EP0288988B1 - Adaptive antenna system for high frequencies, especially for ultra-high frequencies - Google Patents

Adaptive antenna system for high frequencies, especially for ultra-high frequencies Download PDF

Info

Publication number
EP0288988B1
EP0288988B1 EP88106723A EP88106723A EP0288988B1 EP 0288988 B1 EP0288988 B1 EP 0288988B1 EP 88106723 A EP88106723 A EP 88106723A EP 88106723 A EP88106723 A EP 88106723A EP 0288988 B1 EP0288988 B1 EP 0288988B1
Authority
EP
European Patent Office
Prior art keywords
peripheral
radio
waveguide
antenna
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88106723A
Other languages
German (de)
French (fr)
Other versions
EP0288988A1 (en
Inventor
Jean-Jacques Bernard
Jean Robieux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Alcatel Alsthom Compagnie Generale dElectricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Alcatel Alsthom Compagnie Generale dElectricite filed Critical Alcatel SA
Priority to AT88106723T priority Critical patent/ATE86412T1/en
Publication of EP0288988A1 publication Critical patent/EP0288988A1/en
Application granted granted Critical
Publication of EP0288988B1 publication Critical patent/EP0288988B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2676Optically controlled phased array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems

Definitions

  • the present invention relates to an adaptive antenna system for radio waves, in particular of microwave frequencies.
  • an antenna system is said to be adaptive when, from a fixed antenna used in transmission, it is possible to modify the direction of the beam which is radiated by this antenna. If the latter is used for reception and can receive beams from various sources, only one of these beams being selected by a central organ of the system, it is the direction of the beam thus selected that an adaptive system makes it possible to modify.
  • the antenna can of course also be mobile. It is then the direction of the beam relative to the antenna that an adaptive system makes it possible to modify. This adaptation in direction can be supplemented by an adaptation relating to the shape of the radiation diagram.
  • a telecommunications satellite must allow information to be transmitted between points in a given area of the earth.
  • the antenna must continuously illuminate or target this area despite the translational and rotational movements of the satellite.
  • Radar will be more effective if the antenna beam can be directed in a flexible and rapid manner towards the various targeted targets, that is to say those which we want to observe more particularly.
  • the link is characterized by the ratio (Q) signal (S) to noise (B) plus interference (I), the source of interference being assumed to be in the field of view of the antenna, that is:
  • the present invention aims in particular to provide an adaptive antenna system for radio waves, in particular of microwave frequencies, simpler and / or lighter and / or less expensive than known systems.
  • FIG. 1 represents a block diagram of a composite transmission channel of a first system according to the invention.
  • FIG. 2 represents a block diagram of a composite reception channel of the same system.
  • FIG. 3 represents a block diagram of a peripheral part partially common to these two channels.
  • FIG. 4 represents a block diagram of a group of composite transmission channels of the same system.
  • FIG. 5 represents a block diagram of a group of composite reception channels of the same system.
  • FIG. 6 represents a block diagram of an optical part of a composite channel of a second system according to the invention with an optical phase control member, as a variant.
  • the present invention uses, for example in the case of the emission of microwave radiation, a new method of distributing the amplitude and the phase of the electromagnetic field over the surface of the antenna, this in order to make it possible to realize the 'self-adaptation of the radiated beam. It takes advantage of the properties of optical waveguides and semiconductor lasers, the frequency of which can be chosen by adapting the composition of the material.
  • the self-adaptive beam control system In the case of a telecommunications satellite, the self-adaptive beam control system must be light despite the size of the antenna which may be large. Its reliability must be high and its price axxeptable. In all applications these characteristics are essential.
  • an optical method of distributing the amplitude and the phase of the microwave wave leads to light, efficient systems and of a cost which will often prove suitable.
  • phase and possibly the amplitude of the field at each point of the antenna are developed in this internal area either by acting directly on the microwave wave or by passing through an optical wave.
  • An essential novelty of the invention is to take advantage of possibilities offered by optics to distribute in a simple, light and inexpensive manner the field of the microwave wave on the surface of the antenna.
  • the amplitude and the phase of the wave are worked out in the internal zone by methods which can be microwave or optical.
  • the amplitude and phase of the wave are controlled by electronic methods which allow rapid self-adaptivity of the radiated beam to be obtained.
  • the number n of elementary sources to be excited on the radiating surface is determined as follows: If all the elements of the antenna are excited in phase, the radiation is maximum in the direction normal to the plane of the antenna.
  • the radiation properties of an antenna can be characterized by two parameters: 2B0: width of the radiated beam 2B1: width of the angle within which the direction of the radiation can be displaced.
  • the ratio (B1 / B0) 2 is given by the relation (2). It is equal to the number n of elementary sources which can be supplied independently.
  • FIGS. 1 and 2 represent the means of excitation of an elementary source and of reception from an elementary receiver with an amplitude and a phase that can be controlled electrically, this source and this receiver both being constituted by the same antenna element EA1. All of these means constitute the composite transmission and reception channels previously mentioned and corresponding to this element.
  • a microwave transmitter EH constitutes the central organ previously mentioned. In reception it is an RH receiver which constitutes this organ (see fig. 2).
  • the transmitted wave propagates from this microwave transmitter to the element EA1 of the antenna where it is radiated.
  • the wave received in EA1 propagates to the RH receiver.
  • the waves transmitted and received are oriented on different paths by a non-reciprocal junction CI, called a circulator and containing for example ferrites. These paths of the waves transmitted and received are shown diagrammatically in FIG. 3.
  • an internal microwave guide HIE1 from the transmitter EH to the emission laser LE1 is required, and a peripheral microwave guide HPE1 from the detector DE1 to the amplifier AE1.
  • This amplifier is connected to the antenna element EA1 by a guide assembly HP1 comprising the members described using FIG. 3. It should be understood that the organs mentioned above with the number 1 at the end of their reference designation constitute examples corresponding to the antenna element EA1.
  • Each antenna element EAi corresponds to equivalent bodies whose reference designations end in the number i.
  • n transmitters n varactors, n modulators, etc.
  • 2 n optical waveguides are required.
  • antenna elements EA1, EA2 ... EAn are grouped into groups of p elements each, such as the elements EA1, EA2 ... EAp.
  • a microwave transmitter EH is common to all the antenna elements EA1, EA2 ... EAp of the same group. It emits a microwave signal which is modulated by the informative signal to be transmitted and which is received by p varactors of transmission VE1, VE2 ... VEp. The latter apply phase shifts corresponding to these antenna elements, respectively. Each signal thus phase shifted modulates a semiconductor laser of emission LE1, LE2 ... LEp whose power can correspond to the amplitude of the field which must radiate the corresponding antenna element EA1, EA2 ... EAp. The emission frequencies of all these lasers are different and each corresponds to an antenna element.
  • This filter constitutes said internal emission deflector. It transmits light from these various guides to a common guide GE which connects the central area in which the EH transmitter is located, to a peripheral antenna area where said circulating amplifiers and antennas are located.
  • This guide is said interzonal guide.
  • the lights of the various wavelengths are directed by a peripheral FPE emission deflector, also constituted by a filter, towards various corresponding optical guides GPE1, GPE2, ... GPEp which direct them towards as many detectors DE1, DE2, ... DEp which are followed by as many microwave amplifiers AE1, AE2, ... AEp.
  • a peripheral FPE emission deflector also constituted by a filter
  • GPE1, GPE2, ... GPEp which direct them towards as many detectors DE1, DE2, ... DEp which are followed by as many microwave amplifiers AE1, AE2, ... AEp.
  • the signals received by these antenna elements are amplified into AR1, AR2, ... ARp and modulate a number p of corresponding lasers LR1, LR2, ... LRp which emit at the same frequencies as previously indicated in guides optical waves GPR1, GPR2, ... GPRp.
  • These the latter converge on a filter constituting a peripheral FPR reception deflector which injects the corresponding lights into a common interzonal optical guide GR.
  • a filter constituting an internal FIR reception deflector directs the lights of the various frequencies on as many guides GIR1, GIR2, ... GIRp.
  • the light signals are detected in detectors DR1, DR2 ... DRp, and the resulting microwave signals are phase shifted by varactors VR1, VR2 ... VRp applying the phase shifts corresponding to the antenna elements EA1, EA2 ... EAp.
  • These phase shifts are chosen so that the signals thus phase-shifted then rediscover the mutual phase relationships that they had when they were transmitted by an external transmitter, which is far from the present antenna system and which is targeted by the latter.
  • These signals are received by the common microwave receiver RH. The latter restores the information carried by the signals received by the antenna elements from the targeted external transmitter.
  • the simplification provided by the invention is substantial since it makes it possible to divide by p or more the number of microwave emitters EH, receivers RH and long wave guides. Thanks to this simplification, the system is feasible under satisfactory economic conditions in a large number of cases.
  • This number would be 200 if the possibilities offered by the invention were not used, which would pose sometimes insurmountable problems. Thanks to this, 5 EH transmitters are needed instead of 100. Similarly 5 RH receivers must be implemented instead of 100.
  • phase shift which is carried out by a method electronics in a varactor.
  • the microwave phase shifted thus modulates a laser LEi of frequency Vi.
  • the amplitude of the wave radiated in EAi can be determined by the power of the laser, the phase being determined by the varactor VEi.
  • these two operations can be carried out by an optical method.
  • This method is shown diagrammatically in FIG. 6 which relates to the case of transmission and must be compared with FIG. 1, the more or less similar elements bearing the same references with the letter A or B instead of the number 1.
  • a LEA laser emits light at a suitable frequency (for example the frequency Vi previously considered).
  • This light is divided and transmitted on the one hand to an electrically controlled optical phase shifter VEA which applies the appropriate phase shift to it, on the other hand to an amplitude modulator LEB which modulates it by a microwave signal itself modulated by the informative signal to issue.
  • the two resulting light beams are combined in a long GEA optical guide at the output of which the light signal is detected by a DEA detector.
  • the latter restores the microwave signal applied to the LEB modulator, with the phase shift provided by the VEA phase shifter. This microwave signal can therefore be used like that provided by the detector DE1.
  • a similar method can be applied at reception.
  • the optical modulator introduces the phase shift which has been chosen for the elementary source EAi, a phase shift of the microwave wave is obtained at the desired value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Communication System (AREA)

