EP0281796B1 - Method of producing affined ferromanganese - Google Patents

Method of producing affined ferromanganese Download PDF

Info

Publication number
EP0281796B1
EP0281796B1 EP88102163A EP88102163A EP0281796B1 EP 0281796 B1 EP0281796 B1 EP 0281796B1 EP 88102163 A EP88102163 A EP 88102163A EP 88102163 A EP88102163 A EP 88102163A EP 0281796 B1 EP0281796 B1 EP 0281796B1
Authority
EP
European Patent Office
Prior art keywords
converter
ferromanganese
phase
process according
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88102163A
Other languages
German (de)
French (fr)
Other versions
EP0281796A1 (en
Inventor
Hans Dr.-Ing. Litterscheidt
Manfred Dr.-Ing. Rähder
Carl.-Heinz Dipl.-Ing. Schütz
Richard A. Dr.-Ing. Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Stahl AG
Original Assignee
Thyssen Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Stahl AG filed Critical Thyssen Stahl AG
Publication of EP0281796A1 publication Critical patent/EP0281796A1/en
Application granted granted Critical
Publication of EP0281796B1 publication Critical patent/EP0281796B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys

Definitions

  • the invention relates to a process for the production of low-carbon and low-silicon ferromanganese (ferromangan affine) by freshening a ferromanganese with high carbon content (ferromangan carbure) produced in the blast furnace in a converter by blowing pure oxygen onto the high-carbon manganese melt by means of an inflation lance and by simultaneous blowing of pure oxygen and inert gas below the melt pool level through bottom nozzles into the melt during an oxidation phase and by adding solid reducing agents with continued blowing of inert gas in a subsequent reduction phase to recover the slagged manganese.
  • ferromangan affine low-carbon and low-silicon ferromanganese
  • medium or low carbon ferromanganese is produced by freshening a high carbon ferromanganese in a converter by blowing pure oxygen onto the high carbon manganese melt by means of an inflation lance and simultaneously blowing pure Oxygen and inert gas below the molten bath level through bottom nozzles into the melt during an oxidation phase and by adding solid reducing agents with continued blowing of inert gas in a subsequent reduction phase to recover the slagged manganese.
  • low-carbon ferromanganese (ferromangan affine) in the converter can be freshened by blowing in oxygen with the help of jacket gas nozzles without any significant formation of a slag rich in manganese oxide, the alloy melt being heated to a temperature of over 100 ° C. over the melting range and before blowing in the oxygen about 15 Nm3 of oxygen are blown into the ferroalloy to be blown for each 1% of carbon to be removed and per ton of alloy.
  • the heating over the melting range is carried out by adding or adding oxygen-affine metals or their alloys, for example silicon metal, ferrosilicon, aluminum, at the beginning of the blowing period and oxidizing them with oxygen.
  • the working temperature of the alloy melt is kept constant by adding solid cooling material, for example, its own return metal, its own slag-containing metal, fine ore, pre-reduced ore or the like (DE-PS 22 01 388).
  • the temperature of the alloy melt is raised to a temperature of over 1650 to 1900 ° C. by blowing in the oxygen without the addition of coolants, a high-melting manganese oxide phase being formed.
  • This phase is then reduced on the one hand by introducing lime and on the other hand by adding solid reducing agents, such as silicon and aluminum and / or their alloys (DE-OS 25 31 034).
  • up to about 20% solid alloy metal is added to the alloy melt, and the quantity and the oxygen feed rates are selected so that the decarburization reaction takes place in focal spots over the jacket gas nozzles (DE-PS 25 40 290).
  • a method for the production of ferromanganese is also known by blowing in an oxidizing gas, water vapor and / or an inert gas below the molten metal level by means of immersed nozzles which are protected by introducing a circumferential cooling fluid that opens into the bath to be freshly cleaned .
  • pure oxygen is blown through the nozzles up to an intermediate carbon content of 2 to 3.5% until the temperature of the bath to be refreshed is between 1650 and 1750 ° C.
  • a process for the production of ferromanganese is known, with a carbon content of 0.5 to 2% by decarburization of a ferromangan melt with a carbon content of 3 to 8% and up to 7% silicon with an oxidizing agent in a reactor.
  • the oxidizing agent e.g. Oxygen
  • the oxidizing agent introduced into the lower region of the melt, which is kept under an atmospheric pressure, preferably from 1.5 to 15 bar.
  • a temperature-regulating gas in the form of carbon dioxide, air, nitrogen, argon and / or water vapor can be added to the oxidizing agent.
  • US Pat. No. 3,305,352 describes a process for producing ferromanganese with a carbon content of not more than 1.5% by oxygen inflation. This process is based on a ferromanganese which has been produced, for example, in a blast furnace, with a carbon content of at least 3% and a silicon content of up to 5%. This high-carbon ferromanganese is brought to a decarburization temperature of at least 1550 ° C. Oxygen is then blown up in an amount sufficient to bring the melt to a temperature of about 1700 ° C. before the carbon has been reduced to 1.5%.
  • the blowing operation is continued until the temperature of the melt reaches 1750 ° C, and is stopped when this temperature is reached, whereby a ferromanganese is obtained with a carbon content of not more than 1.5%.
  • a quarter of the total oxygen required can be blown to reach the decarburization temperature of at least 1550 ° C.
  • the melt can also be brought to this temperature by induction heating in an induction furnace.
  • This method has the advantage that it is possible to work in comparatively simple units which are known in principle from steelmaking.
  • the significant disadvantage of this process is that at the end of the process there is a high proportion of manganese oxide-rich, high-melting slag, which makes high tapping and casting temperatures necessary to ensure adequate metal-slag separation.
  • this slag represents a significant manganese loss, which is reflected in a comparatively low metal or manganese yield.
  • the invention has for its object to provide a process for the production of low-carbon and low-silicon ferromanganese (ferromanganese affine) by refining a ferromanganese with a high carbon content (ferromanganese carbure) produced in the blast furnace by means of pure oxygen in a converter, in which the essential advantages of known bottom blowing method used, the significant disadvantages are avoided, ie low-energy, loss-free production without major feed wear is made possible.
  • the melt is preferably cooled to the casting temperature in a cooling phase, while the stirring gas is continued to be blown in, to the casting temperature.
  • the tapping temperature can be adapted to the requirements of the casting technology within wide limits.
  • the amount of floor gas can be reduced by the choice of the nozzle cross-section, the number and arrangement of the nozzles, and by the regulation of the gas quantity, which is predetermined by process parameters, as necessary to maintain the bath movement necessary for the individual process stages.
  • the amount of oxygen blown is 1.50 to 4.0 Nm 3 / min ç t FeMn carbure, preferably 2.5 to 3.5 Nm 3 / min 9 t FeMn carbure and the amount of stirring gas is 0.02 up to 0.50 Nm 3 / min 9 t FeMn carbure, preferably 0.02 to 0.15 Nm 3 / min 9 t FeMn carbure.
  • nitrogen, argon, carbon dioxide or exhaust gases are used as stirring gas in the oxidation phase and argon or nitrogen in the reduction phase.
  • Silicomanganese, ferrosilicon, silicon, aluminum or their alloys are preferably used as solid reducing agents in the reduction phase in amounts of 5 to 15 kg silicon or aluminum / t ferromanganese carbure; the quantity of lime depending on the silicon content is 10 to 40 kg / t ferromanganese carbure.
  • manganese ore or filter dusts separated in the process are used for cooling both during and after the fresh phase, and the subsequent reduction phase is modified so that manganese is obtained both from the fresh slag and from the manganese ore in which the others mentioned above are obtained solid reducing agents are added.
  • ferromanganese affine is preferably added in amounts of 40 to 350 kg / t ferromanganese carbure, preferably 60 to 180 kg / t ferromanganese carbure.
  • the ferromanganese affine as a coolant can be replaced in whole or in part by Manganez or filter dusts separated during the process.
  • Dolomite and / or magnesite can be used as additional slag formers in quantities of up to 40 kg / t ferromangan carbure, which, in addition to the desired cooling effect, provide special protection for the refractory lining of the vessel.
  • a converter which is conventional for steel production can be used as the production vessel, in which 2 to 20, preferably 6 to 10, nozzles for blowing in stirring gas are arranged in the converter base according to the invention.
  • a water-cooled inflation lance which is characterized by 3 to 10, preferably 4 to 6, nozzle openings at the tip of the lance is used to inflate the oxygen.
  • the blowing speed and the lance height are set according to the decarburization process and are also dependent on the analysis of the ferromanganese carbure to be blown and the ferromanganese affine to be produced.
  • the individual process stages are assigned the type and amount of the stirring gas to be blown in below the bath.
  • the blowing nozzles are arranged and dimensioned in such a way that they can be operated with comparatively small amounts of gas, so that the known disadvantages do not occur with jacket nozzles charged with large amounts of gas.
  • the floor nozzles are preferably arranged in the middle of the floor in a row parallel to the axis of rotation of the converter or completely in the part of the floor of the converter which is free of melt and slag when the converter is turned over. As a result, an effective orbital movement of the melt can be set, so that metal and slag are constantly in intensive contact without increased wear of the refractory lining of the converter.
  • the proposed arrangement of the nozzles in the converter base has the further advantage that the nozzles are exposed when the converter is turned over and the amount of stirring gas can be reduced accordingly in this process section. In addition, evaporation of the metal by sputtering can be avoided.
  • the inside diameter of the floor nozzles is 3 to 12 mm, preferably 7 to 9 mm.
  • oxygen was blown onto the melt at a rate of 300 Nm 3 / min using an inflation lance with four nozzle openings.
  • argon was introduced into the melt through six bottom nozzles at a speed of 6.3 Nm 3 / min.
  • the oxygen supply through the lance was switched off when the amount of oxygen was 8150 Nm 3 0 2 and the lance was pulled out of the converter.
  • 5838 kg of SiMn were added to the converter from above within 2 minutes. With a delay of one minute, 2144 kg of lime were drawn into the converter.
  • 12.6 Nm 3 argon / min were blown into the melt through the bottom nozzles.
  • the melt was then cooled in the converter to the tapping temperature of approx. 1580 ° C using its own coolant.
  • the coolant consumption was 6902 kg ferromanganese affine.
  • 4032 kg of dolomite lime were added as slag formers.
  • the amount of slag was approx. 10500 kg, the slag had the following composition:
  • the metal output was 83.9%.
  • the Mn output was 88%.
  • oxygen was blown onto the melt at a speed of 300 Nm 3 / min using an inflation lance with four nozzle openings.
  • argon was introduced into the melt through six bottom nozzles at a speed of 6.3 Nm 3 / min.
  • the oxygen supply through the inflation lance was interrupted after a blown quantity of 9000 Nm 3 0 2 and the inflation lance was moved out of the converter.
  • the manganese oxide from the slag was reduced back into the melt.
  • 788 kg of AI and 2280 kg of lime were drawn into the converter and at the same time 10.5 Nm3 argon / min were blown into the bath through the floor nozzles.
  • the melt was brought to a temperature of 1611 ° C. in the converter using its own coolant. This required 11,820 kg of cooling affinity.
  • 4284 kg of dolomite lime were added as slag formers.
  • the amount of slag was about 11100 kg; the slag had the following composition:
  • the metal output was 83.6%.
  • the manganese yield was 87.4% Mn.
  • the floor nozzles 5 are arranged in the middle of the converter floor 2 in a row parallel to the axis of rotation 3 and in the center plane of the converter 1.
  • the pivots are designated by 4.
  • the floor nozzles 5 are arranged in the part of the converter floor 2 which is free of melt and slag when the converter 1 is folded over, that is the upper part of the converter floor 2 when the converter 1 is folded over. These arrangements of the floor nozzles 5 in the converter floor 2 ensures that the floor nozzles 5 are exposed after the converter 1 has been flipped. The amount of stirring gas can be reduced accordingly in this process section. There is no atomization of slag and metal and thus no evaporation of metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von kohlenstoff- und siliciumarmem Ferromangan (Ferromangan affine) durch Frischen eines im Hochofen erzeugten Ferromangans mit hohem Kohlenstoffgehalt (Ferromangan carbure) in einem Konverter durch Aufblasen von reinem Sauerstoff auf die hochkohlenstoffhaltige Manganschmelze mittels einer Aufblaslanze und durch gleichzeitiges Einblasen von reinem Sauerstoff und Inertgas unterhalb des Schmelzbadspiegels durch Bodendüsen in die Schmelze während einer Oxidationsphase und durch Zugabe von festen Reduktionsmitteln bei fortgesetztem Einblasen von Inertgas in einer sich anschließenden Reduktionsphase zur Rückgewinnung des verschlackten Mangans.The invention relates to a process for the production of low-carbon and low-silicon ferromanganese (ferromangan affine) by freshening a ferromanganese with high carbon content (ferromangan carbure) produced in the blast furnace in a converter by blowing pure oxygen onto the high-carbon manganese melt by means of an inflation lance and by simultaneous blowing of pure oxygen and inert gas below the melt pool level through bottom nozzles into the melt during an oxidation phase and by adding solid reducing agents with continued blowing of inert gas in a subsequent reduction phase to recover the slagged manganese.

