EP0292662B1 - Process for demineralizing a sugar-containing solution - Google Patents
Process for demineralizing a sugar-containing solution Download PDFInfo
- Publication number
- EP0292662B1 EP0292662B1 EP88104190A EP88104190A EP0292662B1 EP 0292662 B1 EP0292662 B1 EP 0292662B1 EP 88104190 A EP88104190 A EP 88104190A EP 88104190 A EP88104190 A EP 88104190A EP 0292662 B1 EP0292662 B1 EP 0292662B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resin
- sugar
- percent
- water
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000000346 sugar Nutrition 0.000 title claims description 62
- 238000000034 method Methods 0.000 title claims description 31
- 230000002328 demineralizing effect Effects 0.000 title claims description 16
- 239000011347 resin Substances 0.000 claims description 84
- 229920005989 resin Polymers 0.000 claims description 84
- 239000011324 bead Substances 0.000 claims description 44
- 239000003456 ion exchange resin Substances 0.000 claims description 22
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 22
- 238000009826 distribution Methods 0.000 claims description 19
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 18
- 235000019534 high fructose corn syrup Nutrition 0.000 claims description 16
- 239000003957 anion exchange resin Substances 0.000 claims description 7
- 239000003729 cation exchange resin Substances 0.000 claims description 6
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 57
- 239000000243 solution Substances 0.000 description 41
- 239000012535 impurity Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 238000011001 backwashing Methods 0.000 description 7
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 5
- 238000005115 demineralization Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000012458 free base Chemical group 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 239000012897 dilution medium Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 poly(styrene-divinylbenzene) Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000012492 regenerant Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- APCLRHPWFCQIMG-UHFFFAOYSA-N 4-(5,6-dimethoxy-1-benzothiophen-2-yl)-4-oxobutanoic acid Chemical compound C1=C(OC)C(OC)=CC2=C1SC(C(=O)CCC(O)=O)=C2 APCLRHPWFCQIMG-UHFFFAOYSA-N 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 229940125791 MSA-2 Drugs 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 108010057081 Merozoite Surface Protein 1 Proteins 0.000 description 1
- 101710162106 Merozoite surface antigen 2 Proteins 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UHFFFAOYSA-N Rohrzucker Natural products OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 235000021433 fructose syrup Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid group Chemical group C(\C=C/C(=O)O)(=O)O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13B—PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
- C13B20/00—Purification of sugar juices
- C13B20/14—Purification of sugar juices using ion-exchange materials
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K11/00—Fructose
Definitions
- This invention relates to an improved method of removing ionic impurities from sugar-containing solutions, especially high fructose corn syrups, by contacting the solutions with specific ion exchange resins. More particularly, the invention relates to a process for demineralizing a sugar-containing solution which comprises passing said solution through an ion exchange resin in bead form. Processes of this generic kind are known in the art.
- the preparation of sugar-containing solution requires the removal of various impurities from the process streams.
- the main impurities in sugar are measured as sulphated ash which contains cations and anions such as Ca++, Mg++, Na+, K+, SO3 ⁇ , Cl ⁇ , SO4 ⁇ and the like.
- a demineralization process It is standard practice in the demineralization process to pass the sugar solution first through a strongly acidic cation exchange resin in the hydrogen form, followed by passage through a strongly basic anion exchanger and/or weakly basic anion exchanger in the hydroxide or free base form.
- the "sweetening-off" water or “sweet-water” after having sweetened-off the sugar from the resin contains an amount of recoverable sugar.
- the sweet-water is desirably recycled back as a dilution medium to other process steps (i.e., high fructose corn syrup saccharification).
- process steps i.e., high fructose corn syrup saccharification.
- the sweet-water composition limits the usefulness of the sweet-water as a dilution source (e.g., high fructose sweet-water is not added back to the dextrose solution at the saccharification step).
- the excess sweet-water normally requires concentrating during some step in the refining process.
- the evaporation of the water is an expensive unit operation in the process for preparing refined sugars. Therefore, it is desirable to reduce the expense incurred during the evaporation operation of the process without detrimentally affecting the quality of sugar which is produced by the process. It is also desirable to increase the operating capacity of the resins for demineralizing a sugar-containing solution.
- the invention is an improved process for demineralizing a sugar-containing solution. More specifically, the invention concerns a process of the generic kind mentioned at the beginning, characterised in that the volume average (or mean) diameter of the beads is from 400 to 700 ⁇ m and in that the resin exhibits a bead diameter distribution such that at least 80 volume percent of the beads have diameters which fall within a range of ⁇ 15 percent of the volume average diameter of the resin used.
- the resin of the improved process has a smaller volume average bead diameter and a narrower bead size distribution relative to conventional resins used for demineralizing sugar-containing solutions.
- the smaller mean diameter of the beads shortens the average diffusion distance traveled by exchanging components within the beads. Therefore, the operating capacity of the resin for demineralizing a sugar-containing solution is increased and the volume of water required to sweeten-off sugar from the resin is decreased.
- beads with a mean diameter below 400 ⁇ m will create unacceptably high pressure drops within a resin-containing column and would therefore limit operating capacity. Since the resin used in this invention has a narrow bead size distribution, the volume percent of beads having a bead diameter less than 400 ⁇ m is insignificant and would not adversely affect the operating characteristics of the resin.