Abstract

The antenna includes at least one group of antenna elements (EA1, EA2, . . . , EAp). Microwaves emitted by a central emitter (EH) reach a particular element (EA1 for example) by passing through a controllable phase shifter (VE1), a laser (LE1) which modulates a carrier light signal at a frequency specific to said antenna element with the microwaves, via an optical deflector (FIE) which injects said light signal into an optical waveguide (GE) which is common to all of the antenna elements in the group, via an optical deflector (FPE) which directs said light signal to a detector which is specific to said antenna element (EA1), and which reconstitutes the microwaves, and via a microwave amplifier (AE1) which applies the microwaves to said antenna element. The system is applicable to telecommunications and to radar.

Description

La présente invention concerne un système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences.The present invention relates to an adaptive antenna system for radio waves, in particular of microwave frequencies.

On sait qu'un système d'antenne est dit adaptatif quand, à partir d'une antenne fixe utilisée en émission, on peut modifier la direction du faisceau qui est rayonné par cette antenne. Si cette dernière est utilisée en réception et peut recevoir des faisceaux de provenances diverses, un seul de ces faisceaux étant sélectionné par un organe central du système, c'est la direction du faisceau ainsi sélectionné qu'un système adaptatif permet de modifier. L'antenne peut aussi bien entendu être mobile. C'est alors la direction du faisceau par rapport à l'antenne qu'un système adaptatif permet de modifier. Cette adaptation en direction peut être complétée par une adaptation portant sur la forme du diagramme de rayonnement.It is known that an antenna system is said to be adaptive when, from a fixed antenna used in transmission, it is possible to modify the direction of the beam which is radiated by this antenna. If the latter is used for reception and can receive beams from various sources, only one of these beams being selected by a central organ of the system, it is the direction of the beam thus selected that an adaptive system makes it possible to modify. The antenna can of course also be mobile. It is then the direction of the beam relative to the antenna that an adaptive system makes it possible to modify. This adaptation in direction can be supplemented by an adaptation relating to the shape of the radiation diagram.

L'intérêt de telles adaptations résulte notamment du fait que les ondes électromagnétiques, en particulier les hyperfréquences, sont très utilisées pour les télécommunications et qu'elle le sont aussi pour la détection électromagnétique de la position et de la forme des objets par des systèmes qu'on appelle les radars. Dans ces deux importantes classes d'application il apparaît utile de disposer d'antennes dont le rayonnement peut être adapté en fonction de l'évolution de la tâche à accomplir au cours du temps.The advantage of such adaptations results in particular from the fact that electromagnetic waves, in particular microwaves, are widely used for telecommunications and that they are also used for electromagnetic detection of the position and shape of objects by systems that we call radars. In these two important classes of application, it appears useful to have antennas whose radiation can be adapted according to the evolution of the task to be accomplished over time.

Par exemple un satellite de télécommunication doit permettre une transmission d'information entre des points d'une zone déterminée de la terre. L'antenne doit éclairer ou viser continuement cette zone malgré les mouvements de translation et de rotation du satellite. Pour obtenir une efficacité optimale du système de télécommunication il est nécessaire de faire évoluer le faisceau de l'antenne de telle sorte qu'il éclaire en permanence la surface à l'intérieur de laquelle on veut établir les communications.For example, a telecommunications satellite must allow information to be transmitted between points in a given area of the earth. The antenna must continuously illuminate or target this area despite the translational and rotational movements of the satellite. To obtain an optimal efficiency of the telecommunication system it is necessary to make evolve the beam of the antenna so that it permanently lights the surface inside which one wants to establish the communications.

Un radar sera plus efficace si on peut orienter d'une manière souple et rapide le faisceau de l'antenne vers les diverses cibles visées, c'est-à-dire vers celles que l'on veut plus particulièrement observer.Radar will be more effective if the antenna beam can be directed in a flexible and rapid manner towards the various targeted targets, that is to say those which we want to observe more particularly.

Il est donc souhaitable, au moins dans ces deux types d'applications, de disposer d'un système d'antenne adaptatif. Il est de plus souvent souhaitable que ce système soit autoadaptatif, c'est-à-dire que son adaptation s'effectue automatiquement sous l'action de signaux émis ou renvoyés par la cible visée.It is therefore desirable, at least in these two types of applications, to have an adaptive antenna system. It is moreover often desirable that this system is self-adaptive, that is to say that its adaptation takes place automatically under the action of signals emitted or returned by the targeted target.

On connaît divers systèmes d'antenne adaptatifs pour lesquels il est possible d'adapter le diagramme de rayonnement d'un réseau à une mission donnée, en agissant sur l'amplitude et la phase de ses sources rayonnantes (HUDSON, J. E, "Adaptive array principles" IEE Electromagnetic Waves Series no 11, 1981 Peter Peregrinus Ldt). Une application particulièrement importante pour les techniques spatiales est la réjection de brouilleurs (COHEN, M, "Etude théorique et expérimentaie d'une antenne réseau adaptative". Thèse de Docteur Ingénieur Ecole Nat. Sup. Aéronautique Espace no 82, 1983). (COHEN, M, COMBES, P.F. et MAGNAN, J.C, "Adaptive arrays antenna performances". Comptes Rendus de la 4e Int. Conf. on Antennas and Propagation avr. 1985. Warwick p. 241-245 IEE. Conf. Publ.).Various adaptive antenna systems are known for which it is possible to adapt the radiation pattern of a network to a given mission, by acting on the amplitude and the phase of its radiating sources (HUDSON, J. E, " Adaptive array principles "IEE Electromagnetic Waves Series No. 11, 1981 Peter Peregrinus Ldt). A particularly important application for space techniques is the rejection of jammers (COHEN, M, "Theoretical and experimental study of an adaptive network antenna". Doctoral thesis Engineer School Nat. Sup. Aeronautics Space n o 82, 1983). (COHEN, M, COMBES, PF and MAGNAN, JC, "Adaptive arrays antenna performances". Reports of the 4th Int. Conf. On Antennas and Propagation Apr. 1985. Warwick p. 241-245 IEE. Public Conf.) .

