EP0275426A2 - Method of and installation for producing fiber reinforced metal pieces - Google Patents

Method of and installation for producing fiber reinforced metal pieces Download PDF

Info

Publication number
EP0275426A2
EP0275426A2 EP87117752A EP87117752A EP0275426A2 EP 0275426 A2 EP0275426 A2 EP 0275426A2 EP 87117752 A EP87117752 A EP 87117752A EP 87117752 A EP87117752 A EP 87117752A EP 0275426 A2 EP0275426 A2 EP 0275426A2
Authority
EP
European Patent Office
Prior art keywords
casting
vacuum
filling chamber
die
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117752A
Other languages
German (de)
French (fr)
Other versions
EP0275426B1 (en
EP0275426A3 (en
Inventor
Herbert Dr. Woithe
Josef Dipl.-Ing. Penkava
Gerhard Prof. Dr.-Ing. Habil. Phys. Ibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Original Assignee
Vereinigte Aluminium Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Aluminium Werke AG filed Critical Vereinigte Aluminium Werke AG
Priority to AT87117752T priority Critical patent/ATE68732T1/en
Publication of EP0275426A2 publication Critical patent/EP0275426A2/en
Publication of EP0275426A3 publication Critical patent/EP0275426A3/en
Application granted granted Critical
Publication of EP0275426B1 publication Critical patent/EP0275426B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Definitions