- the present invention relates to an improvement in the demineralizing of high fructose corn syrup solutions.
- Macroporous ion exchange resins which are capable of removing ionic impurities from sugar-containing solutions may be of the anion exchange variety or of the cation exchange variety or of the type resin which contains both anion exchange sites and cation exchange sites.
- Macroporous ion exchange resins which are available commercially may be employed, such as those which have been offered commercially under the tradenames DOWEXTM, AMBERLITETM, DUOLITETM, and others.
- the cation exchange resins are those capable of exchanging cations. This capability is provided by resins having functional pendant acid groups on the polymer chain, such as carboxylic and/or sulfonic groups.
- the anion exchange resins are those capable of exchanging anions. This capability is provided by resins having functional pendant base groups on the polymer chain, such as ammonium or amine groups. Resins having both types of exchange groups are also within the purview of the present invention.
- macroporous strong-acid exchange resins include the sulfonated styrene-divinylbenzene copolymers such as are offered commercially under the tradenames DOWEXTM 88, DOWEXTM MSC-1, DUOLITETM C-280, AMBERLITETM 200, and KASTELTM C301.
- Acid resins of intermediate strength have also been reported, such as those containing functional phosphonic or arsonic groups.
- Macroporous weak-acid resins include those having functional groups of, e.g., phenolic, phosphonous, or carboxylic types. Some common weak-acid resins are those derive by crosslinking of acrylic, methacrylic or maleic acid groups by use of a crosslinking agent such as ethylene dimethacrylate or divinylbenzene. DUOLITETM C-464 is a tradename applied to a resin having such functional carboxylic groups.
- macroporous strong-base resins are those which, notably, contain quaternary ammonium groups pendant from a poly(styrene-divinylbenzene) matrix.
- DOWEXTM MSA-1 and DUOLITETM A-191 are tradenames of strong-base resins reported as having amine functionality derived from trimethylamine.
- DOWEXTM MSA-2 is a tradename of a macroporous strong-base resin reported as having amine functionality derived from dimethylethanolamine.
- Macroporous weak-base anion exchange resins generally contain functional groups derived from primary, secondary, or tertiary amines or mixtures of these.
- Functional amine groups are derived from condensation resins of aliphatic polyamines with formaldehyde or with alkyl dihalides or with epichlorohydrin, such as those available under the tradenames DOWEXTM WGR and DOWEXTM WGR-2.
- macroporous weak-base resins are prepared by reaction of an amine or polyamine with chloromethylated styrene-divinylbenzene copolymer beads, such as DOWEXTM MWA-1, DOWEXTM 66, and DUOLITETM A-392S.
- the above-described resins may be used as ion exchange resins in the demineralization of sugar-containing solutions.
- Sugar solutions usually contain ionic impurities such as Ca++, Mg++, Na+, K+, SO3 ⁇ , SO4 ⁇ , Cl ⁇ and the like. The removal of such impurities is essential to the preparation of marketable sugar products.
- sugar-containing solutions include aqueous solutions of cane and beet sugar, high fructose corn syrups, high fructose syrups derived from inulin, tapioca and potato starches, maple sugar, palm sugar, sorghum derived sugar, and the like, the most preferred being solutions of high fructose corn syrup.
- the disclosed sugar solutions which may be effectively demineralized exhibit dissolved solids, i.e., sugar content, ranging from 20 percent to 60 percent.
- An effective demineralization may be accomplished by using a strongly acidic cation exchange resin in the hydrogen form, followed by an anion exchange resin preferably in the hydroxide or free base form.
- the sugar solution to be demineralized may be contacted with the resin by any conventional means which results in intimate contact between the resin and the sugar solution. Such methods include batch vessels, packed columns, fluidized beds and the like.
- the contacting may be of a batch, semi-continuous or continuous nature.
- the sugar solution and the resins are contacted continuously in an ion exchange column.
- the resins and the sugar solution are effectively contacted for a period of time sufficient to remove a substantial portion of the ionic impurities.
- the contact time is largely dependent on the type of vessel used to contact the resin and the sugar solution, the amount of resin used, the pH of the sugar solution, the temperature, the level of demineralization desired, and the like.
- the resin may be used until the ion exchange capacity of the resin becomes nearly exhausted as evidenced by an increase in the mineral content of the sugar solution after having been treated with the resin. At this time it becomes necessary to regenerate the ion exchange capacity of the resin in order to prepare it for reuse.
- the regeneration of the demineralizing resins involves the steps of (1) "sweetening-off" the sugar solution from the resin, (2) backwashing the resin to remove impurities, (3) contacting the resin with an appropriate regenerant solution in an amount effective to regenerate the ion exchange capacity, and then (4) rinsing the resin to remove any of the excess regenerant.
- the resin is then ready to be reused as a demineralizing resin and may be contacted with the sugar solution to be demineralized.
- the step of "sweetening-off" the sugar solution from the resin involves the washing of the resin with water in order to remove essentially all of the sugar from the ion exchange resins. This is accomplished by contacting the ion exchange resin which has been sweetened-on with an amount of water effective to wash substantially all of the sugar solution from the ion exchange resin. The resin and water are contacted until essentially only water is coming off of the resin bed. The sweetening-off is considered complete when there is essentially no sugar in the effluent sweet-water stream.