Dans ce cas la liaison est caractérisée par le rapport (Q) signal (S) sur bruit (B) plus interférence (I), la source d'interférence étant supposée se trouver dans le champ de vue de l' antenne, soit :

Figure imgb0001
In this case, the link is characterized by the ratio (Q) signal (S) to noise (B) plus interference (I), the source of interference being assumed to be in the field of view of the antenna, that is:
Figure imgb0001

Il existe des méthodes d'adaptation qui permettent de trouver, pour chaque configuration de brouillage, une loi d'alimentation de n sources de l'antenne qui minimise la dégradation du signal utile et rend le rapport Q optimal (APPLEBAUM (S), "Adaptive arrays" IEEE Trans. Ant and Prop (USA) AP.24 no 5, Sept 1976).There are adaptation methods which make it possible to find, for each interference configuration, a law for supplying n sources of the antenna which minimizes the degradation of the useful signal and makes the ratio Q optimal (APPLEBAUM (S), " Adaptive arrays "IEEE Trans. Ant and Prop (USA) AP.24 No. 5, September 1976).

Ces systèmes présentent notamment l'inconvénient d'être relativement complexes, coûteux, et lourds.These systems have the disadvantage of being relatively complex, expensive, and heavy.

La présente invention a notamment pour but de réaliser un système d'antenne adaptatif pour ondes radioélectriques, notamment d'hyperfréquences, plus simple et/ou plus léger et/ou moins coûteux que les systèmes connus.The present invention aims in particular to provide an adaptive antenna system for radio waves, in particular of microwave frequencies, simpler and / or lighter and / or less expensive than known systems.

Ce but est atteint selon l'invention par le système tel que défini dans la revendication principale. En ce qui concerne des caractéristiques préférées de mise en oeuvre de cette invention, référence est faite aux revendications secondaires.This object is achieved according to the invention by the system as defined in the main claim. With regard to preferred characteristics of implementation of this invention, reference is made to the secondary claims.

A l'aide des figures schématiques ci-jointes on va décrire plus particulièrement ci-après, à titre d'exemple non limitatif, comment la présente invention peut être mise en oeuvre dans le cadre de l'exposé qui en a été donné ci-dessus. Lorsqu'un même élément est représenté sur plusieurs figures il y est désigné par le même signe de référence.With the aid of the attached diagrammatic figures, a description will be given more particularly below, by way of nonlimiting example, how the present invention can be implemented within the framework of the description which has been given thereof. above. When the same element is represented in several figures, it is designated by the same reference sign.

La figure 1 représente un schéma par blocs d'une voie composite d'émission d'un premier système selon l'invention.FIG. 1 represents a block diagram of a composite transmission channel of a first system according to the invention.

La figure 2 représente un schéma par blocs d'une voie composite de réception du même système.FIG. 2 represents a block diagram of a composite reception channel of the same system.

La figure 3 représente un schéma par blocs d'une partie périphérique partiellement commune à ces deux voies.FIG. 3 represents a block diagram of a peripheral part partially common to these two channels.

La figure 4 représente un schéma par blocs d'un groupe de voies composites d'émission du même système.FIG. 4 represents a block diagram of a group of composite transmission channels of the same system.

La figure 5 représente un schéma par blocs d'un groupe de voies composites de réception du même système.FIG. 5 represents a block diagram of a group of composite reception channels of the same system.

La figure 6 représente un schéma par blocs d'une partie optique d'une voie composite d'un deuxième système selon l'invention avec un organe optique de commande de phase, en variante.FIG. 6 represents a block diagram of an optical part of a composite channel of a second system according to the invention with an optical phase control member, as a variant.

La présente invention utilise, par exemple dans le cas de l'émission d'un rayonnement hyperfréquence, une nouvelle méthode de distribution de l'amplitude et de la phase du champ électromagnétique sur la surface de l'antenne, ceci pour permettre de réaliser l'autoadaptation du faisceau rayonné. Elle tire parti des propriétés des guides d'ondes optiques et de lasers semi-conducteur dont la fréquence peut être choisie en adaptant la composition du matériau.The present invention uses, for example in the case of the emission of microwave radiation, a new method of distributing the amplitude and the phase of the electromagnetic field over the surface of the antenna, this in order to make it possible to realize the 'self-adaptation of the radiated beam. It takes advantage of the properties of optical waveguides and semiconductor lasers, the frequency of which can be chosen by adapting the composition of the material.

Dans le cas d'un satellite de télécommunications le système autoadaptatif de contrôle du faisceau doit être léger malgré la dimension de l'antenne qui peut être grande. Sa fiabilité doit être grande et son prix axxeptable. Dans toutes les applications ces caractéristiques sont essentielles.In the case of a telecommunications satellite, the self-adaptive beam control system must be light despite the size of the antenna which may be large. Its reliability must be high and its price axxeptable. In all applications these characteristics are essential.

Selon l'invention une méthode optique de distribution de l'amplitude et de la phase de l'onde hyperfréquence conduit à des systèmes légers, efficaces et d'un coût qui se révèlera souvent convenable.According to the invention, an optical method of distributing the amplitude and the phase of the microwave wave leads to light, efficient systems and of a cost which will often prove suitable.

Le principe utilisé est le suivant :

  • on produit un signal ou "onde" hyperfréquence dans un organe central situé dans la zone "interne" précédemment mentionnée, et on distribue cette onde sur la surface de l'antenne par l'intermédiaire de guides d'ondes optiques.
The principle used is as follows:
  • a microwave signal or "wave" is produced in a central member located in the "internal" zone mentioned above, and this wave is distributed over the surface of the antenna by means of optical waveguides.

La phase et éventuellement l'amplitude du champ en chaque point de l'antenne sont élaborées dans cette zone interne soit en agissant directement sur l'onde hyperfréquence soit en passant par l'intermédiaire d'une onde optique.The phase and possibly the amplitude of the field at each point of the antenna are developed in this internal area either by acting directly on the microwave wave or by passing through an optical wave.

Une nouveauté essentielle de l'invention est de tirer parti des possibilités offertes par l'optique pour répartir d'une manière simple, légère et peu coûteuse le champ de l'onde hyperfréquence sur la surface de l'antenne. L'amplitude et la phase de l'onde sont élaborées dans la zone interne par des méthodes qui peuvent être hyperfréquences ou optiques. Le contrôle de l'amplitude et de la phase de l'onde est assuré par des méthodes électroniques qui permettent d'obtenir une rapide autoadaptativité du faisceau rayonné.An essential novelty of the invention is to take advantage of possibilities offered by optics to distribute in a simple, light and inexpensive manner the field of the microwave wave on the surface of the antenna. The amplitude and the phase of the wave are worked out in the internal zone by methods which can be microwave or optical. The amplitude and phase of the wave are controlled by electronic methods which allow rapid self-adaptivity of the radiated beam to be obtained.

