courte durée effectué vers 900-950°C. L'alliage est ensuite soumis à une opération de recuit aux alentours de 600-650°C qui permet de réaliser la décomposition spinodale. Or on a observé que ce traitement pouvant être effectué en deux phases séparées l'une de l'autre, respectivement une phase d'initiation pendant laquelle il est avantageux d'appliquer sur l'alliage un champ magnétique et une phase de maturation qui, en revanche, ne nécessite pas l'application du champ magnétique. On peut penser que la phase d'initiation permet de conduire une démixion localisée conduisant à une variation périodique de la composition dont la période est réglée avec précision pour avoir des précipités de la phase α₁ dans la phase α₂, la phase de maturation permettant de provoquer un écart de concentration entre les phases aussi élevé que possible.To obtain the maximum α phase, the spinodal decomposition treatment is preferably preceded by a short-term recrystallization treatment carried out at around 900-950 ° C. The alloy is then subjected to an annealing operation at around 600-650 ° C. which allows the spinodal decomposition to be carried out. However, it has been observed that this treatment can be carried out in two phases separated from each other, respectively an initiation phase during which it is advantageous to apply to the alloy a magnetic field and a maturation phase which, on the other hand, does not require the application of the magnetic field. We can think that the initiation phase makes it possible to conduct a localized demixing leading to a periodic variation of the composition whose period is precisely regulated to have precipitates from the α₁ phase in the α₂ phase, the maturation phase making it possible to cause a concentration difference between the phases as high as possible.
Ce traitement de maturation nécessite un temps de maintien en température assez long, de l'ordre de 10 à 20 heures, à une température inférieure à la température du traitement d'initiation, alors que la première phase d'initiation peut être réalisée plus rapidement.This maturation treatment requires a fairly long temperature maintenance time, of the order of 10 to 20 hours, at a temperature lower than the initiation treatment temperature, while the first initiation phase can be carried out more quickly.
En outre, on a constaté que les opérations de découpe et de formage des pièces pouvaient être réalisées après la première phase d'initiation.In addition, it was found that the cutting and forming operations of the parts could be carried out after the first initiation phase.
Il est donc possible, selon la caractéristique essentielle du procédé, de soumettre l'alliage à la première phase d'initiation lorsqu'il est sous la forme d'une bande continue, puis de découper les pièces et enfin de soumettre celles-ci à la deuxième phase de maturation.It is therefore possible, according to the essential characteristic of the process, to subject the alloy to the first initiation phase when it is in the form of a continuous strip, then to cut the parts and finally to subject them to the second maturation phase.
Comme on l'a représenté schématiquement sur la Figure 1, une installation pour la mise en oeuvre du procédé comprendra donc au moins deux enceintes de chauffage séparées, respectivement un premier four 1 pour la réalisation de la première phase d'initiation et un second four 2 pour la réalisation de la phase de maturation. L'alliage se présente sous forme d'une bande 3 qui est déroulée à partir d'une bobine 31 pour s'enrouler sur le tambour 32. La bande 3 défile ainsi suivant une direction longitudinale à l'intérieur du four 1 de forme tubulaire. Celui-ci est, de préférence, précédé d'un four 11 à l'intérieur duquel est réalisé le traitement de recristallisation à 950°C environ.As shown diagrammatically in FIG. 1, an installation for implementing the method will therefore comprise at least two separate heating chambers, respectively a first oven 1 for carrying out the first initiation phase and a second oven 2 for carrying out the maturation phase. The alloy is in the form of a strip 3 which is unwound from a
A la sortie du four 1 est placé un dispositif de découpe 4 qui permet d'obtenir à partir de la bande 3 des pièces séparées 33 ayant la forme voulue et qui, éventuellement après refroidissement, sont dirigées vers le four 2 pour y subir le traitement de maturation.At the outlet of the oven 1 is placed a cutting device 4 which makes it possible to obtain, from the strip 3, separate pieces 33 having the desired shape and which, optionally after cooling, are directed to the oven 2 to undergo the treatment there. of maturation.