- the sweet-water which results from the sweetening-off of the sugar from the resin, contains an amount of sugar which may go to waste if not recovered within the system. It is desirable to recover this sugar in as economical a way as possible. Recovery of this sugar may be accomplished by recycling the sweet-water stream back into the sugar-containing solution of the main process stream. Some of the sweet-water stream may be needed for dilution purposes elsewhere in the main sugar process stream. However, most of the sweet-water volume is returned to the main sugar process stream as an unwanted dilution medium. This excess dilution water is removed in preparing the sugar solution for further processing (i.e., increasing the dissolved solids level in preparation for crystallization and/or storage of the sugar solution). The removal of the excess dilution water may be accomplished by evaporating off some of the water from the sugar-containing solution. This evaporation results in an effective increase in the level of dissolved solids present in the process streams.
- the operating capacity of the resins for demineralizing sugar-containing solutions may be increased and the amount of water which must be used to sweeten-off the sugar solution from the demineralizing resins may be appreciably decreased, thus also decreasing the amount of recycled dilution water which must be evaporated from the diluted main process stream in order to achieve the desired dissolved solids level.
- the production costs of the sugar refining process may be reduced.
- the size distribution of the beads employed in this invention is such that at least about 80 volume percent, more preferably 85 volume percent, and most preferably at least about 90 volume percent of the beads exhibit a bead diameter which falls within a range of about ⁇ 15 percent preferably within a range of ⁇ 10 percent of the mean diameter of the ion exchange resins used.
- Mean diameter is determined by the following sequential steps: 1) measuring the diameter of each bead in a population of beads, 2) calculating the volume percent of beads within the preset ranges of bead diameters to determine a bead diameter distribution (determined by dividing the volume of beads within a preset range of bead diameters by the total volume of beads in the population), and 3) calculating the mean from the bead diameter distribution obtained.
- the mean diameter which may be used ranges from 400 ⁇ m to 700 ⁇ m, and more preferably from 500 ⁇ m to 600 ⁇ m, and most preferably from 525 ⁇ m to 575 ⁇ m.
- the bed of resin is backwashed with deionized (D.I.) water at room temperature at a flow rate sufficient to expand the bed by 50 percent of the settled height. This is done in order to remove any unwanted matter present in the bed and also to classify the beads by size.
- the backwashing is continued for about 30 minutes.
- the resin is then converted to the hydrogen form by pumping a minimum of 2 bed volumes of 2N hydrochloric acid through the bed for a minimum of 1 hour contact time. After converting the resin to the hydrochloric acid form the resin is rinsed with flow of D.I. water until the effluent water exhibits a pH of at least 5.
- One liter of degassed D.I. water is pumped downflow while the jacketed columns are being heated to a temperature of about 50°C by circulating hot water through the column jackets.
- HFCS high fructose corn syrup
- D.S. dissolved solids
- 1 liter of refined 42 percent HFCS, containing 117 g of sodium chloride is passed downflow through the bed over a period of time effective to exhaust the resin to the sodium form, generally about 60 minutes.
- the HFCS containing the sodium chloride is followed by 1 liter of refined 42 percent HFCS passed downflow through the resin bed for a period of 30 minutes.
- the resin bed is sweetened-off by passing degassed D.I. water downflow at 2 bed volumes/hr.
- a plot of the D.S. concentrations versus the volume of water used to sweeten-off the sugar solution from the resin bed may be made and the areas under the curves integrated by known means.
- the integration results give a measure of the total amount of dissolved solids in the collected samples. From this value can be calculated the amount of water which must be removed from the total volume of liquid collected in order to return the collected sample to the original D.S. level of the 42 percent HFCS. This value is then used for comparison purposes to illustrate how much water must be evaporated from the sweet-water when an ion exchange resin which does not exhibit a uniform size distribution is used.
- Example 1 The method of Example 1 was essentially repeated except that the strong acid cation exchange resin (available as DOWEXTM 88 from The Dow Chemical Company) used to demineralize the HFCS had the following bead size distribution:
- the strong acid cation exchange resin available as DOWEXTM 88 from The Dow Chemical Company
- the bed of resin is backwashed with D.I. water at room temperature at a flow rate sufficient to expand the bed by 50 percent of the settled height. This is done in order to remove any unwanted matter present in the bed and also to classify the beads by size.
- the backwashing is continued for about 30 minutes.
- One liter of degassed D.I. water is pumped downflow while the jacketed columns are being heated to a temperature of about 50°C by circulating hot water through the column jackets.
- One liter of refined 42 percent HFCS exhibiting a D.S. of 50 percent is passed downflow through the bed with a contact time of 2.5 hours.
- the resin bed is sweetened-off by passing degassed D.I. water downflow at 2 bed volumes/hr.
- the flow out of the column is monitored and samples of the effluent are collected at recorded intervals in a fraction collector. Each sample is analyzed for refractive index using an Abbe Mark II refractometer and the D.S. content is determined by industry standards from the refractive indices. The results are reported in Table 2 under Example 2.
- a plot of the D.S. concentrations versus the volume of water used to sweeten-off the sugar solution from the resin bed may be made and the areas under the curves integrated by known means.
- the integration results give a measure of the total amount of dissolved solids in the collected samples. From this value can be calculated the amount of water which must be removed from the total volume of liquid collected in order to return the collected sample to the original D.S. level of the 42 percent HFCS. This value is then used for comparison purposes to illustrate how much water must be evaporated from the sweet-water when an ion exchange resin which does not exhibit a uniform size distribution is used.