On va d'abord calculer le nombre de sources élémentaires à exciter indépendamment sur la surface rayonnante en fonction de la longueur d'onde L, du diamètre a de la surface et de l'angle A à l'intérieur duquel on doit pouvoir choisir l'orientation du faisceau. Chacune de ces sources est constituée par un desdits éléments d'antenne. Ensuite on décrira la structure d'une voie composite correspondant à un élément puis on décrira le système complet.We will first calculate the number of elementary sources to be excited independently on the radiating surface as a function of the wavelength L, the diameter a of the surface and the angle A within which we must be able to choose l beam orientation. Each of these sources is constituted by one of said antenna elements. Then we will describe the structure of a composite path corresponding to an element then we will describe the complete system.

Le nombre n de sources élémentaires à exciter sur la surface rayonnante est déterminé comme suit :
   Si tous les éléments de l'antenne sont excités en phase le rayonnement est maximal dans la direction normale au plan de l'antenne. La largeur 2Bo de l'angle à l'intérieur duquel l'énergie est rayonnée est donnée par les lois de la diffraction : On a

2B₀ = L/a   (1)

Figure imgb0002

The number n of elementary sources to be excited on the radiating surface is determined as follows:
If all the elements of the antenna are excited in phase, the radiation is maximum in the direction normal to the plane of the antenna. The width 2Bo of the angle inside which the energy is radiated is given by the laws of diffraction: We have

2B₀ = L / a (1)
Figure imgb0002

Divisons la surface de l'antenne en éléments carrés de côté b. Choisissons la phase du centre de ces éléments de telle sorte que le rayonnement de l'antenne soit orienté dans une direction faisant l'angle B₁ avec la normale. Pour que le rayonnement dans cette direction soit possible avec une qualité convenable du diagramme de rayonnement il faut que la condition de Rayleigh soit respectée. La surface d'onde réalisée à partir des sources élémentaires de côté b ne doit pas s'écarter de plus de L/4 d'un plan perpendiculaire à la direction définie par l'angle B₁. On doit donc respecter la condition :

b 2 x B₁ inférieur ou égal à L/4

Figure imgb0003

Divide the surface of the antenna into square elements of side b. Let us choose the phase of the center of these elements so that the radiation of the antenna is oriented in a direction making the angle B₁ with the normal. In order for radiation in this direction to be possible with a suitable quality of the radiation diagram, the Rayleigh condition must be respected. The wave surface produced from the elementary sources on side b must not deviate by more than L / 4 from a plane perpendicular to the direction defined by the angle B₁. We must therefore respect the condition:

b 2 x B₁ less than or equal to L / 4
Figure imgb0003

Le nombre minimum de sources élémentaires correspondra donc à :

Figure imgb0004
Figure imgb0005
The minimum number of elementary sources will therefore correspond to:
Figure imgb0004
Figure imgb0005

On constate donc que les propriétés de rayonnement d'une antenne peuvent être caractérisées par deux paramètres :
   2B₀ : largeur du faisceau rayonné
   2B₁ : largeur de l'angle à l'intérieur duquel on peut déplacer la direction du rayonnement.
It can therefore be seen that the radiation properties of an antenna can be characterized by two parameters:
2B₀: width of the radiated beam
2B₁: width of the angle within which the direction of the radiation can be displaced.

Le rapport (B₁/B₀)² est donné par la relation (2). Il est égal au nombre n de sources élémentaires que l'on peut alimenter indépendamment.The ratio (B₁ / B₀) ² is given by the relation (2). It is equal to the number n of elementary sources which can be supplied independently.

Considérons par exemple une antenne rayonnant à L = 5cm dont le diamètre est a = 1m. La largeur 2B₀ du faisceau émis est :
   2B₀ = 0,05 radian soit 3 degrés environ.
Let us consider for example a radiating antenna at L = 5cm whose diameter is a = 1m. The width 2B₀ of the emitted beam is:
2B₀ = 0.05 radian or about 3 degrees.

La relation (5) permet de déterminer le rapport B₁/B₀ par l'égalité (B₁/B₀)² = n.
si
n = 10 2B₁ = 0,15 rad. = 10°
n = 100 2B₁ = 0,45 rad. = 30°
n = 10³ 2B₁ = 1,5 rad = 90°.
The relation (5) makes it possible to determine the ratio B₁ / B₀ by the equality (B₁ / B₀) ² = n.
if
n = 10 2B₁ = 0.15 rad. = 10 °
n = 100 2B₁ = 0.45 rad. = 30 °
n = 10³ 2B₁ = 1.5 rad = 90 °.

Dans le cas de cette antenne typique on peut déplacer le faisceau à l'intérieur d'une plage de 10° si n = 10 et de 30° si n = 100. Ces ordres de grandeur correspondent à des angles suffisamment larges pour permettre d'importantes applications. On considérera particulièrement les cas où n = 10 et n = 100.In the case of this typical antenna, the beam can be moved within a range of 10 ° if n = 10 and 30 ° if n = 100. These orders of magnitude correspond to sufficiently large angles to allow important applications. We will particularly consider the cases where n = 10 and n = 100.

La commande de l'amplitude et de la phase d'une source élémentaire répond aux considérations suivantes :
   Les schémas des figures 1 et 2 représentent les moyens d'excitation d'une source élémentaire et de réception à partir d'un récepteur élémentaire avec une amplitude et une phase commandables électriquement, cette source et ce récepteur étant tous deux constitués par un même élément d'antenne EA1. L'ensemble de ces moyens constituent les voies composites d'émission et de réception précédemment mentionnées et correspondant à cet élément.
The control of the amplitude and the phase of an elementary source answers the following considerations:
The diagrams of FIGS. 1 and 2 represent the means of excitation of an elementary source and of reception from an elementary receiver with an amplitude and a phase that can be controlled electrically, this source and this receiver both being constituted by the same antenna element EA1. All of these means constitute the composite transmission and reception channels previously mentioned and corresponding to this element.

En ce qui concerne l'émission (voir fig.1), un émetteur hyperfréquence EH constitue l'organe central précédemment mentionné. En réception c'est un récepteur RH qui constitue cet organe (voir fig.2).Regarding the transmission (see fig. 1), a microwave transmitter EH constitutes the central organ previously mentioned. In reception it is an RH receiver which constitutes this organ (see fig. 2).

L'onde émise se propage de cet émetteur hyperfréquence jusqu'à l'élément EA1 de l'antenne où elle est rayonnée. L'onde reçue en EA1 se propage vers le récepteur RH. Dans ladite zone périphérique, c'est-à-dire à proximité de l'antenne, les ondes émises et reçues sont orientées sur des chemins différents par une jonction non réciproque CI, appelée circulateur et contenant par exemples des ferrites. Ces parcours des ondes émises et reçues sont schématisées sur la fig 3.The transmitted wave propagates from this microwave transmitter to the element EA1 of the antenna where it is radiated. The wave received in EA1 propagates to the RH receiver. In said peripheral zone, that is to say near the antenna, the waves transmitted and received are oriented on different paths by a non-reciprocal junction CI, called a circulator and containing for example ferrites. These paths of the waves transmitted and received are shown diagrammatically in FIG. 3.

La commande de l'amplitude et de la phase d'un élément d'antenne EA1 demande :
   Dans la voie d'émission :

  • un émetteur de signal hyperfréquence EH modulé par le signal informatif à transmettre,
  • un varactor d'émission VE1 commandant la phase de ce signal hyperfréquence et constituant le dit organe de commande de phase,
  • un laser d'émission LE1 émettant une lumière modulée par ce signal hyperfréquence et constituant un dit organe de transformation interne,
  • un guide d'onde optique interzonal d'émission GE,
  • un détecteur d'onde optique DE1 pour restituer le signal hyperfréquence, ce détecteur consituant un dit organe de transformation périphérique
  • et un amplificateur d'émission AE1 pour alimenter l'élément d'antenne EA1, le gain de chacun des amplificateurs analogues AE1, AE2...AEp étant choisi et éventuellement commandable pour réaliser une adaptation du diagramme de rayonnement.
The amplitude and phase control of an EA1 antenna element requires:
In the emission channel:
  • an EH microwave signal transmitter modulated by the informative signal to be transmitted,
  • an emission varactor VE1 controlling the phase of this microwave signal and constituting said phase control member,
  • an emission laser LE1 emitting light modulated by this microwave signal and constituting a said internal transformation member,
  • an interzonal optical emission waveguide GE,
  • an optical wave detector DE1 for reproducing the microwave signal, this detector constituting a said peripheral transformation member
  • and a transmission amplifier AE1 for supplying the antenna element EA1, the gain of each of the analog amplifiers AE1, AE2 ... AEp being chosen and possibly controllable to carry out an adaptation of the radiation diagram.

