EP0289553B1 - Monopulsantenne mit verbesserter nebenstrahlungsunterdrückung - Google Patents
Monopulsantenne mit verbesserter nebenstrahlungsunterdrückung Download PDFInfo
- Publication number
- EP0289553B1 EP0289553B1 EP87907265A EP87907265A EP0289553B1 EP 0289553 B1 EP0289553 B1 EP 0289553B1 EP 87907265 A EP87907265 A EP 87907265A EP 87907265 A EP87907265 A EP 87907265A EP 0289553 B1 EP0289553 B1 EP 0289553B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sum
- quadrants
- return energy
- difference
- excitable elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001629 suppression Effects 0.000 title description 5
- 238000000034 method Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 abstract description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/02—Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
Definitions
- the present invention relates to an antenna system adapted for radar application using sum and difference signals for tracking a target including:
- the invention relates further to a method of operating an antenna system adapted for radar application using sum and difference signals for tracking a target, including the steps of:
- the invention relates to optimization of antenna sum and difference patterns, and in particular, to a sidelobe suppression arrangement for a monopulse antenna using sum and difference patterns to track targets.
- a monopulse antenna may be subdivided into sections, for example, by using horns or quadrants, and the radar then senses the target displacement by comparing the amplitude and phase of the echo signal for each horn or quadrant.
- the RF circuitry for a conventional antenna divided into quadrants subtracts the output of the left pair from the output of the right pair to sense any imbalance in the azimuth direction (azimuth difference pattern) and the output of the top pair from the output of the bottom pair to sense any imbalance in the elevation direction (elevation difference pattern).
- azimuth difference pattern the output of the left pair from the output of the right pair to sense any imbalance in the azimuth direction
- elevation difference pattern elevation difference pattern
- a sum signal is generated and used as a reference signal, for video input, and for gain control.
- Document US-3,711,858 is also concerned with a monopulse radar antenna using sidelobe suppression.
- this antenna wave guide sections are provided in the four quadrants with adjacent ends of the wave guides in the quadrants being staggerd such that certain wave guides in one quadrant extend into the adjacent quadrant and vice-versa. Thereby the lobe of the transition in phase from one quadrant to the other is reduced.
- an antenna system of the kind mentioned of the outset is characterized in that
- the present invention is thus characterized, in that the sum signal is calculated as the sum of the return energy of all of the excitable elements; that the azimuth difference signal is calculated as the difference between the sum of the return energy of the excitable elements in the two left-handed quadrants and the left horizontal strip (i.e.
- the elevation difference signal is calculated as the difference between the sum of the return energy of the excitable elements in the two upper quadrants and the top vertical strip (i.e., an upper segment), and the sum of the return energy of the excitable elements in the two lower quadrants and the bottom vertical strip (i.e., a lower segment).
- a conventional five horn antenna for providing sum and difference signals.
- five horn antennas A,B,C,D,E are arranged with antenna A, the left antenna; B, the top antenna; C, the right antenna; D, the bottom antenna; and E, the antenna filling the center space around which antennas A,B,C, and D are arranged.
- An elevation difference signal is obtained by subtracting the return energy from antenna D from the return energy of antenna B and an azimuth difference signal is provided by subtracting the return energy of antenna C from the return energy of antenna A.
- a sum signal is provided by the return energy of antenna E alone.
- the antenna 10 is shown as having an aperture 12 circular in shape and as having an array of radiating and receiving elements 20.
- the antenna is a broadband antenna designed to operate, for example, in a missile.
- the aperture is partitioned into substantially equal and symmetrical quadrants 14, 15, 16 and 17.
- Quadrants 14 and 15 define the top elevation hemisphere for aperture 12, while quadrants 16 and 17 define the bottom elevation hemisphere for aperture 12. More particularly, quadrant 14 defines the top left quadrant, quadrant 15 the top right quadrant, quadrant 16 the bottom right quadrant, and quadrant 17 the bottom left quadrant.
- Strip 24 includes strip K, which contains elements which may be taken substantially equally from quadrants 14 and 17.
- Strip 24 also includes strip I which contains elements which may be taken substantially equally from quadrants 15 and 16.
- Strip 26 includes strip H, which contains elements which may be taken substantially equally from quadrants 14 and 15 and strip J, which contains elements. which may be taken substantially equally from quadrants 16 and 17.
- quadrants A, B, C, and D refer to the remainder of quadrants 14, 15, 16, and 17 in FIG. 2a respectively after taking the respective elements for strips 24 and 26.