- Example 2 The method of Example 2 was essentially repeated except that the weak-base anion exchange resin (available as DOWEXTM 66 from The Dow Chemical Company) used to demineralize the HFCS had the following bead size distribution:
- the weak-base anion exchange resin available as DOWEXTM 66 from The Dow Chemical Company
- a comparison of the data indicates that when an ion exchange resin of claimed bead diameter size distribution is used, the amount of water which must be evaporated in order to return the sweet-water to a 50 percent dissolved solids level is reduced by a measurable amount (e.g., 28 percent) compared to the amount of water which must be evaporated from the sweet-water generated from sweetening off the sugar solution from an ion exchange resin exhibiting a conventional size distribution. Therefore, the amount of water which needs to be evaporated within the sugar refining process is reduced.
- a measurable amount e.g. 28 percent
- the resins employed in the present invention show from 11 to 13 percent improvement in operating capacity over the conventional resins when operating as a two-bed unit process (cation resin followed by anion resin in a single pass).
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Saccharide Compounds (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
- This invention relates to an improved method of removing ionic impurities from sugar-containing solutions, especially high fructose corn syrups, by contacting the solutions with specific ion exchange resins. More particularly, the invention relates to a process for demineralizing a sugar-containing solution which comprises passing said solution through an ion exchange resin in bead form. Processes of this generic kind are known in the art.
- The preparation of sugar-containing solution requires the removal of various impurities from the process streams. The main impurities in sugar are measured as sulphated ash which contains cations and anions such as Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, SO₃⁻⁻, Cl⁻, SO₄⁻⁻ and the like. For the production of a refined sugar-containing solution, it is necessary to remove these impurities. This is achieved by a demineralization process. It is standard practice in the demineralization process to pass the sugar solution first through a strongly acidic cation exchange resin in the hydrogen form, followed by passage through a strongly basic anion exchanger and/or weakly basic anion exchanger in the hydroxide or free base form. Once the ion exchange resins become nearly exhausted, it becomes necessary to regenerate their ion exchanging capacity. Prior to contacting the ion exchange resin with the regenerating agent, it is necessary to remove essentially all of the sugar solution from the resin bed. This is accomplished by passing effective quantities of water over the resin in order to "sweeten-off" the sugar solution within the resin bed. The resulting effluent is known in the industry as sweet-water.
- The "sweetening-off" water or "sweet-water" after having sweetened-off the sugar from the resin contains an amount of recoverable sugar. The sweet-water is desirably recycled back as a dilution medium to other process steps (i.e., high fructose corn syrup saccharification). Typically, there is substantially more sweet-water generated than can be utilized for dilution purposes. Also, the sweet-water composition limits the usefulness of the sweet-water as a dilution source (e.g., high fructose sweet-water is not added back to the dextrose solution at the saccharification step). The excess sweet-water normally requires concentrating during some step in the refining process. This is accomplished by removing a substantial portion of the water without removing any of the sugar which has been washed off of the resin. This is generally accomplished by evaporating off an amount of water which results in a desired dissolved solids content, i.e., sugar content, in the unevaporated sweet-water.
- The evaporation of the water is an expensive unit operation in the process for preparing refined sugars. Therefore, it is desirable to reduce the expense incurred during the evaporation operation of the process without detrimentally affecting the quality of sugar which is produced by the process. It is also desirable to increase the operating capacity of the resins for demineralizing a sugar-containing solution.
- The invention is an improved process for demineralizing a sugar-containing solution. More specifically, the invention concerns a process of the generic kind mentioned at the beginning, characterised in that the volume average (or mean) diameter of the beads is from 400 to 700 µm and in that the resin exhibits a bead diameter distribution such that at least 80 volume percent of the beads have diameters which fall within a range of ±15 percent of the volume average diameter of the resin used.
- The resin of the improved process has a smaller volume average bead diameter and a narrower bead size distribution relative to conventional resins used for demineralizing sugar-containing solutions. The smaller mean diameter of the beads shortens the average diffusion distance traveled by exchanging components within the beads. Therefore, the operating capacity of the resin for demineralizing a sugar-containing solution is increased and the volume of water required to sweeten-off sugar from the resin is decreased. However, beads with a mean diameter below 400 µm will create unacceptably high pressure drops within a resin-containing column and would therefore limit operating capacity. Since the resin used in this invention has a narrow bead size distribution, the volume percent of beads having a bead diameter less than 400 µm is insignificant and would not adversely affect the operating characteristics of the resin.
- In a preferred embodiment, the present invention relates to an improvement in the demineralizing of high fructose corn syrup solutions.
- Macroporous ion exchange resins which are capable of removing ionic impurities from sugar-containing solutions may be of the anion exchange variety or of the cation exchange variety or of the type resin which contains both anion exchange sites and cation exchange sites.
- Macroporous ion exchange resins which are available commercially may be employed, such as those which have been offered commercially under the tradenames DOWEX™, AMBERLITE™, DUOLITE™, and others.
- The cation exchange resins are those capable of exchanging cations. This capability is provided by resins having functional pendant acid groups on the polymer chain, such as carboxylic and/or sulfonic groups. The anion exchange resins are those capable of exchanging anions. This capability is provided by resins having functional pendant base groups on the polymer chain, such as ammonium or amine groups. Resins having both types of exchange groups are also within the purview of the present invention.