Bei einem derartigen, aus der JP-A 6 067 608 bekannten Verfahren wird Ferromangan mit mittlerem oder niedrigem Kohlenstoffgehalt hergestellt durch Frischen eines Ferromangans mit hohem Kohlenstoffgehalt in einem Konverter durch Aufblasen von reinem Sauerstoff auf die hochkohlenstoffhaltige Manganschmelze mittels einer Aufblaslanze und durch gleichzeitiges Einblasen von reinem Sauerstoff und Intertgas unterhalb des Schmelzbadspiegels durch Bodendüsen in die Schmelze während einer Oxidationsphase und durch Zugabe von festen Reduktionsmitteln bei fortgesetztem Einblasen von Inertgas in einer sich anschließenden Reduktionsphase zur Rückgewinnung des verschlackten Mangans. Ein solches Verfahren, bei dem gleichzeitig Sauerstoff von oben und von unten geblasen wird, ist nachteilig, weil durch den von unten in die Schmelze eingeblasenen Sauerstoff sowohl die feuerfeste Konverterauskleidung als auch die Blasdüsen rasch zerstört werden und weil eine komplizierte und aufwendige Anlagentechnik zur Steuerung des Blasvorgangs erforderlich ist.In such a method known from JP-A 6 067 608, medium or low carbon ferromanganese is produced by freshening a high carbon ferromanganese in a converter by blowing pure oxygen onto the high carbon manganese melt by means of an inflation lance and simultaneously blowing pure Oxygen and inert gas below the molten bath level through bottom nozzles into the melt during an oxidation phase and by adding solid reducing agents with continued blowing of inert gas in a subsequent reduction phase to recover the slagged manganese. Such a method, in which oxygen is blown from above and below at the same time, is disadvantageous because both the refractory converter lining and the blowing nozzles are quickly destroyed by the oxygen blown into the melt from below and because a complicated and complex system technology for controlling the Blowing is required.