Il faut de plus un guide hyperfréquence interne HIE1 allant de l'émetteur EH au laser d'émission LE1, et un guide hyperfréquence périphérique HPE1 allant du détecteur DE1 à l'amplificateur AE1. Cet amplificateur est relié à l'élément d'antenne EA1 par un ensemble de guidage HP1 comportant les organes décrits à l'aide de la figure 3. Il doit être compris que les organes mentionnés ci-dessus avec le chiffre 1 à la fin de leur appellation de référence constituent des exemples correspondant à l'élément d'antenne EA1. A chaque élément d'antenne EAi correspondent des organes équivalents dont les appellations de référence se terminent par le nombre i.In addition, an internal microwave guide HIE1 from the transmitter EH to the emission laser LE1 is required, and a peripheral microwave guide HPE1 from the detector DE1 to the amplifier AE1. This amplifier is connected to the antenna element EA1 by a guide assembly HP1 comprising the members described using FIG. 3. It It should be understood that the organs mentioned above with the number 1 at the end of their reference designation constitute examples corresponding to the antenna element EA1. Each antenna element EAi corresponds to equivalent bodies whose reference designations end in the number i.

La voie de réception comporte des organes analogues dans les appellations de référence desquels la lettre E est remplacée par la lettre R. Ce sont notamment, pour l'élément d'antenne EA1 :

  • un amplificateur de réception AR1 recevant le signal hyperfréquence capté par cet élément d'antenne, ceci par l'intermédiaire de l'ensemble de guidage HP1,
  • un guide hyperfréquence périphérique de réception HPR1,
  • un laser LR1 constituant un dit organe de transformation périphérique,
  • un guide d'onde optique interzonal de réception GR,
  • un détecteur de réception DR1 constituant un dit organe de transformation interne,
  • un guide hyperfréquence interne de réception HIR1 avec un varactor VR1 constituant ledit organe de commande de phase,
  • et un réception hyperfréquence RH constituant ledit organe central. Ce récepteur additionne les signaux reçus des diverses voies avec des pondérations convenables éventuellement commandables pour adapter la forme du diagramme de réception du système d'antenne.
The reception channel includes analogous bodies in the reference designations of which the letter E is replaced by the letter R. These are notably, for the antenna element EA1:
  • a reception amplifier AR1 receiving the microwave signal picked up by this antenna element, this via the guide assembly HP1,
  • a peripheral HPR1 reception microwave guide,
  • a LR1 laser constituting a said peripheral transformation member,
  • an interzonal optical reception waveguide GR,
  • a reception detector DR1 constituting a said internal transformation member,
  • an internal microwave reception guide HIR1 with a varactor VR1 constituting said phase control member,
  • and a RH microwave reception constituting said central organ. This receiver adds the signals received from the various channels with suitable weights which can be controlled to adapt the shape of the reception diagram of the antenna system.

On va maintenant examiner la commande de l'amplitude et de la phase de n sources élémentaires, par exemple dans le cas l'émission.We will now examine the control of the amplitude and phase of n elementary sources, for example in the case of transmission.

On peut envisager de commander n sources élémentaires en mettant en parallèle n voies d'emission et de réception. Pour réaliser un tel système il faudrait un nombre n de chacun des composants des chaînes : n émetteurs, n varactors, n modulateurs, etc... En particulier il faut 2 n guides d'ondes optiques.It is conceivable to control n elementary sources by putting n transmission and reception channels in parallel. To make such a system, a number n of each of the chain components would be required: n transmitters, n varactors, n modulators, etc. In particular, 2 n optical waveguides are required.

L'accroissement du nombre des composants lorsque n augmente est un inconvénient qui ne doit pas être négligé. Il est vrai que tous ces composants, sauf les guides d'ondes, peuvent être élaborés par les méthodes collectives qui les rendent fiables et peu coûteux. Cependant il est d'un grand intérêt de chercher à diminuer le nombre des composants pour faire décroître le coût du système. Il est particulièrement utile de diminuer le nombre de guides d'ondes interzonaux qui sont relativement longs et occupent un espace substantiel si leur nombre est élevé. Le système selon l'invention diminue le nombre de certains composants dont celui de ces guides d'ondes. Les schémas des trajets suivis par l'onde à l'émission et à la réception sont représentés sur les figures 4 et 5.The increase in the number of components as n increases is a drawback which should not be overlooked. It is true that all of these components, except the waveguides, can be produced by collective methods which make them reliable and inexpensive. However, it is of great interest to seek to reduce the number of components in order to decrease the cost of the system. It is particularly useful to decrease the number of inter-zonal waveguides which are relatively long and occupy a substantial space if their number is high. The system according to the invention reduces the number of certain components including that of these waveguides. The diagrams of the paths followed by the wave at transmission and at reception are shown in FIGS. 4 and 5.

Les n éléments d'antenne EA1, EA2...EAn sont groupés en groupes de p éléments chacun, tels que les éléments EA1, EA2...EAp.The n antenna elements EA1, EA2 ... EAn are grouped into groups of p elements each, such as the elements EA1, EA2 ... EAp.

Pour l'émission un émetteur hyperfréquence EH est commun à tous les éléments d'antenne EA1, EA2...EAp d'un même groupe. Il émet un signal hyperfréquence qui est modulé par le signal informatif à émettre et qui est reçu par p varactors d'émission VE1, VE2...VEp. Ces derniers lui appliquent des déphasages correspondants à ces éléments d'antenne, respectivement. Chaque signal ainsi déphasé module un laser semi-conducteur d'émission LE1, LE2...LEp dont la puissance peut correspondre à l'amplitude du champ que doit rayonner l'élément d'antenne correspondant EA1, EA2...EAp. Les fréquences d'émission de tous ces lasers sont différentes et correspondent chacune à un élément d'antenne.For transmission, a microwave transmitter EH is common to all the antenna elements EA1, EA2 ... EAp of the same group. It emits a microwave signal which is modulated by the informative signal to be transmitted and which is received by p varactors of transmission VE1, VE2 ... VEp. The latter apply phase shifts corresponding to these antenna elements, respectively. Each signal thus phase shifted modulates a semiconductor laser of emission LE1, LE2 ... LEp whose power can correspond to the amplitude of the field which must radiate the corresponding antenna element EA1, EA2 ... EAp. The emission frequencies of all these lasers are different and each corresponds to an antenna element.

Ils émettent dans des guides d'ondes optiques GIE1, GIE2,...GIEp, respectivement, qui convergent sur un filtre de fréquence FIE. Ce filtre constitue ledit déviateur interne d'émission. Il transmet la lumière provenant de ces divers guides à un guide commun GE qui relie la zone central dans laquelle se trouve notamment l'émetteur EH, à une zone périphérique d'antenne où se trouvent lesdits amplificateurs circulateurs et antennes. Ce guide est ledit guide interzonal.They emit in optical waveguides GIE1, GIE2, ... GIEp, respectively, which converge on a frequency filter FIE. This filter constitutes said internal emission deflector. It transmits light from these various guides to a common guide GE which connects the central area in which the EH transmitter is located, to a peripheral antenna area where said circulating amplifiers and antennas are located. This guide is said interzonal guide.