- Examples of macroporous strong-acid exchange resins include the sulfonated styrene-divinylbenzene copolymers such as are offered commercially under the tradenames DOWEX™ 88, DOWEX™ MSC-1, DUOLITE™ C-280, AMBERLITE™ 200, and KASTEL™ C301.
- Acid resins of intermediate strength have also been reported, such as those containing functional phosphonic or arsonic groups.
- Macroporous weak-acid resins include those having functional groups of, e.g., phenolic, phosphonous, or carboxylic types. Some common weak-acid resins are those derive by crosslinking of acrylic, methacrylic or maleic acid groups by use of a crosslinking agent such as ethylene dimethacrylate or divinylbenzene. DUOLITE™ C-464 is a tradename applied to a resin having such functional carboxylic groups.
- Among the macroporous strong-base resins are those which, notably, contain quaternary ammonium groups pendant from a poly(styrene-divinylbenzene) matrix. DOWEX™ MSA-1 and DUOLITE™ A-191 are tradenames of strong-base resins reported as having amine functionality derived from trimethylamine. DOWEX™ MSA-2 is a tradename of a macroporous strong-base resin reported as having amine functionality derived from dimethylethanolamine.
- Macroporous weak-base anion exchange resins generally contain functional groups derived from primary, secondary, or tertiary amines or mixtures of these. Functional amine groups are derived from condensation resins of aliphatic polyamines with formaldehyde or with alkyl dihalides or with epichlorohydrin, such as those available under the tradenames DOWEX™ WGR and DOWEX™ WGR-2.
- Other macroporous weak-base resins are prepared by reaction of an amine or polyamine with chloromethylated styrene-divinylbenzene copolymer beads, such as DOWEX™ MWA-1, DOWEX™ 66, and DUOLITE™ A-392S.
- The above-described resins may be used as ion exchange resins in the demineralization of sugar-containing solutions. Sugar solutions usually contain ionic impurities such as Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, SO₃⁻⁻, SO₄⁻⁻, Cl⁻ and the like. The removal of such impurities is essential to the preparation of marketable sugar products.
- Examples of sugar-containing solutions include aqueous solutions of cane and beet sugar, high fructose corn syrups, high fructose syrups derived from inulin, tapioca and potato starches, maple sugar, palm sugar, sorghum derived sugar, and the like, the most preferred being solutions of high fructose corn syrup. The disclosed sugar solutions which may be effectively demineralized exhibit dissolved solids, i.e., sugar content, ranging from 20 percent to 60 percent.
- An effective demineralization may be accomplished by using a strongly acidic cation exchange resin in the hydrogen form, followed by an anion exchange resin preferably in the hydroxide or free base form. The sugar solution to be demineralized may be contacted with the resin by any conventional means which results in intimate contact between the resin and the sugar solution. Such methods include batch vessels, packed columns, fluidized beds and the like. The contacting may be of a batch, semi-continuous or continuous nature. Preferably the sugar solution and the resins are contacted continuously in an ion exchange column.
- The resins and the sugar solution are effectively contacted for a period of time sufficient to remove a substantial portion of the ionic impurities. The contact time is largely dependent on the type of vessel used to contact the resin and the sugar solution, the amount of resin used, the pH of the sugar solution, the temperature, the level of demineralization desired, and the like. The resin may be used until the ion exchange capacity of the resin becomes nearly exhausted as evidenced by an increase in the mineral content of the sugar solution after having been treated with the resin. At this time it becomes necessary to regenerate the ion exchange capacity of the resin in order to prepare it for reuse.
- The regeneration of the demineralizing resins involves the steps of (1) "sweetening-off" the sugar solution from the resin, (2) backwashing the resin to remove impurities, (3) contacting the resin with an appropriate regenerant solution in an amount effective to regenerate the ion exchange capacity, and then (4) rinsing the resin to remove any of the excess regenerant. The resin is then ready to be reused as a demineralizing resin and may be contacted with the sugar solution to be demineralized.
- The step of "sweetening-off" the sugar solution from the resin involves the washing of the resin with water in order to remove essentially all of the sugar from the ion exchange resins. This is accomplished by contacting the ion exchange resin which has been sweetened-on with an amount of water effective to wash substantially all of the sugar solution from the ion exchange resin. The resin and water are contacted until essentially only water is coming off of the resin bed. The sweetening-off is considered complete when there is essentially no sugar in the effluent sweet-water stream.
- The sweet-water, which results from the sweetening-off of the sugar from the resin, contains an amount of sugar which may go to waste if not recovered within the system. It is desirable to recover this sugar in as economical a way as possible. Recovery of this sugar may be accomplished by recycling the sweet-water stream back into the sugar-containing solution of the main process stream. Some of the sweet-water stream may be needed for dilution purposes elsewhere in the main sugar process stream. However, most of the sweet-water volume is returned to the main sugar process stream as an unwanted dilution medium. This excess dilution water is removed in preparing the sugar solution for further processing (i.e., increasing the dissolved solids level in preparation for crystallization and/or storage of the sugar solution). The removal of the excess dilution water may be accomplished by evaporating off some of the water from the sugar-containing solution. This evaporation results in an effective increase in the level of dissolved solids present in the process streams.