Le four tubulaire 11 délimite un espace interne allongé 12 dans lequel on fait passer la bande 3. D'autre part, le four 1 est muni de moyens de production d'un champ magnétique, par exemple un solénoïde 13 relié à une source de courant électrique 14 et qui est incorporé à la paroi du four 1 de façon à entourer complètement l'espace central 12 à l'intérieur duquel est ainsi produit le champ magnétique par passage du courant.The
Selon un avantage essentiel de l'invention, du fait que le champ magnétique est appliqué sur un produit de longueur très grande par rapport à son épaisseur et ayant par conséquent un champ démagnétisant faible, il n'est pas nécessaire de produire dans le four 1 un champ magnétisant très élevé pour développer les propriétés magnétiques recherchées. En pratique, on a constaté que le champ magnétisant nécessaire qui dépend du résultat recherché et de la composition de l'alliage, pouvait même être inférieur à 80.000 A/m (1000 Oe), alors que, jusqu'à présent, il était nécessaire d'utiliser un champ d'au moins 16.000 A/m (2000 Oe pour des pièces de petites dimensions. On évite donc l'utilisation d'un électro-aimant toujours coûteux. A la sortie du four tubulaire 1, la bande 3 passe dans le dispositif de découpe 4, l'opération de découpe ne modifiant pas la structure magnétique développée.According to an essential advantage of the invention, since the magnetic field is applied to a product of very great length compared to its thickness and consequently having a weak demagnetizing field, it is not necessary to produce in the oven 1 a very high magnetizing field to develop the desired magnetic properties. In practice, it has been found that the necessary magnetizing field which depends on the desired result and on the composition of the alloy, could even be less than 80,000 A / m (1000 Oe), whereas until now it was necessary to use a field of at least 16,000 A / m (2000 Oe for small parts. This avoids the use of an always expensive electromagnet. At the exit of the tubular furnace 1, the strip 3 passes in the cutting device 4, the cutting operation does not modify the developed magnetic structure.
Un cycle de température a été représenté à titre d'exemple sur la Figure 2 qui est un diagramme indiquant la température de traitement en fonction du temps.A temperature cycle has been shown by way of example in FIG. 2 which is a diagram indicating the treatment temperature as a function of time.
La bande qui est à la température ambiante et se déroule à partir de la bobine 31 passe d'abord dans le four 11 où sa température monte jusqu'à environ 900°C, selon le tracé OAB. A partir du point B, la bande passe dans le four tubulaire 1 dans lequel sa température descend jusqu'à une température de l'ordre de 630°C en suivant le tracé BC qui est donc effectué en partie en présence du champ magnétique produit par le solénoïde 13. la bande est alors refroidie rapidement selon le tracé CD.De préférence, la découpe des pièces 33 s'effectue à froid. Les pièces 33 sont alors dirigées dans le four 2 où leur température est maintenue pendant le temps nécessaire, par exemple de 10 à 20 heures, à une température décroissant régulièrement de préférence de 610 à 520°CThe strip which is at room temperature and is unwound from the
Etant donné que, de préférence, la bande est sou mise au défilé, tout d'abord au traitement de recristallisation puis à la phase d'initiation, la durée du maintien en température sera réglée en agissant sur la vitesse de défilement et en fonction des longueurs relatives du four tubulaire 1 et du four de recristallisation 11, le traitement de recristallisation étant appliqué normalement pendant 1/2 heure à 1 heure.Since, preferably, the strip is sou put in the parade, firstly to the recrystallization treatment then to the initiation phase, the duration of the temperature maintenance will be adjusted by acting on the scrolling speed and as a function of the relative lengths of the tubular furnace 1 and the
Toutefois, au lieu de réaliser le traitement en continu dans le four tubulaire,on pourraît aussi faire avancer la bande à intervalles réguliers en faisant stationner dans le four une partie de la bande de longueur correspondante pendant le temps nécessaire. On pourraît d'ailleurs procéder de la même façon sur un produit allongé en forme de feuilles ou de barres séparées mais présentant une assez grande longueur par rapport à leurs dimensions transversales pour que le traitement magnétique puisse être effectué sous un champ relativement faible. Les feuilles ou barres se succéderaient alors dans le four en y stationnant le temps nécessaire à la première phase du traitement, les pièces étant ensuite découpées pour subir la seconde phase.However, instead of carrying out the treatment continuously in the tubular furnace, it is also possible to advance the strip at regular intervals by making part of the strip of corresponding length park in the furnace for the necessary time. We could also proceed in the same way on an elongated product in the form of sheets or separate bars but having a fairly large length relative to their transverse dimensions so that the magnetic treatment can be carried out under a relatively weak field. The sheets or bars would then follow one another in the oven, stationing there the time necessary for the first phase of the treatment, the pieces then being cut to undergo the second phase.