Es ist bekannt, niedriggekohltes Ferromangan (Ferromangan affine) im Konverter durch Einblasen von Sauerstoff mit Hilfe von Mantelgasdüsen ohne nennenswerte Bildung einer manganoxidreichen Schlacke zu frischen, wobei die Legierungsschmelze vor dem Einblasen des Sauerstoffs auf eine Temperatur von über 100°C über den Schmelzbereich erhitzt und in die zu verblasende Ferrolegierung für je 1% zu entfernenden Kohlenstoff und je Tonne Legierung etwa 15 Nm3 Sauerstoff eingeblasen werden. Die Erhitzung über den Schmelzbereich wird durchgeführt, indem vorhandene oder zugesetzte sauerstoffaffine Metalle oder deren Legierungen, z.B. Siliciummetall, Ferrosilicium, Aluminium, zu Beginn der Blasperiode zugesetzt und mit Sauerstoff oxidiert werden. Die Arbeitstemperatur der Legierungsschmelze wird durch Versetzen derselben mit festem Kühlmaterial, z.B. arteigenem Rücklaufmetall, arteigenem schlackenhaltigem Metall, Feinerz, vorreduziertem Erz oder dergleichen, konstant gehalten (DE-PS 22 01 388).It is known that low-carbon ferromanganese (ferromangan affine) in the converter can be freshened by blowing in oxygen with the help of jacket gas nozzles without any significant formation of a slag rich in manganese oxide, the alloy melt being heated to a temperature of over 100 ° C. over the melting range and before blowing in the oxygen about 15 Nm3 of oxygen are blown into the ferroalloy to be blown for each 1% of carbon to be removed and per ton of alloy. The heating over the melting range is carried out by adding or adding oxygen-affine metals or their alloys, for example silicon metal, ferrosilicon, aluminum, at the beginning of the blowing period and oxidizing them with oxygen. The working temperature of the alloy melt is kept constant by adding solid cooling material, for example, its own return metal, its own slag-containing metal, fine ore, pre-reduced ore or the like (DE-PS 22 01 388).

In Weiterbildung dieses Verfahrens wird die Temperatur der Legierungsschmelze durch das Einblasen des Sauerstoffs ohne Zugabe von Kühlmitteln auf eine Temperatur von über 1650 bis 1900 °C gesteigert, wobei sich eine hochschmelzende Manganoxidphase bildet. Diese Phase wird danach einerseits durch Einbringen von Kalk und andererseits durch Zugabe von festen Reduktionsmitteln, wie Silicum und Aluminium und/oder deren Legierungen, ausreduziert (DE-OS 25 31 034).In a further development of this process, the temperature of the alloy melt is raised to a temperature of over 1650 to 1900 ° C. by blowing in the oxygen without the addition of coolants, a high-melting manganese oxide phase being formed. This phase is then reduced on the one hand by introducing lime and on the other hand by adding solid reducing agents, such as silicon and aluminum and / or their alloys (DE-OS 25 31 034).

Nach einem weiteren Vorschlag wird der Legierungsschmelze bis etwa 20% festes Legierungsmetall beigegeben, und die Zuführmenge sowie die Zuführgeschwindigkeiten des Sauerstoffs werden so gewählt, daß die Entkohlungsreaktion in Brennflecken über den Mantelgasdüsen erfolgt (DE-PS 25 40 290).According to a further proposal, up to about 20% solid alloy metal is added to the alloy melt, and the quantity and the oxygen feed rates are selected so that the decarburization reaction takes place in focal spots over the jacket gas nozzles (DE-PS 25 40 290).

Aus der DE-OS 20 01 707 ist ferner ein Verfahren zur Herstellung von Ferromangan bekannt durch Einblasen eines oxidierenden Gases, von Wasserdampf und/oder eines inerten Gases unterhalb des Metallschmelzenspiegels mittels eingetauchter Düsen, die durch Einführen eines im zu frischenden Bad mündenden Umfangskühlfluids geschützt sind. Bei diesem Verfahren wird bis zu einem Zwischenkohlenstoffgehalt von 2 bis 3,5% durch die Düsen reiner Sauerstoff geblasen bis zum Erreichen einer Temperatur des zu frischenden Bades zwischen 1650 und 1750 °C. Bis zu einem Kohlenstoffgehalt von höchstens 1,6% wird dann durch die Düsen getrennt oder in Mischung gleichzeitig reiner Sauerstoff und Wasserdampf mit oder ohne Inertgas geblasen, wobei die Volumenanteile des reinen Sauerstoffs höchstens 50%, des Wasserdampfes wenigstens 30% und des Inertgases höchstens 70% des gesamten jeweils geblasenen Gasvolumens betragen und die Regulierung dieser Anteile zur ständigen Beibehaltung der Temperatur des Ferromanganbades zwischen 1670 und 1700 °C erfolgt.From DE-OS 20 01 707 a method for the production of ferromanganese is also known by blowing in an oxidizing gas, water vapor and / or an inert gas below the molten metal level by means of immersed nozzles which are protected by introducing a circumferential cooling fluid that opens into the bath to be freshly cleaned . In this process, pure oxygen is blown through the nozzles up to an intermediate carbon content of 2 to 3.5% until the temperature of the bath to be refreshed is between 1650 and 1750 ° C. Up to a carbon content of at most 1.6% is then passed through the nozzles are blown separately or in a mixture of pure oxygen and water vapor with or without inert gas, the volume fractions of the pure oxygen being at most 50%, the water vapor being at least 30% and the inert gas being at most 70% of the total gas volume blown and the regulation of these fractions constant maintenance of the temperature of the ferromanganese bath between 1670 and 1700 ° C.

Ferner ist aus der DE-OS 30 01 941 ein Verfahren zur Herstellung von Ferromangan bekannt, mit einem Kohlenstoffgehalt von 0,5 bis 2% durch Entkohlung einer Ferromanganschmelze mit einem Kohlenstoffgehalt von 3 bis 8% und bis zu 7% Silicum mit einem Oxidationsmittel in einem Reaktor. Bei diesem Verfahren wird das Oxidationsmittel, z.B. Sauerstoff, in den unteren Bereich der Schmelze eingeführt, die unter einem Atmosphärenüberdruck, vorzugsweise von 1,5 bis 15 bar, gehalten wird. Dem Oxidationsmittel kann ein temperaturregelndes Gas in Form von Kohlendioxid, Luft, Stickstoff, Argon und/oder Wasserdampf zugesetzt werden.Furthermore, from DE-OS 30 01 941 a process for the production of ferromanganese is known, with a carbon content of 0.5 to 2% by decarburization of a ferromangan melt with a carbon content of 3 to 8% and up to 7% silicon with an oxidizing agent in a reactor. In this process the oxidizing agent, e.g. Oxygen, introduced into the lower region of the melt, which is kept under an atmospheric pressure, preferably from 1.5 to 15 bar. A temperature-regulating gas in the form of carbon dioxide, air, nitrogen, argon and / or water vapor can be added to the oxidizing agent.

Alle oben beschriebenen Verfahren arbeiten mit Mantelgasdüsen, durch die der für die Entkohlungsreaktion notwendige Sauerstoff eingeblasen wird. Diese Düsen liegen unterhalb der Badoberfläche und müssen infolge dessen zusätzlich mit Kühlmedien, wie Kohlenwasserstoffen, beaufschlagt werden, um ein Zurückbrennen zu verhindern. Diese Schutzmedien sind teuer und metallurgisch ohne Bedeutung und stellen somit einen erheblichen Kostenfaktor dar.All of the methods described above work with jacket gas nozzles through which the oxygen required for the decarburization reaction is blown in. These nozzles are below the surface of the bath and, as a result, additional cooling media, such as hydrocarbons, must be applied to prevent them from burning back. These protective media are expensive and metallurgically insignificant and therefore represent a considerable cost factor.