- It has been discovered that by using ion exchange resins which exhibit bead diameters which fall within a specific size distribution, the operating capacity of the resins for demineralizing sugar-containing solutions may be increased and the amount of water which must be used to sweeten-off the sugar solution from the demineralizing resins may be appreciably decreased, thus also decreasing the amount of recycled dilution water which must be evaporated from the diluted main process stream in order to achieve the desired dissolved solids level. By increasing operating capacity and reducing the amount of water which must be evaporated off, the production costs of the sugar refining process may be reduced.
- The size distribution of the beads employed in this invention is such that at least about 80 volume percent, more preferably 85 volume percent, and most preferably at least about 90 volume percent of the beads exhibit a bead diameter which falls within a range of about ±15 percent preferably within a range of ±10 percent of the mean diameter of the ion exchange resins used. Mean diameter is determined by the following sequential steps: 1) measuring the diameter of each bead in a population of beads, 2) calculating the volume percent of beads within the preset ranges of bead diameters to determine a bead diameter distribution (determined by dividing the volume of beads within a preset range of bead diameters by the total volume of beads in the population), and 3) calculating the mean from the bead diameter distribution obtained. The mean diameter which may be used ranges from 400 µm to 700 µm, and more preferably from 500 µm to 600 µm, and most preferably from 525 µm to 575 µm.
- The following examples are intended to illustrate the invention. All parts and percentages are by weight unless otherwise indicated.
- 700 ml of a macroporous strong acid cation exchange resin (available as DOWEX™ 88 from The Dow Chemical Company) which had been screened to the following bead size distribution¹:
¹Each of the bead size distributions in these examples are determined by a particle size analyzer sold commercial by the HIAC Division of Pacific Scientific Company as Model PC-320. -
Bead Diameter Range (µm) Volume % Resin of Invention Example 1 Min. Max. 150 300 0.1 300 440 1.7 440 495 7.0 495 505 9.2 505 520 11.7 520 540 17.6 540 555 17.2 555 575 17.1 575 590 9.5 590 620 6.4 620 707 2.4 707 2500 0.0 AVERAGE DIAMETER VOLUME MEAN 540 Volume Range 95.7 percent ±15 percent of mean.
was loaded into a 2.54 cm I.D. glass column system consisting of two 61 cm, water jacketed sections, coupled together. A third unjacketed 61 cm long section is attached on top of the two 61 cm columns to allow backwashing of the resin. The resin is in the sodium form. - The bed of resin is backwashed with deionized (D.I.) water at room temperature at a flow rate sufficient to expand the bed by 50 percent of the settled height. This is done in order to remove any unwanted matter present in the bed and also to classify the beads by size. The backwashing is continued for about 30 minutes.
- The resin is then converted to the hydrogen form by pumping a minimum of 2 bed volumes of 2N hydrochloric acid through the bed for a minimum of 1 hour contact time. After converting the resin to the hydrochloric acid form the resin is rinsed with flow of D.I. water until the effluent water exhibits a pH of at least 5.
- After the backwashing is accomplished the top unjacketed 61 cm portion of the column is removed and the column is capped with a glass fritted flow distributor.
- One liter of degassed D.I. water is pumped downflow while the jacketed columns are being heated to a temperature of about 50°C by circulating hot water through the column jackets.
- One liter of refined 42 percent high fructose corn syrup (HFCS) exhibiting a dissolved solids (D.S.), i.e., sugar content, of 50 percent is passed downflow through the bed with a contact time of 60 minutes. Next, 1 liter of refined 42 percent HFCS, containing 117 g of sodium chloride, is passed downflow through the bed over a period of time effective to exhaust the resin to the sodium form, generally about 60 minutes. The HFCS containing the sodium chloride is followed by 1 liter of refined 42 percent HFCS passed downflow through the resin bed for a period of 30 minutes. The resin bed is sweetened-off by passing degassed D.I. water downflow at 2 bed volumes/hr. During the sweetening-off process, the flow out of the column is monitored and samples of the effluent are collected at recorded intervals in a fraction collector. Each sample is analyzed for refractive index by using an Abbe Mark II refractometer and the D.S. content is determined from industry standards based on the refractive indices. The results are reported in Table 1 under Example 1.
- A plot of the D.S. concentrations versus the volume of water used to sweeten-off the sugar solution from the resin bed may be made and the areas under the curves integrated by known means. The integration results give a measure of the total amount of dissolved solids in the collected samples. From this value can be calculated the amount of water which must be removed from the total volume of liquid collected in order to return the collected sample to the original D.S. level of the 42 percent HFCS. This value is then used for comparison purposes to illustrate how much water must be evaporated from the sweet-water when an ion exchange resin which does not exhibit a uniform size distribution is used.
- The results are summarized in Table 3 under Example 1.
-
-
- 700 ml of a macroporous weak base anion exchange resin (available as DOWEX™ 66, from The Dow Chemical Company) which had been screened to the following bead size distribution:
was loaded into a 2.54 cm I.D. glass column system consisting of two 61 cm long, water jacketed sections, coupled together. A third unjacketed 61 cm long section is attached on top of the two 61 cm columns to allow backwashing of the resin. The resin is used in the free base form. - The bed of resin is backwashed with D.I. water at room temperature at a flow rate sufficient to expand the bed by 50 percent of the settled height. This is done in order to remove any unwanted matter present in the bed and also to classify the beads by size. The backwashing is continued for about 30 minutes.