Selon les propriétés que l'on désire développer et la composition de l'alliage, le champ magnétique créé par le solénoïde 13 à l'intérieur du four 1 sera compris entre 8000 et 12.000 A/m (100 à 1500 Oe)., par exemple 4800 A/m (600 Oe).Depending on the properties that one wishes to develop and the composition of the alloy, the magnetic field created by the solenoid 13 inside the furnace 1 will be between 8000 and 12,000 A / m (100 to 1500 Oe). example 4800 A / m (600 Oe).
La structure magnétique obtenue après la première phase d'initiation est permanente et, par conséquent, l'opération de découpe et la deuxième phase de maturation du traitement peuvent être effectuées un certain temps après la réalisation de la première phase. Il est donc possible de traiter d'abord la bande d'alliage en lui faisant subir la première phase d'initiation éventuellement précédée d'un traitement de recristallisation et de la livrer chez l'utilisateur qui réalisera la découpe des pièces et les soumettra à une deuxième phase de maturation, celle-ci pou vant être effectuée de façon assez simple puisqu'elle est appliquée sur des pièces de petites tailles et sans champ magnétique.The magnetic structure obtained after the first initiation phase is permanent and, therefore, the cutting operation and the second maturing phase of the treatment can be performed some time after the completion of the first phase. It is therefore possible to first treat the alloy strip by subjecting it to the first initiation phase possibly preceded by a recrystallization treatment and to deliver it to the user who will cut the parts and submit them to a second maturation phase, this for vant to be carried out in a fairly simple way since it is applied to parts of small sizes and without magnetic field.
A titre de simple exemple, l'invention a été mise en oeuvre de la façon suivante:As a simple example, the invention has been implemented as follows:
On prépare par les méthodes conventionnelles d'élaboration et coulée sous vide un lingot de composition en poids Co 10,2%, Cr 28%, Mn 0,5%, Fe reste, et les impuretés habituelles dues aux procédés de fabrication. Le lingot est ensuite laminé à chaud vers 1200 - 1250°C et refroidit rapidement. On réalise avec le produit laminé à chaud une bande de 0,75 mm d'épaisseur par laminage à froid.An ingot of composition by weight Co 10.2%, Cr 28%, Mn 0.5%, Fe remains, and the usual impurities due to the manufacturing processes are prepared by conventional methods of production and casting under vacuum. The ingot is then hot rolled around 1200 - 1250 ° C and rapidly cooled. A strip 0.75 mm thick is produced with the hot-rolled product by cold rolling.
La bande laminée à froid est ensuite traitée au défilé dans le système des fours représentés figure 1, de telle sorte que dans le premier four 11 la température de la bande atteigne 950°C pendant environ 30 mn. La distance entre le four 11 et le four 1 ainsi que le calorifugeage sont tels que à partir d'environ 700°C la bande se refroidit à environ 100°C/h et entre dans le four 1 dans lequel on applique un champ magnétique à au moins 650°C. La température du four 1 est réglée à 630°C et le champ magnétique axial est de 800 Oe (48000 Am⁻¹) la durée de défilement dans le four 1 est d'au moins 30 mn. A la sortie du four 1 la bande est refroidie rapidement et enroulée.The cold-rolled strip is then treated on passing through the system of ovens shown in FIG. 1, so that in the
Sur la bande précédemment traitée, on découpe des pièces pour réaliser les mesures et pour l'utilisation: par exemple des disques percés utilisés dans les compteurs des automobiles. Ces pièces sont ensuite traitées dans un four ordinaire dont la température descend progressivement de 620°C à 520°C en 20 heures, par exemple le four 2.On the previously treated strip, parts are cut to make the measurements and for use: for example drilled discs used in automobile counters. These parts are then treated in an ordinary oven, the temperature of which gradually drops from 620 ° C to 520 ° C in 20 hours, for example oven 2.
Les propriétés magnétiques obtenues sont les suivantes et illustrent l'intérêt du procédé.