Außerdem sind für solche Gase aufwendige Verdampfer- und Beheizungseinrichtungen sowie zusätzliche Regelstationen notwendig. Kohlenstoffhaltige Kühlgase führen überdies zu einem erhöhten Sauerstoffverbrauch bzw. können auch durch ihre aufkohlende Wirkung den erreichbaren Kohlenstoffgehalt einschränken. Da die Düsenquerschnitte notwendigerweise nach der für die Frischgeschwindigkeit erforderlichen Sauerstoffmenge dimensioniert werden, müssen sie in Konverterleer-oder Liegezeiten von ähnlich hohen Inertgasmengen (Ar, N2) durchströmt werden, was zu einer zusätzlichen Kostenbelastung des Verfahrens führt.In addition, complex evaporator and heating devices and additional control stations are necessary for such gases. Carbon-containing cooling gases also lead to increased oxygen consumption or can also limit the achievable carbon content due to their carburizing effect. Because the nozzle cross section te are necessarily dimensioned according to the amount of oxygen required for the fresh speed, they must be flowed through in converter empty or idle times of similarly high amounts of inert gas (Ar, N 2 ), which leads to an additional cost burden on the process.

Erfahrungsgemäß führt das Einblasen von Sauerstoff durch den Konverterboden bzw. unterhalb der Badoberfläche zu starken örtlichen Badturbulenzen, die infolge der Erosionswirkung zu einem starken voreilenden Feuerfest-Verschleiß des Bodens und der angrenzenden Bereiche führen. Dadurch ergeben sich zusätzliche Reparaturzeiten und Feuerfestkosten.Experience has shown that blowing oxygen through the converter floor or below the bath surface leads to strong local bath turbulence, which, due to the erosion effect, leads to severe premature refractory wear on the floor and the adjacent areas. This results in additional repair times and refractory costs.

Schließlich ist in der US-PS 3 305 352 ein Verfahren zur Herstellung von Ferromangan mit einem Kohlenstoffgehalt von nicht mehr als 1,5% durch Sauerstoffaufblasen beschrieben worden. Dieses Verfahren geht aus von einem Ferromangan, das z.B. im Hochofen erzeugt worden ist, mit einem Kohlenstoffgehalt von mindestens 3% und einem Siliciumgehalt bis 5%. Dieses hochkohlenstoffhaltige Ferromangan wird auf eine Entkohlungstemperatur von mindestens 1550 °C gebracht. Anschließend wird Sauerstoff mit einer solchen Menge aufgeblasen, die ausreicht, um die Schmelze auf eine Temperatur von etwa 1700 °C zu bringen, bevor der Kohlenstoff auf 1,5% abgesenkt worden ist. Die Blasoperation wird fortgesetzt, bis die Temperatur der Schmelze 1750 °C erreicht hat, und wird nach Erreichen dieser Temperatur beendet, wobei ein Ferromangan erhalten wird mit einem Kohlenstoffgehalt von nicht mehr als 1,5%. Zum Erreichen der Entkohlungstemperatur von mindestens 1550 °C kann ein Viertel des insgesamt benötigten Sauerstoffs geblasen werden. Die Schmelze kann aber auch durch Induktionserwärmung in einem Induktionsofen auf diese Temperatur gebracht werden.Finally, US Pat. No. 3,305,352 describes a process for producing ferromanganese with a carbon content of not more than 1.5% by oxygen inflation. This process is based on a ferromanganese which has been produced, for example, in a blast furnace, with a carbon content of at least 3% and a silicon content of up to 5%. This high-carbon ferromanganese is brought to a decarburization temperature of at least 1550 ° C. Oxygen is then blown up in an amount sufficient to bring the melt to a temperature of about 1700 ° C. before the carbon has been reduced to 1.5%. The blowing operation is continued until the temperature of the melt reaches 1750 ° C, and is stopped when this temperature is reached, whereby a ferromanganese is obtained with a carbon content of not more than 1.5%. A quarter of the total oxygen required can be blown to reach the decarburization temperature of at least 1550 ° C. However, the melt can also be brought to this temperature by induction heating in an induction furnace.

Dieses Verfahren hat den Vorteil, daß in vergleichsweise einfachen, im Prinzip von der Stahlerzeugung her bekannten Aggregaten gearbeitet werden kann. Der erhebliche Nachteil dieses Verfahrens ist dagegen, daß am Ende des Prozesses ein hoher Anteil an manganoxidreicher, hochschmelzender Schlacke vorliegt, der hohe Abstich- und Gießtemperaturen erforderlich macht, damit eine ausreichende Metall-Schlacken-Trennung gewährleistet ist. Darüber hinaus stellt diese Schlacke einen erheblichen Manganverlust dar, der sich in einer vergleichsweise geringen Metall- bzw. Manganausbeute niederschlägt.This method has the advantage that it is possible to work in comparatively simple units which are known in principle from steelmaking. The significant disadvantage of this process, on the other hand, is that at the end of the process there is a high proportion of manganese oxide-rich, high-melting slag, which makes high tapping and casting temperatures necessary to ensure adequate metal-slag separation. In addition, this slag represents a significant manganese loss, which is reflected in a comparatively low metal or manganese yield.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von kohlenstoff- und siliciumarmem Ferromangan (Ferromangan affine) durch Frischen eines im Hochofen erzeugten Ferromangans mit hohem Kohlenstoffgehalt (Ferromangan carbure) mittels reinen Sauerstoffs in einem Konverter zu schaffen, bei dem die wesentlichen Vorteile der bekannten Bodenblasverfahren genutzt, die erheblichen Nachteile jedoch vermieden werden, d.h. eine möglichst energiearme, verlustfreie Erzeugung ohne großen Futterverschleiß ermöglicht wird.The invention has for its object to provide a process for the production of low-carbon and low-silicon ferromanganese (ferromanganese affine) by refining a ferromanganese with a high carbon content (ferromanganese carbure) produced in the blast furnace by means of pure oxygen in a converter, in which the essential advantages of known bottom blowing method used, the significant disadvantages are avoided, ie low-energy, loss-free production without major feed wear is made possible.

Zur Lösung dieser Aufgabe werden erfindungsgemäß die Maßnahmen des Anspruchs 1 vorgeschlagen.To achieve this object, the measures of claim 1 are proposed according to the invention.

Nach Beendigung der Zugabe von festen Reduktionsmitteln wird bevorzugt in einer Kühlphase unter Fortsetzen des Einblasens von Rührgas die Schmelze mit arteigenem Material auf Gießtemperatur abgekühlt.After the addition of solid reducing agents has ended, the melt is preferably cooled to the casting temperature in a cooling phase, while the stirring gas is continued to be blown in, to the casting temperature.

Die Abstichtemperatur kann dabei in weiten Grenzen an die Erfordernisse der Gießtechnik angepaßt werden. Die Bodengasmenge kann durch die Wahl des Düsenquerschnittes, die Anzahl und Anordnung der Düsen sowie durch die von Prozeßparametern vorgegebene Regelung der Gasmenge so weit reduziert werden, wie dies zur Aufrechterhaltung der für die einzelnen Verfahrensstufen notwendigen Badbewegung erforderlich ist.The tapping temperature can be adapted to the requirements of the casting technology within wide limits. The amount of floor gas can be reduced by the choice of the nozzle cross-section, the number and arrangement of the nozzles, and by the regulation of the gas quantity, which is predetermined by process parameters, as necessary to maintain the bath movement necessary for the individual process stages.