- To insure complete conversion of the resin to the free base form, a minimum of 2 bed volumes of 1N sodium hydroxide is passed downflow through the resin for a period of about 60 minutes. After complete conversion, the resin is rinsed with a downward flow of D.I. water until the effluent water exhibits a pH of less than 9.
- After the backwashing is accomplished the top unjacketed 61 cm portion of the column is removed and the column is capped with a glass fritted flow distributor.
- One liter of degassed D.I. water is pumped downflow while the jacketed columns are being heated to a temperature of about 50°C by circulating hot water through the column jackets.
- One liter of refined 42 percent HFCS exhibiting a D.S. of 50 percent is passed downflow through the bed with a contact time of 2.5 hours. The resin bed is sweetened-off by passing degassed D.I. water downflow at 2 bed volumes/hr. During the sweetening-off process, the flow out of the column is monitored and samples of the effluent are collected at recorded intervals in a fraction collector. Each sample is analyzed for refractive index using an Abbe Mark II refractometer and the D.S. content is determined by industry standards from the refractive indices. The results are reported in Table 2 under Example 2.
- A plot of the D.S. concentrations versus the volume of water used to sweeten-off the sugar solution from the resin bed may be made and the areas under the curves integrated by known means. The integration results give a measure of the total amount of dissolved solids in the collected samples. From this value can be calculated the amount of water which must be removed from the total volume of liquid collected in order to return the collected sample to the original D.S. level of the 42 percent HFCS. This value is then used for comparison purposes to illustrate how much water must be evaporated from the sweet-water when an ion exchange resin which does not exhibit a uniform size distribution is used.
- The results are summarized in Table 3 under Example 2.
-
-
- A comparison of the data indicates that when an ion exchange resin of claimed bead diameter size distribution is used, the amount of water which must be evaporated in order to return the sweet-water to a 50 percent dissolved solids level is reduced by a measurable amount (e.g., 28 percent) compared to the amount of water which must be evaporated from the sweet-water generated from sweetening off the sugar solution from an ion exchange resin exhibiting a conventional size distribution. Therefore, the amount of water which needs to be evaporated within the sugar refining process is reduced.
- Operating capacity data was obtained while demineralizing dextrose syrup in a full scale high fructose refining plant. In this plant the resins employed in Examples C-1 and C-2 were set up in sequence (175 cubic feet of each - 4.96 cubic meters) and a parallel system employing the same volume of the same resins which had been screened to the following bead size distribution was set up:
-
- The resins employed in the present invention show from 11 to 13 percent improvement in operating capacity over the conventional resins when operating as a two-bed unit process (cation resin followed by anion resin in a single pass).
Claims (7)
- A process for demineralizing a sugar-containing solution which comprises passing said solution through an ion exchange resin in bead form, characterised in that the volume mean diameter of the beads is from 400 to 700 µm and in that the resin exhibits a bead diameter distribution such that at least 80 volume percent of the beads have diameters which fall within a range of ±15 percent of the volume mean diameter of the resin used.
- The process of Claim 1 wherein the bead diameter distribution is such that at least 85 percent of the beads exhibit diameters which fall within a range of ±15 percent of the volume mean diameter of the ion exchange resin.
- The process of Claim 2 wherein the bead diameter distribution is such that at least 90 percent of the beads exhibit diameters which fall within a range of ±15 percent of the volume mean diameter of the ion exchange resin.
- The process of Claim 2 wherein the volume mean diameter of the ion exchange resins ranges from 500 µm to 600 µm.
- The process of any one of Claims 1 to 4 wherein the ion exchange resin is a macroporous strongly acidic cation exchange resin, a macroporous weakly basic anion exchange resin, or a macroporous strongly basic anion exchange resin.
- The process of Claim 5 wherein the ion exchange resin comprises a copolymer of styrene and divinylbenzene.