On utilise la même bande que dans l'exemple N° 1 mais avant de procéder au traitement au défilé dans les fours 11 et 1, cette bande est soumise à un traitement à 950°C pendant une heure sous hydrogène et refroidie rapidement à la fin du traitement.The same strip is used as in Example No. 1 but before proceeding to the process at the parade in the
Cette bande prétraitée, est ensuite traitée au défilé dans les fours représentés figure 1. Au cours de ce traitement au défilé la bande est soumise à une traction uniaxiale dans le sens de la longueur de 10 kg mm⁻² environ.This pretreated strip is then treated in the process in the ovens shown in Figure 1. During this process in the process the strip is subjected to uniaxial traction in the direction of the length of about 10 kg mm⁻².
La température du four 11 est de 700°C et la bande entre dans le four 1 à 650°C. La température du four 1 est réglée à 630°C et le champ magnétique axial vaut 800 Oe. La durée de défilement dans le four 1 est de 40 mn. A la sortie du four 1 la bande est rapidement refroidie et enroulée.The temperature of the
Des pièces sont découpées dans la bande ainsi traitée sous champ magnétique et sous traction. Ces pièces subissent ensuite le traitement de maturation dans un four classique où la température s'abaisse progressivement de 620°C à 500°C en 20 heures. Un traitement complémentaire à 500°C de 24 heures est bénéfique. Les propriétés obtenues sont les suivantes:
Un alliage à Co = 12%, Cr= 28%, Mn= 0,5% en poids, le solde étant du fer et les impuretés habituelles, est élaboré sous vide et coulé en lingots. Les lingots sont ensuite laminés à chaud en bandes de 5 mm, puis laminés à froid en bandes de 1 mm d'épaisseur.An alloy with Co = 12%, Cr = 28%, Mn = 0.5% by weight, the balance being iron and the usual impurities, is produced under vacuum and poured into ingots. The ingots are then hot rolled into 5 mm strips, then cold rolled into 1 mm thick strips.
La bande est ensuite soumise à un traitement de 1/2 heure à 1050°C sous hydrogène. Ce traitement se termine par un refroidissement rapide.The strip is then subjected to a 1/2 hour treatment at 1050 ° C. under hydrogen. This treatment ends with rapid cooling.
La bande est ensuite cisaillée à la largeur nécessaire à l'application et coupée en tronçons de 1,5 mètres. Ces tronçons sont ensuite assemblés en fagots de petit diamètre et disposés dans le four 1.The strip is then sheared to the width necessary for the application and cut into sections of 1.5 meters. These sections are then assembled into bundles of small diameter and placed in the furnace 1.
La température du four 1 est portée rapidement vers 700°C puis on le laisse refroidir jusqu'à 620°C à une vitesse d'environ 100°C/h. A partir de 650°C on applique le champ magnétique de 800 Oe. La durée du maintien à 620°C est de une heure. A la fin de ce traitement à 620°C les fagots de bandes sont refroidis rapidement.The temperature of oven 1 is brought quickly to 700 ° C and then allowed to cool to 620 ° C at a speed of about 100 ° C / h. From 650 ° C the magnetic field of 800 Oe is applied. The duration of maintenance at 620 ° C is one hour. At the end of this treatment at 620 ° C. the bundles of strips are rapidly cooled.
Les pièces pour mesure et utilisation sont découpées dans les bandes et traitées ensuite dans un four dont la température descend de 620°C à 520°C en 20 heures. Un traitement complémentaire de 24 heures à 500°C améliore encore les propriétés magnétiques.The pieces for measurement and use are cut from the strips and then treated in an oven whose temperature drops from 620 ° C to 520 ° C in 20 hours. A further 24 hour treatment at 500 ° C further improves the magnetic properties.
Les propriétés obtenues à la suite de cet ensemble de traitement sont les suivantes:
Bien entendu, l'invention ne se limite pas aux détails du mode de réalisation qui vient d'être décrit et qui pourrait faire l'objet de variantes sans d'écarter du cadre de protection défini par les revendications. En particulier, les températures de traitement ont été indiquées pour un alliage comprenant sensiblement 10% de cobalt mais pourraient être modifiées en fonction des propriétés recherchées et de la composition de l'alliage. D'ailleurs, il serait possible de réaliser des traitements thermiques plus complexes comprenant notamment différents paliers de températures éventuellement séparés par des phases de refroidissement plus ou moins rapides. En effet même lorque le traitement est réalisé sur l'alliage sous forme de bande, on peut disposer les fours les uns à la suite des autres en les séparant par des zones calorifugées pour réaliser les différentes températures souhaîtées.Of course, the invention is not limited to the details of the embodiment which has just been described and which could be subject to variants without departing from the protective framework defined by the claims. In particular, the processing temperatures have been indicated for an alloy comprising substantially 10% of cobalt but could be modified according to the desired properties and the composition of the alloy. Moreover, it would be possible to carry out more complex heat treatments including in particular different temperature stages possibly separated by more or less rapid cooling phases. In fact, even when the treatment is carried out on the alloy in the form of a strip, the ovens can be placed one after the other, separating them by heat-insulated zones to achieve the various desired temperatures.