  • the invention relates to a method and a device for the production of fiber-reinforced metal parts according to vacuum pressure casting technology, the metering of the metal being carried out by means of a vacuum via a riser pipe and a suction opening into the filling chamber, and the metal being pressed into the mold cavity by means of an ancestor of the casting piston via a casting run.
  • Vacuum die casting technology for horizontal and vertical cold chamber die casting machines is known.
  • the melt is drawn into the filling chamber via a riser pipe by means of a vacuum, which is arranged above the mold cavity in the direction of flow of the molten metal.
  • the object of the present invention is to avoid the inclusion of gases in a method and a device for producing fiber-reinforced metal parts and to improve the wetting of the fibers by the inflowing melt. According to the invention, this is done by the features specified in the claims.
  • the arrangement of the vacuum connection between the filling chamber and the molding space in the region of the casting run has the advantage that the vapors of the piston lubricant heated by the liquid metal filled or sucked into the filling chamber of the die casting machine are sucked out separately and directly from the filling chamber.
  • the application of the present method is particularly important with regard to volatile alloy components, e.g. Magnesium and its oxides, which are easily formed when the melt overheats and are deposited in the mold cavity.
  • volatile alloy components e.g. Magnesium and its oxides
  • With the present method it is possible to keep the die cavity of the die casting machine free of air and other residual gases and in particular the inner surface of the fiber arrangements used free of any contamination by condensed residues while at the same time maintaining the automatic suction of the molten metal for the shot.
  • the mold cavity 7 which has the suction channel 9 with filter 10, vacuum control valve 11 and the vacuum container 12 and vacuum pump 13 in the region of the casting run 8.
  • Figure 2 shows the filling chamber 1 in cross section with a subsequent pouring run 8, in which the vacuum channel 9 opens.
  • the mold cavity 7a, b is connected to an annular suction 14a, b, c, which provides additional degassing of the fiber molded body before the melt penetrates.
  • FIG. 3 schematically shows a mold cavity 15 which is formed by two mold halves 16a, 16b. At the outer ends of the mold halves 16a, b 2 bores 17a, 17b and 18a, 18b are provided for receiving magnetic bodies 19-22.
  • a cylindrical fiber molded body 23 is inserted into the mold cavity 15. This has annular spacers 24, 25 made of ferromagnetic material at the respective end points. It is possible to use the magnetic bodies 19-22 both from normal magnets and in the form of electromagnets.
  • a molded fiber body or a fiber insert is produced from long and / or short fibers by known methods.
  • Al2O3 and the SiC fibers are preferred as fiber material, but other high-strength metal fibers and carbon fibers as well as boron fibers can also be processed.
  • the preferred Al2O3-containing fibers are non-magnetic and are preformed into a firm bond using the known sintering technique.
  • Known silicate-based binders e.g. "LUDOX" from DuPont can be used.
  • the fiber molding is inserted into the mold cavity 7, which is located in the movable and / or fixed mold half 6a, b or 16a, b.
  • the fiber molded body is fixed in the mold either by core parts or preferably by magnets - as shown in FIG. 3, the fibers additionally having to contain ferromagnetic metal parts.
  • the vacuum channel 9 is connected in the area of the casting run 8 between the end of the filling chamber 1 and the mold cavity 7. It can be formed from one line or preferably from a plurality of lines with a thin cross-section.
  • the mold cavity 7 can be evacuated to the exit side via a ring line 14. In the case of preheated fiber molded articles in particular, this ensures that volatile contaminants and gaseous inclusions of the fibers are extracted.
  • melt is drawn from the container 5 into the filling chamber 1 via the riser pipe 4.
  • the final pressure is in the range of 100 mbar - preferably between 95 and 110 mbar.
  • the evacuation time is set in the range of 2-10 seconds via a vacuum valve 11.
  • the pressure piston 2 then shoots the melt into the mold at a speed of 0.3 to 6 m / sec.
  • the mold 6a, b or 16a, b opens, so that the casting can be removed and the release agent can be sprayed on again for the next shot.
  • FIGS. 4 to 6 show 3 fiber-reinforced castings produced in different ways.
  • Fig. 4 shows a casting which was produced by conventional vacuum die casting technology, the vacuum channel being connected at the upper end of the mold cavity behind the fiber insert.
  • FIG 5 shows a fiber-reinforced die-cast part which was produced using a modified vacuum die-casting technique, the vacuum being drawn off in the region of the casting run and at the upper end of the mold cavity behind the fiber insert.
  • FIG. 6 shows a fiber-reinforced die-cast part which was produced by the method according to the invention with a vacuum connection in the region of the casting run.
  • the casting data for all three manufacturing processes are: Alloy: AlSi12CuNiMg according to DIN 1725, sheet 2 Casting temperature: 730 ° C Molding temperature: 200 - 250 ° C Shaped fiber: preheated from Al2O3 to> 650 ° C Casting pressure: varied between 980 and 1020 bar. After removal, the castings were cooled in air and solution-annealed at 500 ° C for one hour. This was followed by quenching in hot water with subsequent aging at 180-250 ° C. for 4 hours.
  • the casting shown in FIG. 4 has micro voids with diameters of 10 to 200 ⁇ m and gas-filled pores which contain residual gases from the atmosphere and vaporous parts of the lubricant.
  • the porosity of this part was more than 1.5%, calculated from the difference between the actual density and the theoretical density.
  • Parts from the manufacturing process described in connection with FIG. 5 have porosities between 0.5 and 1.0%. It can be seen that very many gaseous inclusions are still present, particularly in the fiber inserts.
  • the porosity of a casting produced by the process according to the invention was less than 0.3%.
  • the structure is homogeneous and without defects.
  • FIG. 7 shows a relatively uniform magnesium distribution between the fibers 27, 28, while in FIG. 8 an annular reaction layer 29 around the Al 2 O 3 fibers 30 after heat treatment at 500 ° C. for 3.5 hours and subsequent quenching with hot water arose.
  • the reaction layer in the example chosen here consists of AlMg spinels of the MgO ⁇ Al2O3 type, which increase the adhesion between the matrix and the fibers by a chemical bond by a factor of 2 to 10, the higher values with a subsequent aging at 200 ° C. for 4 hours were achieved.
  • reaction layer according to the invention only about 50% of the theoretically possible bond strength can be achieved. This is due to the fact that only a part of the tensile stresses can be transferred between the fibers and the matrix by adhesive forces.
  • a particular advantage of the method according to the invention is that hardenable aluminum alloys can also be used as the matrix material due to the large absence of pores. So far, the high temperatures required during curing have caused the structure to be expanded by gaseous inclusions and micro-cavities in such a way that large cracks and bubbles have formed on the surface.
  • the method according to the invention not only can the embedding of the fibers be improved by means of a reactive intermediate layer, but at the same time the strength of the matrix itself and thus the overall strength of the composite material can be increased.
  • FIGS. 9 to 11 show X-ray radiographs on a 1: 1 scale of fiber-reinforced connecting rods, three different production methods being used analogously to FIGS. 4 to 6.
  • the part in Fig. 9 was manufactured using conventional vacuum die casting technology, the vacuum channel being connected at the upper end of the mold cavity behind the fiber insert. 5, a modified vacuum die-casting process was used, in which the vacuum in the region of the casting run and at the upper end of the mold cavity behind the fiber insert was removed simultaneously.
  • the part in FIG. 11 was produced by the method according to the invention with a vacuum connection in the area of the casting run. The casting data have been explained in more detail in connection with FIGS. 4 to 6.
  • FIG. 9 shows numerous gas pores and voids in the area of the sprue, while only individual pores can be seen in the shaft area. According to FIG. 10, there are still some gas pores and cavities in the area of the connecting rod bearing, while in FIG. 11 this point no longer has any irregularities.
  • the irregularities (blowholes and glass bubbles) in the structure are starting points for cracks, which lead to a weakening of the strength values, in particular the notched impact strength. Comparative studies show that the strength decreases approximately in proportion to the amount of pore volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The direct transfer of the vacuum die-casting technique in cold-chamber die-casting machines used for the manufacture of unreinforced castings to the manufacture of fibre-reinforced castings involves serious disadvantages. As a result of the arrangement of the vacuum connection above the mould cavity, the gases present in the melt container and in the filling chamber are drawn right through the mould cavity when the melt is drawn in. Gas residues can therefore remain in the inserted fibrous body and lead to the formation of gas bubbles or shrink holes in the casting. There is also a risk of, for example, lubricant vapours or highly volatile alloy constituents condensing on the fibres. This impedes the wetting of the fibres with the molten metal, and the achievable bonding strength is thus markedly reduced. These disadvantages are to be avoided by the novel process. According to the process of the invention, the vacuum connection is arranged in the region of the casting run (8) between the filling chamber (1) and the mould cavity (7). Residual gases from the filling chamber (1) are thus extracted before they pass into the mould cavity (7), the fibrous moulding being degassed at the same time. This prevents any contamination of the fibres, so that high bonding strengths are achieved. Vacuum die-casting of fibre-reinforced aluminium castings.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von faserverstärkten Metallteilen nach Vakuumdruck­gießtechnik, wobei die Dosierung des Metalls mittels Vakuum über ein Steigrohr und eine Ansaugöffnung in die Füllkammer erfolgt und durch Vorfahren des Gießkolbens das Metall über einen Gieß­lauf in den Formhohlraum hineingedrückt wird.The invention relates to a method and a device for the production of fiber-reinforced metal parts according to vacuum pressure casting technology, the metering of the metal being carried out by means of a vacuum via a riser pipe and a suction opening into the filling chamber, and the metal being pressed into the mold cavity by means of an ancestor of the casting piston via a casting run.