- The process of Claim 6 wherein the sugar-containing solution is a solution comprising high fructose corn syrup.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3284787A | 1987-03-31 | 1987-03-31 | |
US32847 | 1993-03-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0292662A2 EP0292662A2 (en) | 1988-11-30 |
EP0292662A3 EP0292662A3 (en) | 1991-01-16 |
EP0292662B1 true EP0292662B1 (en) | 1993-04-14 |
Family
ID=21867139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88104190A Expired - Lifetime EP0292662B1 (en) | 1987-03-31 | 1988-03-16 | Process for demineralizing a sugar-containing solution |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0292662B1 (en) |
JP (1) | JP2575171B2 (en) |
KR (1) | KR960000480B1 (en) |
AR (1) | AR244809A1 (en) |
AU (1) | AU600806B2 (en) |
BR (1) | BR8801520A (en) |
CA (1) | CA1321193C (en) |
DE (1) | DE3880196T2 (en) |
ES (1) | ES2039490T3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0915736B1 (en) * | 1996-07-30 | 2003-10-15 | Cuno Incorporated | Filter sheet and process for purifying photoresist composition employing the filter sheet |
US6375851B1 (en) * | 2000-05-05 | 2002-04-23 | United States Filter Corporation | Continuous liquid purification process |
RU2366718C2 (en) * | 2004-03-19 | 2009-09-10 | Органо Корпорэйшн | Method for purifying of sugar solutions |
JP5028826B2 (en) * | 2006-03-07 | 2012-09-19 | 三菱化学株式会社 | Purification method of aqueous solution |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3692582A (en) * | 1970-07-31 | 1972-09-19 | Suomen Sokeri Oy | Procedure for the separation of fructose from the glucose of invert sugar |
US4395292A (en) * | 1974-04-10 | 1983-07-26 | Anheuser-Busch, Incorporated | High fructose syrup and process for making same |
US4187120A (en) * | 1978-05-30 | 1980-02-05 | Ecodyne Corporation | Method for purification of polyhydric alcohols |
US4247340A (en) * | 1978-09-19 | 1981-01-27 | Rohm And Haas Company | Purification of sugars using emulsion anion exchange resins |
PH22132A (en) * | 1982-06-28 | 1988-06-01 | Calgon Carbon Corp | Sweetener solution purification process |
US4746368A (en) * | 1986-02-28 | 1988-05-24 | Akzo America Inc. | Decolorization of aqueous saccharide solutions and sorbents therefor |
-
1988
- 1988-03-16 DE DE8888104190T patent/DE3880196T2/en not_active Expired - Fee Related
- 1988-03-16 ES ES198888104190T patent/ES2039490T3/en not_active Expired - Lifetime
- 1988-03-16 EP EP88104190A patent/EP0292662B1/en not_active Expired - Lifetime
- 1988-03-23 AU AU13514/88A patent/AU600806B2/en not_active Ceased
- 1988-03-24 CA CA000562301A patent/CA1321193C/en not_active Expired - Fee Related
- 1988-03-29 AR AR88310434A patent/AR244809A1/en active
- 1988-03-30 JP JP63077933A patent/JP2575171B2/en not_active Expired - Lifetime
- 1988-03-30 BR BR8801520A patent/BR8801520A/en not_active Application Discontinuation
- 1988-03-30 KR KR1019880003474A patent/KR960000480B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
AU1351488A (en) | 1988-09-29 |
ES2039490T3 (en) | 1993-10-01 |
KR880011347A (en) | 1988-10-28 |
JP2575171B2 (en) | 1997-01-22 |
JPS63263099A (en) | 1988-10-31 |
KR960000480B1 (en) | 1996-01-08 |
DE3880196D1 (en) | 1993-05-19 |
DE3880196T2 (en) | 1993-08-05 |
EP0292662A2 (en) | 1988-11-30 |
EP0292662A3 (en) | 1991-01-16 |
BR8801520A (en) | 1988-11-08 |
AR244809A1 (en) | 1993-11-30 |
CA1321193C (en) | 1993-08-10 |
AU600806B2 (en) | 1990-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0481603A1 (en) | Separation of weak organic acids from liquid mixtures | |
US5221478A (en) | Chromatographic separation using ion-exchange resins | |
US2772237A (en) | Process for removing acids from aqueous solutions of organic solutes with ion exchange resins | |
US4523960A (en) | Method for the production of high fructose corn syrup | |
EP1490521A1 (en) | Separation of sugars, sugar alcohols, carbohydrates and mixtures thereof | |
US5094694A (en) | Process for demineralizing a sugar-containing solution | |
US2578937A (en) | Mixed bed deionization | |
EP0292662B1 (en) | Process for demineralizing a sugar-containing solution | |
EP0365635B1 (en) | Process for decolorizing aqueous sugar solutions via adsorbent resins, and desorption of color bodies from the adsorbent resins | |
US4172185A (en) | Method of regenerating weak base ion exchange resins with a solution of carbonic acid | |
US3122456A (en) | Purfication of sugar solutions by means of spongy ion exchangers | |
US2738322A (en) | Process for removing sulfuric acid from aqueous solutions of inorganic sulfates | |
US4006032A (en) | Process for removing off-flavor from maple sirup | |
US4543261A (en) | Separating whey components into high purity products by ion exchange | |
US2962438A (en) | Ion exchange process for water purification | |
US20170259256A1 (en) | Regeneration of weak base anion exchange resins | |
US6942805B2 (en) | Sugar juice decolorization by means of mondisperse anion exchangers | |
US3252897A (en) | Process for purifying weak electrolytes and nonelectrolytes | |
US3975267A (en) | Liquid treating system | |
EP0327400B1 (en) | Chromatographic separations using ion-exchange resins | |
US2649390A (en) | Process of treating sugar solutions with ion-exchange resins | |
US3184334A (en) | Separation of dextran from fructose using ion exchange resins | |
US4026987A (en) | Recovery of uranium sulfate anions on a weak base anion exchange resin | |
US4320206A (en) | Emulsion regenerant for ion exchange resins | |
US2551519A (en) | Process of treating sugar solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE ES FR GB GR IT NL |
|
17P | Request for examination filed |
Effective date: 19890929 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE ES FR GB GR IT NL |
|
17Q | First examination report despatched |
Effective date: 19920703 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB GR IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19930414 |
|
REF | Corresponds to: |
Ref document number: 3880196 Country of ref document: DE Date of ref document: 19930519 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2039490 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19961122 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961209 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19961211 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970102 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19970324 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970331 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19980317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980331 |
|
BERE | Be: lapsed |
Owner name: THE DOW CHEMICAL CY Effective date: 19980331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980316 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19981001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20000301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050316 |