- strips 24 and 26 are selectively excluded in generating the difference pattern signals, resulting in a reduction in the sidelobes for the azimuth and elevation difference patterns as further explained below.
- FIG. 2b there is shown a diagram of the sum and difference network for connecting the return signals from the quadrants and strips of FIG. 2b for achieving low difference pattern sidelobes.
- the sum pattern to be used for the antenna of FIG. 2a, to be provided by the network of FIG. 2b, is (A + B + C + D) + ( H + I + J + K) ;
- the azimuth difference pattern is (A + D + K) - (B + C + I) ;
- the elevation difference pattern is (A + B + H) - (C + D + J) .
- each quadrant and strip is selectively coupled with that of one other quadrant or strip at parallel hybrids 41, 42, 43, and 44.
- the hybrids are standard commerically available sum and difference hybrids, i.e, sum and difference magic T's, commonly used in comparator circuits.
- the coupling coefficient for each hybrid would vary depending on aperture design and would be chosen to provide, as close as possible, an ideal sum distribution pattern.
- the returns from strips K and I are fed into hybrid 41.
- the returns from strips H and J are likewise fed into hybrid 42.
- the returns from quadrants A and D are fed into hybrid 43.
- the returns from quadrants B and C are fed into hybrid 44.
- K and I are combined at hybrid 41 to provide (K + I) and the difference is taken at hybrid 41 to provide (K - I).
- the same process is repeated for H and J at hybrid 42 to provide (H+J) and (H-J); at hybrid 43 to provide (A + D) and (A -D); and at hybrid 44 to provide (B + C) and (B - C).
- the outputs from hybrids 41, 42, 43, and 44 are selectively added and subtracted to provide further desirable combinations of quadrants A, B, C, D and strips H, I, J, and K.
- the (K + I) output from hybrid 41 and the (H + J) output from hybrid 42 are combined in phase at hybrid 51 for providing at the output of hybrid 51 (H + J + K + I) .
- the (B + C) output at hybrid 44 is subtracted from the (A + D) output of hybrid 43 at hybrid 52 for providing at the output of hybrid 52 (A +D)-(B + C) , and is combined in phase with (B + C) to provide (A + D + B + C) .
- the (A-D) output of hybrid 43 is likewise combined with the (B-C) output of hybrid 44 for providing at the output of hybrid 53 (A + B) - (C + D) and is subtracted at hybrid 53 to provide at the output of hybrid 53, (A + C) - (B + D) which is not used and is therefore terminated.
- hybrid 51 (H + J) + (K + I) is combined with the (A + B) + (C + D) output of hybrid 52 at hybrid 61 to provide (A + B + C + D) + (H + I + J + K) .
- the (K - I) output of hybrid 41 is combined with the (A + D) - (B + C) output of hybrid 52 at hybrid 62 to provide (A + D + K) - (B + C + I) at the output of hybrid 62.
- the (H - J) output of hybrid 42 is combined with the (A + B) - (C + D) output of hybrid 53 at hybrid 63 to provide (A + B + H) - (C + D + J) at the output of hybrid 63.
- FIG. 4a and FIG. 4b Shown in FIG. 4a and FIG. 4b are comparisons of measured data for the original difference signals using the whole ("original") aperture return signal of FIG. 2a compared to the difference signals with the horizontal and vertical strips selectively excluded using the return in FIG. 2b.
- the difference signals are for all practical purposes symmetrical on either side of boresight and the discussion below applies to the sidelobe patterns on both the right and left of boresight.
- Fig. 4a Shown is the original configuration elevation sum and difference signals (left side figure) and the elevation difference signal with horizontal strips I and K excluded (right side figure). It is observed from Fig. 4a that the original elevation difference pattern has a near in sidelobe of around -15dB at around 20°. Compare this to the right side figure of 4a, which depicts the elevation difference pattern with the horizontal strip excluded. Here the near in sidelobes rapidly drop to near -25dB at 30° and form deep nulls.
- Fig. 4b Shown are the original azimuth sum and difference signals (left side figure) and the azimuth difference signal with strips H and J excluded (right side figure).
- the original azimuth difference pattern displays near-in sidelobes of - 15dB at around 25°.
- the azimuth difference pattern with the vertical strip excluded is markedly different.
- the near in sidelobes are -27dB at 25° and deep nulls are formed.
- Fig. 3a shows an embodiment (not subject of the present invention) wherein a center section of the elements are selectively excluded in generating the difference patterns.