Bien entendu, si le terme de "bande" a été utilisé dans le texte, l'invention couvre également l'utilisation de tout produit allongé, tel qu'un fil continu ou bien des feuilles ou des barres, le produit pouvant, en section transversale, être adapté à la forme des pièces. De même, après leur découpe, celles-ci peuvent subir diverses opérations de mise en forme, par exemple par forgeage.Of course, if the term "strip" has been used in the text, the invention also covers the use of any elongated product, such as a continuous wire or sheets or bars, the product being able, in section transverse, be adapted to the shape of the parts. Similarly, after their cutting, they can undergo various shaping operations, for example by forging.
Par ailleurs, il pourraît être intéressant, en réglant les vitesses relatives de déroulement et d'enroulement de la bande ou bien au moyen d'un dispositif associé au four, d'exercer sur le produit une certaine traction de façon à combiner l'action de celle-ci avec celle de la température et du champ magnétique. Ce dernier peut d'ailleurs être créé par différents moyens connus, en utilisant un courant continu ou un courant alternatif et, en adaptant le circuit, le courant électrique pourrait d'ailleurs produire simultanément le champ magnétique et le chauffage du four.Furthermore, it could be interesting, by adjusting the relative speeds of unwinding and winding of the strip or else by means of a device associated with the oven, to exert a certain traction on the product so as to combine the action of this with that of temperature and magnetic field. The latter can also be created by various known means, using a direct current or an alternating current and, by adapting the circuit, the electric current could moreover simultaneously produce the magnetic field and the heating of the furnace.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88401220T ATE102386T1 (en) | 1987-05-25 | 1988-05-19 | METHOD AND DEVICE FOR MAKING ARTICLES FOR MAGNETIC USE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR878707343A FR2616004B1 (en) | 1987-05-25 | 1987-05-25 | METHOD AND INSTALLATION FOR PRODUCING PARTS FOR MAGNETIC USE |
FR8707343 | 1987-05-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0293286A1 true EP0293286A1 (en) | 1988-11-30 |
EP0293286B1 EP0293286B1 (en) | 1994-03-02 |
Family
ID=9351431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88401220A Expired - Lifetime EP0293286B1 (en) | 1987-05-25 | 1988-05-19 | Method and device for manufacturing articles for magnetic use |
Country Status (9)
Country | Link |
---|---|
US (1) | US4950335A (en) |
EP (1) | EP0293286B1 (en) |
JP (1) | JP2547383B2 (en) |
KR (1) | KR0134813B1 (en) |
AT (1) | ATE102386T1 (en) |
DE (1) | DE3888020T2 (en) |
ES (1) | ES2049754T3 (en) |
FR (1) | FR2616004B1 (en) |
ZA (1) | ZA883498B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2653265A1 (en) * | 1989-10-13 | 1991-04-19 | Centre Nat Rech Scient | PROCESS FOR THE PREPARATION OF MAGNETIC MATERIALS OF VERY HIGH QUALITY. |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123974A (en) * | 1987-09-16 | 1992-06-23 | Giancola Dominic J | Process for increasing the transition temperature of metallic superconductors |
WO2006098410A1 (en) * | 2005-03-17 | 2006-09-21 | Fdk Corporation | Permanent magnet magnetization device and permanent magnet magnetization method |
KR101399429B1 (en) * | 2012-11-08 | 2014-05-27 | 이상민 | Appratus for processing a strip made of soft magnetic materials |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1075890A (en) * | 1952-04-15 | 1954-10-20 | Process for hardening iron and steel alloys and articles thus obtained | |
DE1226128B (en) * | 1955-05-03 | 1966-10-06 | Walzwerk Neviges G M B H | Method and device for the heat treatment of metal sheets, in particular electrical sheets, in a magnetic field |
BE692166A (en) * | 1965-07-20 | 1967-06-16 | ||
FR2330474A1 (en) * | 1975-11-10 | 1977-06-03 | Monsanto Co | STEEL FILAMENT MANUFACTURING PROCESS |