En sortie de ce guide les lumières des diverses longueurs d'ondes sont dirigées par un déviateur périphérique d'émission FPE, également constitué par un filtre, vers divers guides optiques correspondants GPE1, GPE2,...GPEp qui les dirigent vers autant de détecteurs DE1, DE2,...DEp qui sont suivis par autant d'amplificateurs hyperfréquence AE1, AE2,...AEp. Ces derniers alimentent les éléments d'antenne EA1, EA2,...EAp.At the outlet of this guide, the lights of the various wavelengths are directed by a peripheral FPE emission deflector, also constituted by a filter, towards various corresponding optical guides GPE1, GPE2, ... GPEp which direct them towards as many detectors DE1, DE2, ... DEp which are followed by as many microwave amplifiers AE1, AE2, ... AEp. These feed the antenna elements EA1, EA2, ... EAp.

A la réception les signaux reçus par ces éléments d'antenne sont amplifiés en AR1, AR2,...ARp et modulent un nombre p de lasers correspondants LR1, LR2,...LRp qui émettent aux mêmes fréquences que précédemment indiqué dans des guides d'ondes optiques GPR1, GPR2,...GPRp. Ces derniers convergent sur un filtre constituant un deviateur périphérique de réception FPR qui injecte les lumières correspondantes dans un guide optique commun interzonal GR. Un filtre constituant un déviateur interne de réception FIR dirige les lumières des diverses fréquences sur autant de guides GIR1, GIR2,...GIRp.On reception the signals received by these antenna elements are amplified into AR1, AR2, ... ARp and modulate a number p of corresponding lasers LR1, LR2, ... LRp which emit at the same frequencies as previously indicated in guides optical waves GPR1, GPR2, ... GPRp. These the latter converge on a filter constituting a peripheral FPR reception deflector which injects the corresponding lights into a common interzonal optical guide GR. A filter constituting an internal FIR reception deflector directs the lights of the various frequencies on as many guides GIR1, GIR2, ... GIRp.

Les signaux lumineux sont détectés dans des détecteurs DR1, DR2...DRp, et les signaux hyperfréquences résultant sont déphasés par des varactors VR1, VR2...VRp appliquant les déphasages correspondant aux éléments d'antenne EA1, EA2...EAp. Ces déphasages sont choisis de manière que les signaux ainsi déphasés retrouvent alors les relations de phases mutuelles qu'ils avaient lorsqu'ils ont été émis par un émetteur extérieur, qui est éloigné du présent système d'antenne et qui est visé par celui-ci. Ces signaux sont reçus par le récepteur hyperfréquence commun RH. Ce dernier restitue l'information que portaient les signaux reçus par les éléments d'antenne en provenance de l'émetteur extérieur visé.The light signals are detected in detectors DR1, DR2 ... DRp, and the resulting microwave signals are phase shifted by varactors VR1, VR2 ... VRp applying the phase shifts corresponding to the antenna elements EA1, EA2 ... EAp. These phase shifts are chosen so that the signals thus phase-shifted then rediscover the mutual phase relationships that they had when they were transmitted by an external transmitter, which is far from the present antenna system and which is targeted by the latter. . These signals are received by the common microwave receiver RH. The latter restores the information carried by the signals received by the antenna elements from the targeted external transmitter.

Quant à la réalisation des lasers LE1, LE2...LEp, LR1, LR2...LRp on peut remarquer ce qui suit :
   On sait qu'en adaptant convenablement la composition des matériaux qui constituent les lasers semi-conducteurs on dispose de sources dont la fréquence peut être choisie dans la plage de longueurs d'ondes 0,5 - 2 micromètres. Dans l'état actuel de nos connaissances on peut obtenir d'environ 20 sources de fréquences V₁, V₂...Vp. On peut donc choisir p = 20.
As for the realization of lasers LE1, LE2 ... LEp, LR1, LR2 ... LRp we can notice the following:
It is known that by suitably adapting the composition of the materials which constitute the semiconductor lasers, sources are available whose frequency can be chosen in the wavelength range 0.5 - 2 micrometers. In the current state of our knowledge we can obtain about 20 frequency sources V₁, V₂ ... V p . We can therefore choose p = 20.

Deux fréquences successives sont séparées par un écart dV. On aura dV/V = 0,01 environ.Two successive frequencies are separated by a deviation dV. We will have dV / V = 0.01 approximately.

La sélectivité nécessaire des filtres FIE, FPE, FPR, FIR est donc modeste. Ils peuvent être réalisés par des techniques simples et classiques mettant en oeuvre des réseaux.The selectivity required for FIE, FPE, FPR, FIR filters is therefore modest. They can be achieved by simple and conventional techniques using networks.

La simplification apportée par l'invention est substantielle puisqu'elle permet de diviser par p ou plus le nombre des émetteurs hyperfréquences EH, des récepteurs RH et des guides d'ondes longs. Grâce à cette simplification le système est réalisable dans des conditions économiques satisfaisantes dans un grand nombre de cas.The simplification provided by the invention is substantial since it makes it possible to divide by p or more the number of microwave emitters EH, receivers RH and long wave guides. Thanks to this simplification, the system is feasible under satisfactory economic conditions in a large number of cases.

En supposant p = 20 on va évaluer le nombre de composants du système dans les cas où n = 10 et n =100. On peut par exemple admettre que l'antenne a un diamètre a = 1m, la longueur d'onde étant L = 5cm. Les valeurs de B₀ et B₁ sont données par les relations 1 et 1′.Assuming p = 20 we will evaluate the number of components of the system in cases where n = 10 and n = 100. We can for example admit that the antenna has a diameter a = 1m, the wavelength being L = 5cm. The values of B₀ and B₁ are given by the relations 1 and 1 ′.

Ce cas où n = 10 correspond à une excursion 2B₁ = 0,15 rad. = 10° au voisinage de la normale.This case where n = 10 corresponds to an excursion 2B₁ = 0.15 rad. = 10 ° in the vicinity of normal.

On a besoin d'un émetteur EH, d'un récepteur RH et de deux guides d'ondes optiques interzonaux longs l'un pour l'émission, l'autre pour la réception.We need an EH transmitter, an RH receiver and two long inter-zonal optical waveguides, one for transmission and the other for reception.

Il faut le long du trajet d'émission 10 varactors, 10 lasers modulés, 10 détecteurs, 10 amplificateurs.10 varactors, 10 modulated lasers, 10 detectors, 10 amplifiers are needed along the transmission path.

Le long du trajet de l'onde reçue on doit avoir 10 amplificateurs, 10 lasers modulés, 10 détecteurs, 10 varactors, Le cas où n = 100 correspond à une excursion 2B₁ = 0,45 rad. = 30° au voisinage de la normale.Along the path of the received wave there must be 10 amplifiers, 10 modulated lasers, 10 detectors, 10 varactors, The case where n = 100 corresponds to an excursion 2B₁ = 0.45 rad. = 30 ° in the vicinity of normal.

Pour relier l'émetteur EH à l'antenne on a besoin de q guides d'ondes longs avec q = n/p = 5.To connect the EH transmitter to the antenna you need q long waveguides with q = n / p = 5.

Il en faut autant pour relier le récepteur à l'antenne.It takes just as much to connect the receiver to the antenna.

On doit donc mettre en oeuvre 10 guides d'ondes optiques longs pour réaliser le système. Ce nombre modeste n'entraîne pas de sévères contraintes de coût, d'encombrement et de poids.10 long optical waveguides must therefore be used to make the system. This modest number does not entail severe constraints of cost, size and weight.

Ce nombre serait de 200 si on n'utilisait pas les possibilités offertes par l'invention, ce qui poserait des problèmes parfois insurmontables. Grâce à celle-ci, 5 émetteurs EH sont nécessaires au lieu de 100. De même 5 récepteurs RH doivent être mis en oeuvre au lieu de 100.This number would be 200 if the possibilities offered by the invention were not used, which would pose sometimes insurmountable problems. Thanks to this, 5 EH transmitters are needed instead of 100. Similarly 5 RH receivers must be implemented instead of 100.