In Ausgestaltung der Erfindung beträgt in der Oxidationsphase die Menge des aufgeblasenen Sauerstoffs 1,50 bis 4,0 Nm3/min ç t FeMn carbure, bevorzugt 2,5 bis 3,5 Nm3/min 9 t FeMn carbure und die Rührgasmenge 0,02 bis 0,50 Nm3/min 9 t FeMn carbure , bevorzugt 0,02 bis 0,15 Nm3/min 9 t FeMn carbure. In der Reduktions- und Kühlphase wird mit Vorteil mit einer Rührgasmenge von 0,05 bis 0,50 Nm3/min 51 t FeMn carbure gearbeitet.In an embodiment of the invention, in the oxidation phase the amount of oxygen blown is 1.50 to 4.0 Nm 3 / min ç t FeMn carbure, preferably 2.5 to 3.5 Nm 3 / min 9 t FeMn carbure and the amount of stirring gas is 0.02 up to 0.50 Nm 3 / min 9 t FeMn carbure, preferably 0.02 to 0.15 Nm 3 / min 9 t FeMn carbure. In the reduction and cooling phase, it is advantageous to work with a stirring gas amount of 0.05 to 0.50 Nm 3 / min 51 t FeMn carbure.

Als Rührgas werden in der Oxidationsphase erfindungsgemäß Stickstoff, Argon, Kohlendioxid oder Abgase und in der Reduktionsphase Argon oder Stickstoff verwendet.According to the invention, nitrogen, argon, carbon dioxide or exhaust gases are used as stirring gas in the oxidation phase and argon or nitrogen in the reduction phase.

Als feste Reduktionsmittel werden in der Reduktionsphase bevorzugt Silicomangan, Ferrosilicium, Silicium, Aluminium oder deren Legierungen verwendet in Mengen von 5 bis 15 kg Silicium oder Aluminium/t Ferromangan carbure; die Stückkalkmenge beläuft sich dabei abhängig vom Siliciumgehalt auf 10 bis 40 kg/t Ferromangan carbure.Silicomanganese, ferrosilicon, silicon, aluminum or their alloys are preferably used as solid reducing agents in the reduction phase in amounts of 5 to 15 kg silicon or aluminum / t ferromanganese carbure; the quantity of lime depending on the silicon content is 10 to 40 kg / t ferromanganese carbure.

Nach einem weiteren Merkmal der Erfindung wird Manganerz oder beim Verfahren abgeschiedene Filterstäube sowohl während als auch nach der Frischphase zur Kühlung angewandt, und die anschließende Reduktionsphase wird modifiziert, damit Mangan sowohl aus der Frischschlacke als auch aus dem Manganerz gewonnen wird, in dem die vorerwähnten anderen festen Reduktionsmittel zugesetzt werden.According to a further feature of the invention, manganese ore or filter dusts separated in the process are used for cooling both during and after the fresh phase, and the subsequent reduction phase is modified so that manganese is obtained both from the fresh slag and from the manganese ore in which the others mentioned above are obtained solid reducing agents are added.

In der an die Reduktion sich anschließenden Kühlphase wird bevorzugt Ferromangan affine in Mengen von 40 bis 350 kg/t Ferromangan carbure, vorzugsweise 60 bis 180 kg/t Ferromangan carbure, zugesetzt. Das Ferromangan affine kann als Kühlmittel jedoch ganz oder teilweise durch Manganez oder beim Verfahren abgeschiedene Filterstäube ersetzt werden.In the cooling phase following the reduction, ferromanganese affine is preferably added in amounts of 40 to 350 kg / t ferromanganese carbure, preferably 60 to 180 kg / t ferromanganese carbure. However, the ferromanganese affine as a coolant can be replaced in whole or in part by Manganez or filter dusts separated during the process.

Als zusätzliche Schlackenbildner können Dolomit und/oder Magnesit in Mengen bis 40 kg/t Ferromangan carbure eingesetzt werden, die neben der gewünschten Kühlwirkung einen besonderen Schutz der Feuerfestzustellung des Gefäßes bewirken.Dolomite and / or magnesite can be used as additional slag formers in quantities of up to 40 kg / t ferromangan carbure, which, in addition to the desired cooling effect, provide special protection for the refractory lining of the vessel.

Beim erfindungsgemäßen Verfahren zur Herstellung von Ferromangan affine liegt ein wesentlicher Vorteil in der Anwendung von unter der Badoberfläche angeordneten Blasdüsen, die durch Einblasen von geringen Rührgasmengen während des Frischprozesses und nach Beendigung eine ausreichend starke Badbewegung bewirken.In the method according to the invention for the production of ferromanganese affine, there is a significant advantage in the use of blowing nozzles arranged under the bath surface, which by blowing in small amounts of stirring gas during the fresh process and after the end result in a sufficiently strong bath movement.

Dadurch wird in der Oxidationsphase bei nachlassender Entkohlung ein ausreichender Bad-Schlacke-Umsatz aufrechterhalten und in einer sich anschließenden Reduktionsphase die Ausreduzierung der manganoxidreichen Schlacke ermöglicht, so daß beim Abstich eine notwendige Metall-Schlacken-Trennung bei ausreichendem Flüssigkeitsgrad vorliegt.As a result, a sufficient bath-slag conversion is maintained in the oxidation phase when the decarburization decreases and in a subsequent reduction phase the reduction of the manganese oxide-rich slag is made possible, so that a necessary metal-slag separation with a sufficient degree of liquid is present during tapping.

Als Erzeugungsgefäß kann ein an sich für die Stahlerzeugung üblicher Konverter verwendet werden, bei dem erfindungsgemäß im Konverterboden 2 bis 20, vorzugsweise 6 bis 10, Düsen zum Einblasen von Rührgas angeordnet sind.A converter which is conventional for steel production can be used as the production vessel, in which 2 to 20, preferably 6 to 10, nozzles for blowing in stirring gas are arranged in the converter base according to the invention.

Für das Aufblasen des Sauerstoffs wird eine wassergekühlte Aufblaslanze eingesetzt, die gekennzeichnet ist durch 3 bis 10, vorzugsweise 4 bis 6, Düsenöffnungen an der Lanzenspitze.A water-cooled inflation lance, which is characterized by 3 to 10, preferably 4 to 6, nozzle openings at the tip of the lance is used to inflate the oxygen.

Die Blasgeschwindigkeit und die Lanzenhöhe werden dem Entkohlungsverlauf folgend eingestellt und sind darüber hinaus von der Analyse des zu verblasenden Ferromangan carbure und des zu erzeugenden Ferromangan affine abhängig.The blowing speed and the lance height are set according to the decarburization process and are also dependent on the analysis of the ferromanganese carbure to be blown and the ferromanganese affine to be produced.

Den einzelnen Verfahrensstufen sind Art und Menge des unterhalb des Bades einzublasenden Rührgases zugeordnet.The individual process stages are assigned the type and amount of the stirring gas to be blown in below the bath.