- Fig. 3b shows a sum and difference network for providing the desired sum and difference signals.
- the circuit of Fig. 3b has the advantage of using only five hybrids, which is of high utility for applications where space is very important (i.e., missile radar systems, etc.). Data for the embodiment shown in Figs. 3a and 3b is comparable to that for the embodiment shown in Fig. 2a and Fig. 2b.
- one embodiment of the invention by selectively excluding a vertical strip of elements along the azimuth axis, can reduce the sidelobes for the azimuth difference pattern and, by selectively excluding a horizontal strip of elements along the elevation axis, can reduce the sidelobes for the elevation difference pattern.
- excluding other predetermined cross section patterns of the aperture may permit further optimization of the signals, i.e., permit other combinations for reducing the sidelobes in the difference pattern while minimizing circuit complexity and maintaining sum signal quality.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radar Systems Or Details Thereof (AREA)
Claims (3)
- Antennensystem, das für Radareinsatz adaptiert ist und zum Verfolgen eines Zieles Summen- und Differenzsignale verwendet, mit:a) einer Monopulsantenne (10), welchea1) eine Querschnittsfläche aufweist, um Energie in Richtung eines Zieles auszusenden und um Rücklaufenergie zu empfangen;a2) ein Array von erregbaren Elementen (20) aufweist, welche symmetrisch um eine Azimut- sowie eine Elevationsachse angeordnet sind; wobeia3) die Querschnittsfläche längs der Elevationsachse in einen linken und einen rechten horizontalen Streifen (K,I), längs der Azimutachse in einen oberen und einen unteren vertikalen Streifen (H,J), sowie in vier Quadranten (A,B,C,D) aufgeteilt ist, wobei jeder der Streifen (K,I;H,J) und Quadranten (A,B,C,D) mehrere der erregbaren Elemente (20) enthält;b) Schaltungsmitteln, die an die erregbaren Elemente (20) gekoppelt sind, wobei die Schaltungsmittel unter Verwendung von Rücklaufenergie von den erregbaren Elementen (20) ein Summensignal sowie Azimut- und Elevations-Differenzsignale erzeugen, wobei das Azimut-Differenzsignal unter Auslassung der Rücklaufenergie von den erregbaren Elementen (20) in den vertikalen Streifen (H,J) berechnet wird, und wobei das Elevations-Differenzsignal unter Auslassung der Rücklaufenergie von den erregbaren Elementen (20) in den horizontalen Streifen (K,I) berechnet wird;dadurch gekennzeichnet, daßc) die Schaltungsmittelc1) das Summensignal als die Summe der Rücklaufenergie von allen erregbaren Elementen (20) bereitstellen,c2) das Azimut-Differenzsignal bereitstellen als die Differenz zwischenc2.1) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den beiden linken der Quadranten (A,D) und dem linken horizontalen Streifen (K), sowiec2.2) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den beiden rechten der Quadranten (B,C) und dem rechten horizontalen Streifen (I),c3) das Elevations-Differenzsignal bereitstellen als die Differenz zwischenc3.1) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den beiden oberen der Quadranten (A,B) und dem oberen vertikalen Streifen (H), sowiec3.2) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den unteren beiden der Quadranten (D,C) und den unteren vertikalen Streifen (J).
- Antennensystem nach Anspruch 1, dadurch gekennzeichnet, daß die Schaltungsmittel eine hybrides Netzwerk (41-44;51-53;61-63) umfassen.