Par contre il faut le long du trajet d'émission 100 varactors, 100 lasers modulés, 100 détecteurs, 100 amplificateurs.On the other hand, along the emission path, 100 varactors, 100 modulated lasers, 100 detectors, 100 amplifiers are required.

Le long du trajet de l'onde reçue on doit avoir 100 amplificateurs, 100 lasers modulés, 100 détecteurs, 100 varactors.Along the path of the received wave there must be 100 amplifiers, 100 modulated lasers, 100 detectors, 100 varactors.

Ainsi la commande électrique de l'amplitude et de la phase d'un élément d'antenne EAi par la modulation et la détection d'une onde laser d'une fréquence Vi pouvant être choisie parmi p fréquences permet de rendre le système autoadaptatif. Le nombre de guides d'ondes optiques, d'émetteurs et de récepteurs est divisé par p alors que le nombre des autres composants reste le même.Thus the electrical control of the amplitude and of the phase of an antenna element EAi by the modulation and the detection of a laser wave of a frequency Vi which can be chosen from p frequencies makes it possible to make the system self-adaptive. The number of optical waveguides, transmitters and receivers is divided by p while the number of other components remains the same.

On a décrit ci-dessus un déphasage qui est effectué par une méthode électronique dans un varactor. L'onde hyperfréquence ainsi déphasée module un laser LEi de fréquence Vi. L'amplitude de l'onde rayonnée en EAi peut être déterminée par la puissance du laser, la phase étant déterminée par le varactor VEi.We have described above a phase shift which is carried out by a method electronics in a varactor. The microwave phase shifted thus modulates a laser LEi of frequency Vi. The amplitude of the wave radiated in EAi can be determined by the power of the laser, the phase being determined by the varactor VEi.

On peut en variante réaliser ces deux opérations par une méthode optique. Cette méthode est représentée schématiquement sur la figure 6 qui concerne le cas de l'émission et doit être rapprochée de la figure 1, les éléments plus ou moins analogues portant les mêmes références avec la lettre A ou B à la place du chiffre 1. Un laser LEA émet une lumière à la fréquence convenable (par exemple la fréquence Vi précédemment envisagée). Cette lumière est divisée et transmise d'une part à un déphaseur optique commandé électriquement VEA qui lui applique le déphasage convenable, d'autre part à un modulateur d'amplitude LEB qui le module par un signal hyperfréquence lui même modulé par le signal informatif à émettre.Alternatively, these two operations can be carried out by an optical method. This method is shown diagrammatically in FIG. 6 which relates to the case of transmission and must be compared with FIG. 1, the more or less similar elements bearing the same references with the letter A or B instead of the number 1. A LEA laser emits light at a suitable frequency (for example the frequency Vi previously considered). This light is divided and transmitted on the one hand to an electrically controlled optical phase shifter VEA which applies the appropriate phase shift to it, on the other hand to an amplitude modulator LEB which modulates it by a microwave signal itself modulated by the informative signal to issue.

Les deux faisceaux lumineux résultants sont réunis dans un guide optique long GEA en sortie duquel le signal lumineux est détecté par un détecteur DEA. Ce dernier restitue le signal hyperfréquence appliqué au modulateur LEB, avec le déphasage apporté par le déphaseur VEA. Ce signal hyperfréquence peut donc être utilisé comme celui que fournissait le détecteur DE1.The two resulting light beams are combined in a long GEA optical guide at the output of which the light signal is detected by a DEA detector. The latter restores the microwave signal applied to the LEB modulator, with the phase shift provided by the VEA phase shifter. This microwave signal can therefore be used like that provided by the detector DE1.

Une méthode analogue peut être appliquée à la réception.A similar method can be applied at reception.

Si le modulateur optique introduit le déphasage qui a été choisi pour la source élémentaire EAi, on obtient un déphasage de l'onde hyperfréquence à la valeur souhaitée.If the optical modulator introduces the phase shift which has been chosen for the elementary source EAi, a phase shift of the microwave wave is obtained at the desired value.

Cette possibilité doit être appréciée lorsqu'on a à résoudre un problème particulier.This possibility must be appreciated when we have to solve a particular problem.

Claims (3)

  1. An adaptive antenna system for radio waves, said system comprising:
    - an antenna constituted by a plurality of antenna elements (EA1, EA2, ... EAp) distributed over a surface in a "peripheral" zone of the system, each of said elements being capable of emitting and/or receiving a fraction of the wave energy propagating in the external free space at at least one common predetermined radio frequency and along aiming directions distributed in three dimensions, each of said elements coupling said wave energy to a peripheral radio signal at the same frequency propagating within the system and corresponding to said element;
    - a peripheral radio waveguide (HP1, HP2, ... HPp) also corresponding to said element for transmitting said radio signal;
    - a peripheral transformation member (DE1, DE2, ... DEp) corresponding to said antenna element and disposed on the corresponding peripheral waveguide to couple said peripheral radio signal to a light signal corresponding to said antenna element, said coupling being performed by modulating or demodulating said signal;
    - an interzone optical waveguide (GE) connecting said peripheral zone to an "internal" zone of the system for transmitting said light signals;
    - an internal transformation member (LE1, LE2, ... LEp) corresponding to said antenna element in order to couple said light signal by demodulation or modulation to an internal radio signal also corresponding to said antenna element;
    - an internal radio waveguide also corresponding to said element for transmitting said internal radio signal, said internal radio waveguide and said internal transformation member, said peripheral optical waveguide, said peripheral transformation member and said peripheral radio waveguide constituting portions of a composite line corresponding to said element; and
    - a central member (EH) for emitting and/or receiving radio signals to or from said internal radio waveguides, thereby coupling said central member to each of the antenna elements via a corresponding composite line;
    - said system further including, on each of said composite lines, at least one phase control member (VE1, VE2, ... VEp) corresponding to the same antenna element and controlling the phase of said peripheral radio signal relative to said internal radio signal to enable a particular aiming direction to be selected from a plurality thereof and to adapt the selected aiming direction of the system on command, said adaptation being due to the fact that only external wave energy propagates along said direction for which the various fractions of said wave energy passing through the various antenna elements are coupled in-phase at said central member;
    - said system being characterized in particular in that said interzone optical waveguide (GE) is common to at least one group of said antenna elements (EA1, EA2, ... EAp), with the light signals corresponding to the various antenna elements of said group being at different frequencies, and the system further including two light deflectors, namely a peripheral deflector (FPE) and an internal deflector (FIE), which deflectors deflect light through an angle depending on its frequency and are common to all of the antenna elements of the group for coupling the peripheral and internal ends of said common optical waveguide (GE) to the various peripheral and internal transformation members (DE1, DE2, ... DEp; LE1, LE2, ... LEp) respectively which correspond to the various elements of said group; and in that said antenna elements (EA1) are mixed elements capable both of emitting and of receiving said external wave energy, the system including in conjunction with each of said antenna elements:
    - a mixed peripheral radio waveguide (HPM) connected to said element;
    - an emission peripheral radio waveguide (HPE, HPE1);
    - a reception peripheral radio waveguide (HPR, HPR1); and
    - a circulator (CI) for coupling said emission waveguide to said mixed waveguide for transmitting radio signals, and for coupling said mixed waveguide to said reception waveguide for receiving radio signals, with two paths referred to as composite paths, namely an emission path and a reception path, corresponding to said element and having in common mixed peripheral radio waveguide and said circulator, with the other members (HPE1, DE1) of said two paths being distinct for transmission and reception.
  2. A system according to claim 1, wherein said radiations, signals, and radio waveguides are microwave radiations, microwave signals and microwave waveguides, respectively.
  3. A system according to claim 1, characterized in that said phase control member is an optical phase shifter (VEA) placed on an optical phase-shifting length of each of said composite paths, said length receiving a light signal at a frequency specific to said path, said internal transformation member (LEB) modulating or demodulating an equivalent light signal on a transformation optical length connected in parallel with said phase-shifting length.
EP88106723A 1987-04-27 1988-04-27 Adaptive antenna system for high frequencies, especially for ultra-high frequencies Expired - Lifetime EP0288988B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88106723T ATE86412T1 (en) 1987-04-27 1988-04-27 ADAPTIVE ANTENNA SYSTEM FOR HIGH FREQUENCY, ESPECIALLY FOR THE UHF RANGE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8705907A FR2614471B1 (en) 1987-04-27 1987-04-27 ADAPTIVE ANTENNA SYSTEM FOR RADIO WAVES, ESPECIALLY MICROWAVE
FR8705907 1987-04-27