Aus "Moderne Druckgußfertigung" 1971 (Brunnhuber), Seite 57 ff. ist die Vakuumdruckgußtechnik für horizontale und vertikale Kaltkammer-Druckgießmaschinen bekannt. Dabei wird die Schmelze über ein Steigrohr in die Füllkammer mittels eines Vakuums ge­saugt, das - in Strömungsrichtung der Metallschmelze - oberhalb des Formhohlraums angeordnet ist.From "Modern Die Casting Production" 1971 (Brunnhuber), page 57 ff., Vacuum die casting technology for horizontal and vertical cold chamber die casting machines is known. The melt is drawn into the filling chamber via a riser pipe by means of a vacuum, which is arranged above the mold cavity in the direction of flow of the molten metal.

Bei der Anwendung dieses Verfahrens auf die Herstellung von faserverstärkten Druckgußteilen ergibt sich der Nachteil, daß zusammen mit der Metallschmelze auch die im Schmelzenbehälter und in der Füllkammer vorhandenen Gase mit angesaugt werden. Diese Gase müssen bei den herkömmlichen Verfahren durch die Faserlagen hindurchgesaugt werden und erhöhen die Gefahr der Blasenbildung durch im Faserkörper zurückgebliebene Gasreste.When this method is used for the production of fiber-reinforced die-cast parts, there is the disadvantage that, together with the molten metal, the gases present in the melt container and in the filling chamber are also sucked in. In the conventional methods, these gases have to be sucked through the fiber layers and increase the risk of blistering due to gas residues remaining in the fiber body.

Ferner ist es unter bestimmten Temperaturbedingungen möglich, daß Schmiermitteldämpfe aus der Füllkammer an der Fasereinlage kondensieren, und dadurch die Benetzung durch die nachströmende Metallschmelze verhindert wird. Die Fasern eines faserverstärk­ten Verbundwerkstoffs sind dann zwar noch formschlüssig, aber nicht mehr vollständig kraftschlüssig in der Matrix einge­bunden. Die erreichbare Festigkeit des Verbundes wird merklich verringert.Furthermore, under certain temperature conditions, it is possible for lubricant vapors from the filling chamber to condense on the fiber insert, thereby preventing wetting by the flowing metal melt. The fibers of a fiber-reinforced composite material are then still form-fitting, but are no longer completely non-positively integrated in the matrix. The achievable strength of the composite is significantly reduced.