- Verfahren zum Betreiben eines für Radareinsatz adaptierten Antennensystemes, das Summen- und Differenzsignale verwendet, um ein Ziel zu verfolgen, mit dem Schritten:a) Aussenden von Energie in Richtung des Zieles und Empfangen von Rücklaufenergie mit einer Monopulsantenne (10);b) Aufteilen einer Querschnittsfläche der Monopulsantenne (10) in einen linken und einen rechten horizontalen Streifen (K,I) längs der Elevationsachse, einen oberen und einen unteren vertikalen Streifen längs der Azimutachse, sowie in vier Quadranten (A,B,C,D), wobei jeder der Streifen (K,I;H,J) und Quadranten (A,B,C,D) mehrere erregbare Elemente (20) umfaßt, die symmetrisch um die Azimut- und Elevationsachse angeordnet sind;c) Koppeln der Rücklaufenergie von den erregbaren Elementen (20) der Monopulsantenne (10) an Schaltungsmittel,d) mit den Schaltungsmitteln Erzeugen vond1) einem Summensignal,d2) einem Azimut-Differenzsignal, wobei die Rücklaufenergie von den erregbaren Elementen (20) in den vertikalen Streifen (H,J) ausgelassen wird,d3) einem Elevations-Differenzsignal, wobei die Rücklaufenergie von den erregbaren Elementen (20) in den horizontalen Streifen (K,I) ausgelassen wird,gekennzeichnet durch die Schritte:e) Erzeugen des Summensignales als Summe aus der Rücklaufenergie von allen erregbaren Elementen (20),f) Erzeugen des Azimut-Differenzsignales als Differenz zwischenf1) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den beiden linken der Quadranten (A,D) und dem linken horizontalen Streifen (K) sowief2) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den beiden rechten der Quadranten (B,C) und dem rechten horizontalen Streifen (I),g) Erzeugen des Elevations-Differenzsignales als Differenz zwischeng1) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den beiden oberen der Quadranten (A,B) und dem oberen vertikalen Streifen (H) sowieg2) der Summe aus der Rücklaufenergie von den erregbaren Elementen (20) in den beiden unteren der Quadranten (D,C) sowie dem untern vertikalen Streifen (J).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP92116842A EP0544081B1 (de) | 1986-11-17 | 1987-10-01 | Monopulsantenne mit verbesserter Nebenkeulenunterdrückung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93157186A | 1986-11-17 | 1986-11-17 | |
US931571 | 1986-11-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92116842.3 Division-Into | 1992-10-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0289553A1 EP0289553A1 (de) | 1988-11-09 |
EP0289553B1 true EP0289553B1 (de) | 1993-07-28 |
Family
ID=25460993
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92116842A Expired - Lifetime EP0544081B1 (de) | 1986-11-17 | 1987-10-01 | Monopulsantenne mit verbesserter Nebenkeulenunterdrückung |
EP87907265A Expired - Lifetime EP0289553B1 (de) | 1986-11-17 | 1987-10-01 | Monopulsantenne mit verbesserter nebenstrahlungsunterdrückung |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92116842A Expired - Lifetime EP0544081B1 (de) | 1986-11-17 | 1987-10-01 | Monopulsantenne mit verbesserter Nebenkeulenunterdrückung |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP0544081B1 (de) |
JP (1) | JPH0682980B2 (de) |
DE (1) | DE3786787T2 (de) |
IL (1) | IL84113A (de) |
WO (1) | WO1988004109A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3786787T2 (de) * | 1986-11-17 | 1993-11-18 | Hughes Aircraft Co | Monopulsantenne mit verbesserter nebenstrahlungsunterdrückung. |
JPH01268210A (ja) * | 1988-04-19 | 1989-10-25 | Mitsubishi Electric Corp | アンテナ装置 |
GB2279529B (en) * | 1989-05-18 | 1995-05-31 | Plessey Co Plc | Radar |
JPH0834382B2 (ja) * | 1989-09-01 | 1996-03-29 | デイエックスアンテナ株式会社 | 自動追尾用平面アンテナ |
JPH06100643B2 (ja) * | 1991-12-17 | 1994-12-12 | 宇宙開発事業団 | モノパルス追尾装置 |
FR2870992B1 (fr) * | 2004-06-01 | 2006-09-01 | Amp C3C Sa | Antenne de telecommunications pour ensemble de poursuite |
DE102004040015B4 (de) | 2004-08-16 | 2006-12-07 | S.M.S., Smart Microwave Sensors Gmbh | Verfahren und Vorrichtung zur Detektion eines von einer Sendeantenne ausgesandten elektromagnetischen Signals |
US8593334B2 (en) | 2011-07-29 | 2013-11-26 | The Boeing Company | Split aperture monopulse antenna system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3711858A (en) * | 1971-02-24 | 1973-01-16 | Westinghouse Electric Corp | Monopulse radar antenna structure |
US3965475A (en) * | 1975-05-30 | 1976-06-22 | The United States Of America As Represented By The United States Administrator Of The National Aeronautics And Space Administration | Switchable beamwidth monopulse method and system |
DE2736497A1 (de) * | 1977-08-12 | 1979-02-22 | Siemens Ag | Monopulserregersystem fuer eine strahlungsgespeiste antenne |