FR2334755A1 (en) * | 1975-12-12 | 1977-07-08 | Sundwiger Eisen Maschinen | PROCESS AND INSTALLATION FOR HEATING METAL BANDS, ESPECIALLY NON-FERROUS METAL BANDS |
US4093477A (en) * | 1976-11-01 | 1978-06-06 | Hitachi Metals, Ltd. | Anisotropic permanent magnet alloy and a process for the production thereof |
DE2746785A1 (en) * | 1977-10-18 | 1979-04-19 | Western Electric Co | Magnetic chromium-cobalt-iron alloys - used for electromechanical transducers being cold shaped in air |
US4311537A (en) * | 1980-04-22 | 1982-01-19 | Bell Telephone Laboratories, Incorporated | Low-cobalt Fe-Cr-Co permanent magnet alloy processing |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5933644B2 (en) * | 1977-02-10 | 1984-08-17 | 日立金属株式会社 | Fe-Cr-Co permanent magnet and its manufacturing method |
JPS58107607A (en) * | 1981-12-21 | 1983-06-27 | Sony Corp | Heat processing method for amorphous magnetic material |
JPS59159929A (en) * | 1983-02-28 | 1984-09-10 | Nippon Gakki Seizo Kk | Production of magnet material |
-
1987
- 1987-05-25 FR FR878707343A patent/FR2616004B1/en not_active Expired - Fee Related
-
1988
- 1988-05-17 ZA ZA883498A patent/ZA883498B/en unknown
- 1988-05-19 EP EP88401220A patent/EP0293286B1/en not_active Expired - Lifetime
- 1988-05-19 AT AT88401220T patent/ATE102386T1/en active
- 1988-05-19 ES ES88401220T patent/ES2049754T3/en not_active Expired - Lifetime
- 1988-05-19 DE DE3888020T patent/DE3888020T2/en not_active Expired - Fee Related
- 1988-05-25 US US07/198,794 patent/US4950335A/en not_active Expired - Fee Related
- 1988-05-25 KR KR1019880006116A patent/KR0134813B1/en not_active IP Right Cessation
- 1988-05-25 JP JP63128123A patent/JP2547383B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1075890A (en) * | 1952-04-15 | 1954-10-20 | Process for hardening iron and steel alloys and articles thus obtained | |
DE1226128B (en) * | 1955-05-03 | 1966-10-06 | Walzwerk Neviges G M B H | Method and device for the heat treatment of metal sheets, in particular electrical sheets, in a magnetic field |
BE692166A (en) * | 1965-07-20 | 1967-06-16 | ||
FR2330474A1 (en) * | 1975-11-10 | 1977-06-03 | Monsanto Co | STEEL FILAMENT MANUFACTURING PROCESS |
FR2334755A1 (en) * | 1975-12-12 | 1977-07-08 | Sundwiger Eisen Maschinen | PROCESS AND INSTALLATION FOR HEATING METAL BANDS, ESPECIALLY NON-FERROUS METAL BANDS |
US4093477A (en) * | 1976-11-01 | 1978-06-06 | Hitachi Metals, Ltd. | Anisotropic permanent magnet alloy and a process for the production thereof |
DE2746785A1 (en) * | 1977-10-18 | 1979-04-19 | Western Electric Co | Magnetic chromium-cobalt-iron alloys - used for electromechanical transducers being cold shaped in air |
US4311537A (en) * | 1980-04-22 | 1982-01-19 | Bell Telephone Laboratories, Incorporated | Low-cobalt Fe-Cr-Co permanent magnet alloy processing |
Non-Patent Citations (1)
Title |
---|
IEEE TRANSACTIONS ON MAGNETICS, vol. MAG-16, no. 3, mai 1980, pages 526-529, IEEE, New York, US; S. JIN et al.: "Low-cobalt Cr-Co-Fe maget alloys obtained by slow cooling under magnetic field" * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2653265A1 (en) * | 1989-10-13 | 1991-04-19 | Centre Nat Rech Scient | PROCESS FOR THE PREPARATION OF MAGNETIC MATERIALS OF VERY HIGH QUALITY. |
WO1991005880A1 (en) * | 1989-10-13 | 1991-05-02 | Centre National De La Recherche Scientifique | Method for preparing very high quality magnetic materials |
US5366566A (en) * | 1989-10-13 | 1994-11-22 | Centre National De La Recherche Scientifique | Method for preparing a very high quality magnetic material |
Also Published As
Publication number | Publication date |
---|---|
ZA883498B (en) | 1988-11-22 |
FR2616004A1 (en) | 1988-12-02 |
EP0293286B1 (en) | 1994-03-02 |
KR0134813B1 (en) | 1998-05-15 |
ATE102386T1 (en) | 1994-03-15 |
JPS644422A (en) | 1989-01-09 |
ES2049754T3 (en) | 1994-05-01 |
DE3888020T2 (en) | 1994-09-29 |
KR880014600A (en) | 1988-12-24 |
US4950335A (en) | 1990-08-21 |
JP2547383B2 (en) | 1996-10-23 |
FR2616004B1 (en) | 1994-08-05 |