Aufgabe der vorliegenden Erfindung ist es, bei einem Verfahren und einer Vorrichtung zur Herstellung von faserverstärkten Me­tallteilen die Einschließung von Gasen zu vermeiden und die Benetzung der Fasern durch die einströmende Schmelze zu ver­bessern. Erfindungsgemäß geschieht dies durch die in den Pa­tentansprüchen angegebenen Merkmale.The object of the present invention is to avoid the inclusion of gases in a method and a device for producing fiber-reinforced metal parts and to improve the wetting of the fibers by the inflowing melt. According to the invention, this is done by the features specified in the claims.

Der schematische Ablauf des erfindungsgemäßen Verfahrens läßt sich wie folgt darstellen:The schematic sequence of the method according to the invention can be represented as follows:

1. Fremdbefüllung1. External filling

  • a) Schmelze einfüllen,a) fill in the melt,
  • b) Füllkammer mit vorfahrendem Kolben schließen,b) close the filling chamber with the piston in front,
  • c) Dämpfe absaugen,c) extract vapors,
  • d) Formraum durch vorfahrenden Kolben füllen,d) fill the mold space with the piston in front,
  • e) Vakuum schließen.e) Close vacuum.
2. Selbstansaugung2. Self-priming

  • a) Vakuum anlegen,a) apply vacuum,
  • b) Schmelze ansaugen,b) suck in the melt,
  • c) Gießkolben vorfahren,c) advance the plunger,
  • d) Formraum füllen,d) fill mold space,
  • e) Vakuum schließen.e) Close vacuum.

Die Anordnung des Vakuumanschlusses zwischen Füllkammer und Formraum im Bereich des Gießlaufs hat den Vorteil, daß die Dämp­fe des vom in die Füllkammer der Druckgießmaschine eingefullten bzw. angesaugten flüssigen Metalls erhitzten Kolbenschmiermit­tels separat und direkt aus der Füllkammer abgesaugt werden.The arrangement of the vacuum connection between the filling chamber and the molding space in the region of the casting run has the advantage that the vapors of the piston lubricant heated by the liquid metal filled or sucked into the filling chamber of the die casting machine are sucked out separately and directly from the filling chamber.

Die Dämpfe kommen nicht mehr mit kalten Wänden des Formhohlraums oder der Einlagen in Berührung und können sich nicht an der großen inneren Oberfläche des Faserformkörpers niederschlagen. Eine Kontamination durch alle Bestandteile des Füllkammergases kann vollständig unterbunden werden.The vapors no longer come into contact with cold walls of the mold cavity or the inserts and cannot be deposited on the large inner surface of the fiber molded body. Contamination from all components of the filling chamber gas can be completely prevented.

Die Anwendung des vorliegenden Verfahrens ist insbesondere im Hinblick auf leicht flüchtige Legierungsbestandteile wichtig, wie z.B. Magnesium und dessen Oxide, die bei Überhitzung der Schmelze leicht gebildet und in dem Formhohlraum abgeschieden werden. Mit dem vorliegenden Verfahren ist es möglich, den Formhohlraum der Druckgießmaschine frei von Luft und anderen Restgasen und insbesondere die innere Oberfläche der eingesetz­ten Faseranordnungen frei von jeder Kontamination durch konden­sierte Rückstände bei gleichzeitiger Aufrechterhaltung der auto­matischen Ansaugung der Metallschmelze für den Schuß zu halten.The application of the present method is particularly important with regard to volatile alloy components, e.g. Magnesium and its oxides, which are easily formed when the melt overheats and are deposited in the mold cavity. With the present method it is possible to keep the die cavity of the die casting machine free of air and other residual gases and in particular the inner surface of the fiber arrangements used free of any contamination by condensed residues while at the same time maintaining the automatic suction of the molten metal for the shot.

Für bestimmte Anwendungsfälle - insbesondere für großvolumige Teile - ist es vorteilhaft, die Fasereinlage etwa auf Gießtempe­ratur vorzuheizen. Bei diesen Temperaturen können Restverun­reinigungen auf den Fasern verdampfen und in den Formhohlraum gelangen. Dieses wird erfindungsgemäß durch einen weiteren zu­sätzlichen Absaugkanal verhindert, der ringförmig um den Form­hohlraum im Bereich der Faserlage gelegt ist.For certain applications - especially for large-volume parts - it is advantageous to preheat the fiber insert to approximately the casting temperature. At these temperatures, residual impurities on the fibers can evaporate and get into the mold cavity. According to the invention, this is prevented by a further additional suction channel which is placed in a ring around the mold cavity in the area of the fiber layer.