US4754286A (en) * | 1984-10-18 | 1988-06-28 | Siemens Aktiengesellschaft | Line-fed phase controlled antenna |
DE3786787T2 (de) * | 1986-11-17 | 1993-11-18 | Hughes Aircraft Co | Monopulsantenne mit verbesserter nebenstrahlungsunterdrückung. |
-
1987
- 1987-10-01 DE DE19873786787 patent/DE3786787T2/de not_active Expired - Fee Related
- 1987-10-01 WO PCT/US1987/002488 patent/WO1988004109A1/en active IP Right Grant
- 1987-10-01 EP EP92116842A patent/EP0544081B1/de not_active Expired - Lifetime
- 1987-10-01 EP EP87907265A patent/EP0289553B1/de not_active Expired - Lifetime
- 1987-10-01 JP JP62506862A patent/JPH0682980B2/ja not_active Expired - Lifetime
- 1987-10-06 IL IL8411387A patent/IL84113A/xx not_active IP Right Cessation
Non-Patent Citations (3)
Title |
---|
"Introduction to Radar Systems", 2nd Edition, M.I.Skolnik, 1984, Mc Graw-Hill, pp 162-163 * |
IEEE Transactions on Antennas and Propagation, volume AP-22, no. 3, May 1974, N.S. Wong et al."A multielement high power monopulse feed with low sidelobe and high aperture efficiency", pages 402-407 see figures 3,5; paragraph:"Description of 32-element monopulse feed", * |
Patent Abstracts of Japan, volume 7, no. 258 (E-211)(1403), 17 November 1983, & JP, A, 58142607 (NIPPON DENSHIN DENWA KOSHA) 24 August 1983 * |
Also Published As
Publication number | Publication date |
---|---|
DE3786787T2 (de) | 1993-11-18 |
EP0289553A1 (de) | 1988-11-09 |
DE3786787D1 (de) | 1993-09-02 |
EP0544081B1 (de) | 1995-11-22 |
IL84113A (en) | 1991-08-16 |
JPH01502151A (ja) | 1989-07-27 |
EP0544081A1 (de) | 1993-06-02 |
JPH0682980B2 (ja) | 1994-10-19 |
WO1988004109A1 (en) | 1988-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4720712A (en) | Adaptive beam forming apparatus | |
Haupt | Phase-only adaptive nulling with a genetic algorithm | |
Cheston et al. | Phased array radar antennas | |
Agrawal et al. | Beamformer architectures for active phased-array radar antennas | |
KR100871432B1 (ko) | 저고도 레이더 안테나 | |
CA2283527C (en) | Boxhorn array architecture using folded junctions | |
US5025493A (en) | Multi-element antenna system and array signal processing method | |
EP0289553B1 (de) | Monopulsantenne mit verbesserter nebenstrahlungsunterdrückung | |
US4766437A (en) | Antenna apparatus having means for changing the antenna radiation pattern | |
US4146889A (en) | Method and apparatus for sidelobe reduction in radar | |
US4872016A (en) | Data processing system for a phased array antenna | |
US6362774B1 (en) | Cooperative radar system | |
EP1320148B1 (de) | Gruppenantennensystem mit superhohem Gewinn und Steuerungsverfahren dafür | |
US5030960A (en) | Monopulse antenna with improved sidelobe suppression | |
Morgan | Spiral antennas for ESM | |
Lin et al. | Sidelobe reduction through subarray overlapping for wideband arrays | |
US6906665B1 (en) | Cluster beam-forming system and method | |
Kinsey | An edge-slotted waveguide array with dual-plane monopulse | |
US4103303A (en) | Frequency scanned corner reflector antenna | |
US4001837A (en) | Dual scan corner reflector antenna | |
Yu | Advanced monopulse processing of phased array radar | |
US5216428A (en) | Modular constrained feed for low sidelobe array | |
Kanno et al. | Digital beam forming for conformal active array antenna | |
Fletcher et al. | Derivation of orthogonal beams and their application to beamforming in small phased arrays | |
Sarrazin et al. | Direction-of-Arrival Ambiguities Mitigation in Multibeam Leaky-Wave Antennas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19880804 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19900927 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
XX | Miscellaneous (additional remarks) |
Free format text: TEILANMELDUNG 92116842.3 EINGEREICHT AM 07/06/88. |
|
REF | Corresponds to: |
Ref document number: 3786787 Country of ref document: DE Date of ref document: 19930902 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87907265.0 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19960924 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960926 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980501 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87907265.0 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010910 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010914 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010919 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010924 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20021001 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051001 |