DE3888020D1 (en) | 1994-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1067203B1 (en) | Process of manufacturing iron-carbon-manganese alloy strips and strips obtained thereby | |
EP1228254B1 (en) | Method for making carbon steel bands, in particular packaging steel bands | |
WO2013087997A1 (en) | Method for producing a thin strip made from soft magnetic alloy, and resulting strip | |
EP1466024B1 (en) | Method for the production of a siderurgical product made of carbon steel with a high copper content, and siderurgical product obtained according to said method | |
EP0881305A1 (en) | Process for manufacturing ferritic stainless steel thin strips and thin strips obtained | |
CA1203068A (en) | Manufacturing process of extrudable aluminun alloy products | |
FR2465004A1 (en) | PROCESS FOR PRODUCING NON-ORIENTED STEEL SHEET FOR ELECTROMAGNETIC APPLICATIONS | |
EP0293286B1 (en) | Method and device for manufacturing articles for magnetic use | |
FR2483953A1 (en) | PROCESS FOR PRODUCING AN ORIENTED GRAIN ELECTRO-MAGNETIC STEEL SHEET | |
CA3200783A1 (en) | Method for fabricating a substantially equiatomic feco-alloy cold-rolled strip or sheet, substantially equiatomic feco-alloy cold-rolled strip or sheet, and magnetic part cut from sam | |
BE1004526A6 (en) | Heat treatment method of steel product. | |
FR2673198A1 (en) | Process for the manufacture of a Zircaloy 2 or 4 strip or sheet and product obtained | |
FR2462479A1 (en) | PROCESS FOR PRODUCING MAGNETIC SHEETS BY ROLLING | |
CH645132A5 (en) | PROCESS FOR MANUFACTURING ALUMINUM MACHINE WIRE. | |
EP0653494B1 (en) | Narrow steel strip with a high carbon content and process for making this strip | |
CA2152232A1 (en) | Process and device for annealing a metal strip and enhancement of continuous hot-dip galvanizing lines using such process and device | |
EP0007883B1 (en) | Process for the heat treatment of drawn rods of brass containing lead | |
BE570815A (en) | ||
FR2704238A1 (en) | Process for the manufacture of a hot-rolled steel strip in reel form | |
EP0345103A1 (en) | Process and installation for in-line homogenizing and recrystallization of continuously cast metallic products | |
FR2587728A1 (en) | PROCESS FOR THERMALLY PROCESSING A PIECE OF URANIUM ALLOY | |
BE823868A (en) | HIGH MAGNETIC SATURATION ALLOYS | |
FR2669349A1 (en) | METHOD FOR MANUFACTURING STEEL SHEETS FOR ELECTRICAL USE, AND THE SAME OBTAINED BY THIS METHOD. | |
BE901292A (en) | PROCESS OF CONTROLLED LAMINATION OF A THICK PRODUCT. | |
BE509090A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19890413 |
|
17Q | First examination report despatched |
Effective date: 19911023 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19940302 Ref country code: NL Effective date: 19940302 Ref country code: AT Effective date: 19940302 |
|
REF | Corresponds to: |
Ref document number: 102386 Country of ref document: AT Date of ref document: 19940315 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3888020 Country of ref document: DE Date of ref document: 19940407 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940311 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2049754 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940531 Ref country code: BE Effective date: 19940531 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
BERE | Be: lapsed |
Owner name: S.A. IMPHY Effective date: 19940531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950131 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 19970124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010516 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010524 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010720 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010803 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021203 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020519 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030611 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050519 |