Die Blasdüsen sind so angeordnet und dimensioniert, daß sie mit vergleichsweise geringen Gasmengen betrieben werden können, so daß sich die bekannten Nachteile bei mit hohen Gasmengen beaufschlagten Manteldüsen nicht einstellen. Die Bodendüsen sind bevorzugt in der Mitte des Bodens in einer Reihe parallel zur Konverterdrehachse oder vollkommen in dem Teil des Konverterbodens angeordnet, der beim Umlegen des Konverters schmelze- und schlackefrei ist. Hierdurch kann eine wirksame Umlaufbewegung der Schmelze eingestellt werden, so daß sich Metall und Schlacke ständig in einem intensiven Kontakt befinden, ohne daß es zu einem erhöhten Verschleiß der feuerfesten Auskleidung des Konverters kommt. Die vorgeschlagene Anordnung der Düsen im Konverterboden hat den weiteren Vorteil, daß beim Umlegen des Konverters die Düsen freigelegt werden und die Rührgasmenge in diesem Verfahrensabschnitt entsprechend reduziert werden kann. Zusätzlich kann dadurch eine Verdampfung des Metalls durch Zerstäuben vermieden werden. Die Innendurchmesser der Bodendüsen betragen 3 bis 12 mm, vorzugsweise 7 bis 9 mm.The blowing nozzles are arranged and dimensioned in such a way that they can be operated with comparatively small amounts of gas, so that the known disadvantages do not occur with jacket nozzles charged with large amounts of gas. The floor nozzles are preferably arranged in the middle of the floor in a row parallel to the axis of rotation of the converter or completely in the part of the floor of the converter which is free of melt and slag when the converter is turned over. As a result, an effective orbital movement of the melt can be set, so that metal and slag are constantly in intensive contact without increased wear of the refractory lining of the converter. The proposed arrangement of the nozzles in the converter base has the further advantage that the nozzles are exposed when the converter is turned over and the amount of stirring gas can be reduced accordingly in this process section. In addition, evaporation of the metal by sputtering can be avoided. The inside diameter of the floor nozzles is 3 to 12 mm, preferably 7 to 9 mm.

Die mit der Erfindung erzielten Vorteile sind insbesondere darin zu sehen, daß

  • - durch das Einblasen von Rührgas in die Schmelze die Inertgasmenge nach der für die einzelnen Phasen erforderlichen Mengen bemessen werden kann, was zu einer erheblichen Verminderung des Inertgasverbrauches führt,
  • - die gegenüber bekannten mantelgasgekühlten Düsen veränderten Düsen und die Schlackenführung zu einer starken Reduzierung des Feuerfestverschleißes insbesondere im Bodenbereich führen,
  • - auf die Anwendung von teuren Kühlgasen, die überdies komplizierte Regel- und aufwendige Verdampfereinrichtungen erfordern, verzichtet werden kann,
  • - die Konverterbodenkonstruktion durch Einsetzen einfacher rohrförmiger Düsen erheblich vereinfacht wird,
  • - durch die Reduktions- und Kühlphase im Anschluß an die Oxidationsphase eine gezielte Einstellung der Abstichtemperatur in weiten Grenzen möglich wird,
  • - hohe Ausbringensverluste in der Schlacke vermieden werden.
The advantages achieved with the invention can be seen in particular in that
  • by blowing stirring gas into the melt, the amount of inert gas can be measured according to the amounts required for the individual phases, which leads to a considerable reduction in the consumption of inert gas,
  • the nozzles modified compared to known jacket gas-cooled nozzles and the slag guidance lead to a strong reduction in refractory wear, particularly in the floor area,
  • the use of expensive cooling gases, which moreover require complicated control and complex evaporator devices, can be dispensed with,
  • the converter base construction is considerably simplified by using simple tubular nozzles,
  • - The reduction and cooling phase following the oxidation phase enables the tapping temperature to be set within wide limits,
  • - high output losses in the slag can be avoided.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments.

Beispiel 1example 1

In einen Konverter mit einem Fassungsvermögen von 140 t wurden 120700 kg hochkohlenstoffhaltiges Ferromangan (FeMn carbure) mit einer Temperatur von 1335 °C und folgender Zusammensetzung

Figure imgb0001
eingefüllt.120,700 kg of high-carbon ferromanganese (FeMn carbure) with a temperature of 1335 ° C. and the following composition were placed in a converter with a capacity of 140 t
Figure imgb0001
filled.

Anschließend wurde ca. 27 Minuten lang mit einer Aufblaslanze mit vier Düsenöffnungen Sauerstoff mit einer Geschwindigkeit von 300 Nm3/min auf die Schmelze geblasen. Gleichzeitig wurde mit einer Geschwindigkeit von 6,3 Nm3/min Argon durch sechs Bodendüsen in die Schmelze eingeleitet.Subsequently, oxygen was blown onto the melt at a rate of 300 Nm 3 / min using an inflation lance with four nozzle openings. At the same time, argon was introduced into the melt through six bottom nozzles at a speed of 6.3 Nm 3 / min.

Die Sauerstoffzufuhr durch die Lanze wurde bei einer Sauerstoffmenge von 8150 Nm302 abgeschaltet und die Lanze aus dem Konverter gezogen. Im Anschluß an die Oxidationsphase wurden von oben innerhalb von 2 Minuten 5838 kg SiMn in den Konverter gegeben. Mit einer Minute Verzögerung wurden 2144 kg Kalk in den Konverter gezogen. Während dieser Reduktionsphase wurden durch die Bodendüsen 12,6 Nm3 Argon/min in die Schmelze eingeblasen. Anschließend wurd die Schmelze im Konverter mittels arteigenem Kühlmittel auf die Abstichtemperatur von ca. 1580 °C abgekühlt. Dabei betrug der Kühlmittelverbrauch 6902 kg Ferromangan affine. Gleichzeitig wurden 4032 kg Dolomitkalk als Schlackenbildner zugegeben.The oxygen supply through the lance was switched off when the amount of oxygen was 8150 Nm 3 0 2 and the lance was pulled out of the converter. Following the oxidation phase, 5838 kg of SiMn were added to the converter from above within 2 minutes. With a delay of one minute, 2144 kg of lime were drawn into the converter. During this reduction phase, 12.6 Nm 3 argon / min were blown into the melt through the bottom nozzles. The melt was then cooled in the converter to the tapping temperature of approx. 1580 ° C using its own coolant. The coolant consumption was 6902 kg ferromanganese affine. At the same time, 4032 kg of dolomite lime were added as slag formers.

Aus dem Konverter wurden 112000 kg Ferromangan affine mit folgender Analyse abgestochen:

Figure imgb0002
112000 kg of ferromanganese-affine were tapped from the converter with the following analysis:
Figure imgb0002

Der Schlackenanfall betrug ca. 10500 kg, die Schlacke hatte folgende Zusammensetzung:

Figure imgb0003
The amount of slag was approx. 10500 kg, the slag had the following composition:
Figure imgb0003

Das metallische Ausbringen betrug 83,9%. Das Mn-Ausbringen betrug 88%.The metal output was 83.9%. The Mn output was 88%.

Beispiel 2Example 2

In einen Konverter wie Beispiel 1 wurden 127400 kg Ferromangancarbur mit einer Temperatur von 1345 °C und folgender Analyse

Figure imgb0004
eingefüllt.In a converter such as Example 1, 127400 kg of ferromanganese carburized at a temperature of 1345 ° C and the following analysis
Figure imgb0004
filled.

Anschließend wurde 26 Minuten lang mit einer Aufblaslanze mit vier Düsenöffnungen Sauerstoff mit einer Geschwindigkeit von 300 Nm3/min auf die Schmelze geblasen. Gleichzeitig wurde mit einer Geschwindigkeit von 6,3 Nm3/min Argon durch sechs Bodendüsen in die Schmelze eingeleitet.Subsequently, oxygen was blown onto the melt at a speed of 300 Nm 3 / min using an inflation lance with four nozzle openings. At the same time, argon was introduced into the melt through six bottom nozzles at a speed of 6.3 Nm 3 / min.