Publications (2)

Publication Number Publication Date
EP0288988A1 EP0288988A1 (en) 1988-11-02
EP0288988B1 true EP0288988B1 (en) 1993-03-03

Family

ID=9350505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88106723A Expired - Lifetime EP0288988B1 (en) 1987-04-27 1988-04-27 Adaptive antenna system for high frequencies, especially for ultra-high frequencies

Country Status (7)

Country Link
US (1) US4864310A (en)
EP (1) EP0288988B1 (en)
AT (1) ATE86412T1 (en)
CA (1) CA1283972C (en)
DE (1) DE3878720T2 (en)
ES (1) ES2039495T3 (en)
FR (1) FR2614471B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384826A (en) * 1990-10-01 1995-01-24 At&T Bell Laboratories Distributed packetized switching cellular radio telephone communication system with handoff
US5371780A (en) * 1990-10-01 1994-12-06 At&T Corp. Communications resource assignment in a wireless telecommunications system
US5164736A (en) * 1991-05-03 1992-11-17 The United States Of America As Represented By The Secretary Of The Navy Optical antenna beam steering using digital phase shifter control
US5142595A (en) * 1991-10-21 1992-08-25 Hughes Aircraft Company Microwave system employing optically phased conformal antennas having photonic interconnects and method of forming photonic interconnects
US5283686A (en) * 1992-07-27 1994-02-01 General Instrument Corporation, Jerrold Communications Optical systems with grating reflector
US5374935A (en) * 1993-02-23 1994-12-20 University Of Southern California Coherent optically controlled phased array antenna system
US6321001B1 (en) * 1999-06-18 2001-11-20 Trw Inc. Wavelength division multiplexed optical communication system
US6529166B2 (en) 2000-09-22 2003-03-04 Sarnoff Corporation Ultra-wideband multi-beam adaptive antenna
US7024120B2 (en) * 2002-03-29 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Phase tracking multichannel link
JP2003332817A (en) * 2002-05-14 2003-11-21 Alps Electric Co Ltd Antenna system
US8228228B2 (en) * 2009-04-09 2012-07-24 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for receiving electromagnetic waves using photonics
US9692512B2 (en) * 2013-03-15 2017-06-27 Bae Systems Plc Directional multiband antenna
US10009112B2 (en) * 2014-12-26 2018-06-26 Finisar Corporation Electromagnetic interference reduction
US11201673B1 (en) 2018-03-07 2021-12-14 BridgeSat, Inc. Optical laser communication apparatus with optical phased arrays and coupling arrangement and associated methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878520A (en) * 1973-01-24 1975-04-15 Stanford Research Inst Optically operated microwave phased-array antenna system
US4198117A (en) * 1976-12-28 1980-04-15 Nippon Electric Co., Ltd. Optical wavelength-division multiplexing and demultiplexing device
NL7807170A (en) * 1978-06-30 1980-01-03 Hollandse Signaalapparaten Bv RADAR SYSTEM.
US4677618A (en) * 1985-04-04 1987-06-30 International Business Machines Corporation Method and apparatus for deskewing WDM data transmitted through a dispersive medium
US4736463A (en) * 1986-08-22 1988-04-05 Itt Corporation Electro-optically controlled wideband multi-beam phased array antenna

Also Published As

Publication number Publication date
DE3878720D1 (en) 1993-04-08
ES2039495T3 (en) 1993-10-01
EP0288988A1 (en) 1988-11-02
FR2614471B1 (en) 1989-10-20
ATE86412T1 (en) 1993-03-15
FR2614471A1 (en) 1988-10-28
CA1283972C (en) 1991-05-07
DE3878720T2 (en) 1993-06-09
US4864310A (en) 1989-09-05

Similar Documents

Publication Publication Date Title
EP0288988B1 (en) Adaptive antenna system for high frequencies, especially for ultra-high frequencies
EP0415818B1 (en) Control of beam direction for antenna system with electronic scanning and beamforming by computation
EP0600799A1 (en) An active antenna with variable polarisation synthesis
EP3665744B1 (en) Device for optically receiving a signal coming from a phased antenna array and associated antenna system
Burla et al. Integrated Photonic ${\rm K} _ {\rm u} $-Band Beamformer Chip With Continuous Amplitude and Delay Control
FR2697375A1 (en) Antenna network for space vehicle, retracted prior to launch - has number of partial networks, each connected by cable to space vehicle, and is modified in beam direction by relative signal phase change
FR2760919A1 (en) Satellite mobile radio Communication system
FR3062523A1 (en) ELEMENTARY ANTENNA WITH A PLANAR RADIANT DEVICE
EP0462864A1 (en) Device for feeding radiating elements of an antenna array and its application for an antenna of a landing help system type MLS
EP0451497B2 (en) Method for forming the radiation pattern of an active antenna for radar with electronic scanning, and antenna using this method
EP0992128B1 (en) Telecommunication system
EP2363729B1 (en) Channel formatter that can be reconfigured for an array antenna
EP2260540B1 (en) Optical device for applying a real delay to a radio-electric signal and application in the formation of transmission and reception beams with an active antenna
CA2356725A1 (en) Dome-type divergent lens for microwaves and antenna comprising such a lens
FR2829297A1 (en) BEAM FORMING NETWORK, SPACE VEHICLE, ASSOCIATED SYSTEM AND BEAM FORMING METHOD
EP0964476A1 (en) Wideband radar optical control device for receiving or transmitting
EP1533866A1 (en) Adaptive phased array antenna with digital beam forming
Serafino et al. A photonic beamforming network based on phase shifters for microwave wide-band applications
EP1233282B1 (en) System with distributed transmit and receive antennas, in particular for radar with synthetic emission and beamforming
FR2695759A1 (en) Test aerial for transmitting test signals to radar receiver - includes optical waveguide carrying signal to transducer built on common substrate with dipole transmitters
FR2621397A1 (en) GUIDE EQUIPMENT FOR MICROWAVE LANDING SYSTEM
Reza et al. Design and performance estimation of a photonic integrated
GB2324911A (en) Antenna array
EP0928042A1 (en) Wide band detection means, particularly radars
STEPHENS GREGORY L. TANGONAN, WILLIE NG, DANIEL YAP

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890502

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

17Q First examination report despatched

Effective date: 19910719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930303

Ref country code: AT

Effective date: 19930303

REF Corresponds to:

Ref document number: 86412

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930302

REF Corresponds to:

Ref document number: 3878720

Country of ref document: DE

Date of ref document: 19930408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930430

Ref country code: LI

Effective date: 19930430

Ref country code: CH

Effective date: 19930430

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2039495

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940210

Year of fee payment: 7

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88106723.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950428

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950430

BERE Be: lapsed

Owner name: ALCATEL ALSTHOM CIE GENERALE D'ELECTRICITE

Effective date: 19950430

EUG Se: european patent has lapsed

Ref document number: 88106723.5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000320

Year of fee payment: 13

Ref country code: DE

Payment date: 20000320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000327

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010427

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050427