Die Sauerstoffzufuhr durch die Aufblaslanze wurde nach einer verblasenen Menge von 9000 Nm3 02 unterbrochen und die Aufblaslanze aus dem Konverter gefahren.The oxygen supply through the inflation lance was interrupted after a blown quantity of 9000 Nm 3 0 2 and the inflation lance was moved out of the converter.

Anschließend wurde - ähnlich wie im Beispiel 1 - das Manganoxid aus der Schlacke zurück in die Schmelze reduziert. Dazu wurden von oben 788 kg AI und 2280 kg Kalk in den Konverter gezogen und gleichzeitig durch die Bodendüsen 10,5 Nm3 Argon/min in das Bad eingeblasen. Nach erfolgter Reduktion wurde die Schmelze im Konverter mit arteigenem Kühlmittel auf eine Temperatur von 1611 °C gebracht. Dazu waren 11820 kg Kühlaffine notwendig. Gleichzeitig wurden 4284 kg Dolomitkalk als Schlackenbildner zugesetzt.Then - similar to example 1 - the manganese oxide from the slag was reduced back into the melt. For this purpose, 788 kg of AI and 2280 kg of lime were drawn into the converter and at the same time 10.5 Nm3 argon / min were blown into the bath through the floor nozzles. After the reduction had taken place, the melt was brought to a temperature of 1611 ° C. in the converter using its own coolant. This required 11,820 kg of cooling affinity. At the same time, 4284 kg of dolomite lime were added as slag formers.

Aus dem Konverter wurden 117000 kg FeMn affine mit folgender Analyse abgestochen:

Figure imgb0005
117000 kg of FeMn-affine were tapped from the converter with the following analysis:
Figure imgb0005

Der Schlackenanfall betrug ca. 11100 kg; die Schlacke hatte folgende Zusammensetzung:

Figure imgb0006
The amount of slag was about 11100 kg; the slag had the following composition:
Figure imgb0006

Das metallische Ausbringen betrug 83,6%. Das Manganausbringen betrug 87,4% Mn.The metal output was 83.6%. The manganese yield was 87.4% Mn.

Zwei bevorzugte Anordnungen der Bodendüsen im Konverterboden sind in der Zeichnung dargestellt.

  • Fig. 1 zeigt in schematischer Darstellung die Draufsicht eines Konverters in einer Ausführung mit Bodendüsen und
  • Fig. 2 die Draufsicht eines Konverters mit einer anderen Anordnung der Bodendüsen.
Two preferred arrangements of the floor nozzles in the converter floor are shown in the drawing.
  • Fig. 1 shows a schematic representation of the top view of a converter in an embodiment with floor nozzles and
  • Fig. 2 is a plan view of a converter with a different arrangement of the floor nozzles.

Bei der Ausführung gemäß Fig. 1 sind die Bodendüsen 5 in der Mitte des Konverterbodens 2 in einer Reihe parallel zur Drehachse 3 und in der Mittenebene des Konverters 1 angeordnet. Die Drehzapfen sind mit 4 bezeichnet.1, the floor nozzles 5 are arranged in the middle of the converter floor 2 in a row parallel to the axis of rotation 3 and in the center plane of the converter 1. The pivots are designated by 4.

Beim Ausführungsbeispiel gemäß Fig. 2 sind die Bodendüsen 5 in dem Teil des Konverterbodens 2 angeordnet, die beim Umlegen des Konverters 1 schmelze- und schlackefrei ist, das ist im umgelegten Zustand des Konverters 1 der obere Teil des Konverterbodens 2. Durch diese Anordnungen der Bodendüsen 5 in dem Konverterboden 2 wird sichergestellt, daß nach dem Umlegen des Konverters 1 die Bodendüsen 5 freigelegt werden. Die Rührgasmenge kann in diesem Verfahrensabschnitt entsprechend reduziert werden. Ein Zerstäuben von Schlacke und Metall und damit eine Verdampfung von Metall findet nicht statt.In the exemplary embodiment according to FIG. 2, the floor nozzles 5 are arranged in the part of the converter floor 2 which is free of melt and slag when the converter 1 is folded over, that is the upper part of the converter floor 2 when the converter 1 is folded over. These arrangements of the floor nozzles 5 in the converter floor 2 ensures that the floor nozzles 5 are exposed after the converter 1 has been flipped. The amount of stirring gas can be reduced accordingly in this process section. There is no atomization of slag and metal and thus no evaporation of metal.

Claims (19)

1. A process for the production of low-carbon, low-silicon ferromanganese solely by the top-blowing in an oxidation phase with pure oxygen in a converter, using a top-blowing lance, of a blast-furnace-produced high-carbon ferromanganese melt, inert gas being injected at the same time through bottom nozzles into the molten metal below its level, and by the addition in a following reduction phase of solid reducing agents, with the continued injection of inert gas, to recover the slagged manganese, characterized in that during the reduction phase lime is added in lumps to the melt in addition to the solid reducing agents and, in a cooling phase following the completion of such addition, the melt is cooled with homogeneous material to casting temperature, with the continued injection of .inert gas as an agitating gas.
2. A process according to claim 1, characterized in that the high-carbon ferromanganese is blown with a blowing speed of 1.5 to 4.0 Nm302/min per tonne of high-carbon ferromanganese.
3. A process according to claims 1 and 2, characterized in that in the oxidation phase the quantity of agitating gas is between 0.02 and 0.50 Nm3/min per tonne of high-carbon ferromanganese.
4. A process according to claims 1 to 3, characterized in that in the reduction and cooling phase the quantity of agitating gas is 0.05 to 0.50 Nm3/min per tonne of high-carbon ferromanganese.
5. A process according to claims 1 to 4, characterized in that nitrogen, argon, carbon dioxide or waste gases are injected in the oxidation phase, argon or nitrogen being introduced as an agitating gas into the melt in the reduction phase.
6. A process according to claims 1 to 5, characterized in that in the reduction phase 10 to 15 kg of silicon are added per tonne of high-carbon ferromanganese in the form of silicomanganese, ferrosilicon, silicon, aluminium or their alloys, and also between 20 and 40 kg of lime per tonne of high-carbon ferromanganese, in dependence on the silicon content of the high-carbon ferromanganese.
7. A process according to claims 1 to 6, characterized in that manganese ore or filter dusts separated during the process are added for cooling purposes both during and following the oxidation phase.
8. A process according to claim 7, characterized in that during the reduction phase the reducing agents set forth in claim 7 are added to reduce the slagged manganese and manganese ore.
9. A process according to claims 1 to 8, characterized in that in the cooling phase 40 to 350 kg of low-carbon ferromanganese are added per tonne of high-carbon ferromanganese.
10. A process according to claim 9, characterized in that manganese ore or filter dusts separated during the process are substituted wholly or partially for the low-carbon ferromanganese added in the cooling phase.
11. A process according to claims 1 to 10, characterized in that in the cooling phase dolomite and/or magnesite are added in quantities of up to 40 kg per tonne of high-carbon ferromanganese as additional slag formers.
12. A water-cooled oxygen top-blowing lance for the performance of the process according to claims 1 to 12, characterized by 3 to 10 nozzle openings at the lance tip.
13. A water-cooled oxygen top-blowing lance according to claim 12, characterized by 4 to 6 nozzle openings at the lance tip:
14. A converter for the molted metallurgical treatment of metal melts, more particularly for the production of low-carbon, low-silicon ferromanganese according to one of claims 1 to 10, characterized in that the converter bottom is formed with 2 to 20 nozzles for the injection of agitating gas.
15. A converter according to claim 14, characterized in that the converter bottom is formed with 6 to 10 bottom nozzles.
16. A converter according to claims 14 or 15, characterized in that the bottom nozzles are disposed in the centre of the converter bottom in a row parallel with the axis of rotation of the converter.
17. A converter according to claims 14 or 15, characterized in that all the bottom nozzles are disposed in that part of the converter which is free from melt and slag when the converter is turned down.
18. A converter according to claims 16 or 17, characterized in that the internal diameters of the bottom nozzles are 3 to 12 mm.
19. A converter according to claim 18, characterized in that the internal diameters of the bottom nozzles are 7 to 9 mm.
EP88102163A 1987-03-11 1988-02-15 Method of producing affined ferromanganese Expired - Lifetime EP0281796B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3707696 1987-03-11
DE19873707696 DE3707696A1 (en) 1987-03-11 1987-03-11 METHOD FOR PRODUCING FERROMANGAN AFFINE

Publications (2)

Publication Number Publication Date
EP0281796A1 EP0281796A1 (en) 1988-09-14
EP0281796B1 true EP0281796B1 (en) 1990-01-24

Family

ID=6322713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102163A Expired - Lifetime EP0281796B1 (en) 1987-03-11 1988-02-15 Method of producing affined ferromanganese

Country Status (6)

Country Link
US (1) US4808220A (en)
EP (1) EP0281796B1 (en)
JP (1) JPS63290242A (en)
DE (2) DE3707696A1 (en)
ES (1) ES2013311B3 (en)
ZA (1) ZA881149B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683487B2 (en) * 1993-05-18 1997-11-26 水島合金鉄株式会社 Manufacturing method and manufacturing apparatus for medium / low carbon ferromanganese
UA82962C2 (en) * 2005-12-02 2008-05-26 Sms Demag Ag Method and smelting unit for obtaining steel with high manganese and low carbon content
US8658289B2 (en) * 2007-11-16 2014-02-25 Ppg Industries Ohio, Inc. Electromagnetic radiation shielding device
JP6726777B1 (en) * 2019-01-24 2020-07-22 Jfeスチール株式会社 Method for producing low carbon ferromanganese
US20230167518A1 (en) * 2020-03-06 2023-06-01 Jfe Steel Corporation Method for producing low-carbon ferromanganese
CN114606431A (en) * 2022-03-02 2022-06-10 黄靖元 Process for producing low-carbon ferromanganese by using induction furnace

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB129426A (en) * 1918-07-08 1919-07-08 Robert Abbott Hadfield Improvements in or relating to the Manufacture of Low Carbon Ferro-manganese.
US3305352A (en) * 1964-01-03 1967-02-21 Union Carbide Corp Process of producing alloys
DE1904383C3 (en) * 1968-02-24 1975-02-13 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Bottom-blowing converter for refining pig iron to steel
LU58309A1 (en) * 1969-02-27 1969-07-15
US3797814A (en) * 1972-03-27 1974-03-19 Berry Metal Co Oxygen lance with multi-orificed nozzle
US3854932A (en) * 1973-06-18 1974-12-17 Allegheny Ludlum Ind Inc Process for production of stainless steel
JPS5039609A (en) * 1973-08-14 1975-04-11
FR2267376B1 (en) * 1974-04-11 1977-06-24 Creusot Loire
JPS5198614A (en) * 1975-02-13 1976-08-31 JUNSANSOWA BUKISEIKOHO
DE2531034C2 (en) * 1975-07-11 1983-09-15 GfE Gesellschaft für Elektrometallurgie mbH, 4000 Düsseldorf Process for decarburizing high-carbon ferro-manganese or high-carbon ferrochrome
JPS56123853U (en) * 1980-02-18 1981-09-21
JPS5743919A (en) * 1980-08-30 1982-03-12 Kawasaki Steel Corp Method for blow refining in top and/or bottom-blown converter
US4358314A (en) * 1980-09-03 1982-11-09 British Steel Corporation Metal refining process
US4365992A (en) * 1981-08-20 1982-12-28 Pennsylvania Engineering Corporation Method of treating ferrous metal
JPS5839885A (en) * 1981-08-31 1983-03-08 Shimadzu Corp Gate valve for pipeline
JPS6067608A (en) * 1983-09-22 1985-04-18 Japan Metals & Chem Co Ltd Manufacture of medium or low carbon ferromanganese
DE3434894C2 (en) * 1984-09-22 1986-09-18 Thyssen Stahl AG, 4100 Duisburg Process for refining pig iron

Also Published As

Publication number Publication date
ES2013311B3 (en) 1990-05-01
JPS63290242A (en) 1988-11-28
DE3707696A1 (en) 1988-09-22
ZA881149B (en) 1988-08-15
DE3707696C2 (en) 1989-09-14
DE3860029D1 (en) 1990-03-01
US4808220A (en) 1989-02-28
EP0281796A1 (en) 1988-09-14

Similar Documents

Publication Publication Date Title
DE102007061062B4 (en) Process for producing a steel melt containing up to 30% manganese
DE1916945B2 (en) Application of a process for refining pig iron to steel
DE4031403A1 (en) CERAMIC WELDING PROCESS AND LANCE FOR USE IN SUCH A PROCESS
DE2755165B2 (en) Method of increasing the scrap rate in steelmaking
EP0281796B1 (en) Method of producing affined ferromanganese
DE3809477A1 (en) METHOD FOR REMOVING SULFUR FROM MELTING OF COPPER
DE60201780T2 (en) Metal refining process, in particular two-stage oxygen inflation process
DE3586970T2 (en) METHOD FOR PRODUCING STEEL IN AN INFLATION CONVERTER.
DE3850381T2 (en) OVEN AND METHOD FOR REDUCING A CHROME PRE-PRODUCT BY MELTING.
DE2602536A1 (en) METHOD OF MANUFACTURING LOW SULFUR PALE STEEL
DE3426736C2 (en)
EP0175924B1 (en) Process for refining pig iron
DE68915234T2 (en) Process for melting cold substances containing iron.
DE2259534A1 (en) METHOD AND DEVICE FOR STEEL PRODUCTION
DE3418643A1 (en) METHOD FOR PRODUCING A STEEL HAVING A LOW PHOSPHOROUS CHROME
DE60001576T2 (en) METHOD FOR THE DECOLORING AND ENTPHOSPHORATION OF A METAL MELT
DE2531034C2 (en) Process for decarburizing high-carbon ferro-manganese or high-carbon ferrochrome
DE1583968C (en) Process for refining pig iron
DE2559188A1 (en) PROCESS FOR DESULFURIZATION OF STEEL MELT
DE4014835C2 (en) Process for the oxidation treatment of a liquid bath
DE2540290C3 (en) Process for decarburizing * '1 "x 11" 6111 ferrochrome or high carbon ferromanganese
DE1758455C3 (en) Process for refining alloyed carbonaceous iron melts
DE2201388C3 (en) Application of a process of decarburization of a ferrous melt for decarburization of highly carbonized forrochrome or highly carbonized ferromanganese
DE1433658A1 (en) Process for the continuous conversion of molten pig iron into steel
DE2060493C3 (en) Process for the continuous production of steel by spray-freshening and plant for carrying out the process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17P Request for examination filed

Effective date: 19890119

17Q First examination report despatched

Effective date: 19890621

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3860029

Country of ref document: DE

Date of ref document: 19900301

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940126

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940203

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940405

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950228

BERE Be: lapsed

Owner name: THYSSEN STAHL A.G.

Effective date: 19950228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050215