Im folgenden wird die Erfindung anhand mehrerer Ausführungsbei­spiele näher erläutert. Es zeigen:

  • Fig. 1 = Längsschnitt durch eine erfindungsgemäße Druckgieß­maschine
  • Fig. 2 = Querschnitt entlang AA gem. Fig. 1
  • Fig. 3 = Längsschnitt durch einen Formhohlraum mit magneti­schen Haltekörpern.
  • Fig. 4-6 = Querschnitt durch 3 verschieden hergestellte faser­verstärkte Gußteile
  • Fig. 7 u. 8 = Querschliffe durch zwei faserverstärkte Druckgußteile
  • Fig. 9 - 11 = Röntgendurchstrahlungsbilder von drei faser­verstärkten Pleuelstangen
The invention is explained in more detail below with the aid of several exemplary embodiments. Show it:
  • Fig. 1 = longitudinal section through a die casting machine according to the invention
  • Fig. 2 = cross section along AA acc. Fig. 1
  • Fig. 3 = longitudinal section through a mold cavity with magnetic holding bodies.
  • Fig. 4-6 = cross section through 3 differently manufactured fiber-reinforced castings
  • Fig. 7 u. 8 = cross sections through two fiber-reinforced die-cast parts
  • 9 - 11 = X-ray images of three fiber-reinforced connecting rods

In Figur 1 ist die Füllkammer mit 1, der Druckkolben mit 2, der Gießzylinder mit 3, das Steigrohr mit 4 und der Schmelzenbehäl­ter mit 5 bezeichnet.In Figure 1, the filling chamber with 1, the pressure piston with 2, the casting cylinder with 3, the riser with 4 and the melt container with 5.

Zwischen den Formhalften 6a, 6b befindet sich der Formhohl­raum 7, der im Bereich des Gießlaufs 8 den Absaugkanal 9 mit Filter 10, Vakuumsteuerventil 11 und den Vakuumbehälter 12 und Vakuumpumpe 13 aufweist.Between the mold halves 6a, 6b is the mold cavity 7, which has the suction channel 9 with filter 10, vacuum control valve 11 and the vacuum container 12 and vacuum pump 13 in the region of the casting run 8.

Figur 2 zeigt die Füllkammer 1 im Querschnitt mit daran an­schließendem Gießlauf 8, in den der Vakuumkanal 9 mündet. Der Formhohlraum 7a, b ist an eine ringförmige Absaugung 14a, b, c angeschlossen, die für eine zusätzliche Entgasung des Faser­formkörpers vor Eindringen der Schmelze sorgt.Figure 2 shows the filling chamber 1 in cross section with a subsequent pouring run 8, in which the vacuum channel 9 opens. The mold cavity 7a, b is connected to an annular suction 14a, b, c, which provides additional degassing of the fiber molded body before the melt penetrates.

Figur 3 zeigt schematisch einen Formhohlraum 15, der durch zwei Formhälten 16a, 16b gebildet wird. An den äußeren Enden der Formhälften 16a, b sind jeweils 2 Bohrungen 17a, 17b und 18a, 18b zur Aufnahme von magnetischen Körpern 19 - 22 vorgesehen.FIG. 3 schematically shows a mold cavity 15 which is formed by two mold halves 16a, 16b. At the outer ends of the mold halves 16a, b 2 bores 17a, 17b and 18a, 18b are provided for receiving magnetic bodies 19-22.

In den Formhohlraum 15 ist ein zylindrischer Faserformkörper 23 eingelegt. Dieser weist an den jeweiligen Endpunkten ringförmige Abstandshalter 24, 25 aus ferromagnetischem Werkstoff auf. Es ist möglich, die magnetischen Körper 19 - 22 sowohl aus normalen Magneten als auch in Form von Elektromagneten einzusetzen.A cylindrical fiber molded body 23 is inserted into the mold cavity 15. This has annular spacers 24, 25 made of ferromagnetic material at the respective end points. It is possible to use the magnetic bodies 19-22 both from normal magnets and in the form of electromagnets.

Anhand der vorstehend beschriebenen Vorrichtungen soll nun das erfindungsgemäße Verfahren näher erläutert werden. Die dabei ge­wählten Voraussetzungen sind als bevorzugte Ausführungsbeispiele aus einer Reihe von vielen Anwendungsmöglichkeiten ausgewählt worden.The method according to the invention will now be explained in more detail using the devices described above. The conditions selected here have been selected as preferred exemplary embodiments from a number of many possible uses.

Zunächst wird ein Faserformkörper bzw. eine Fasereinlage aus Lang- und/oder Kurzfasern nach bekannten Verfahren hergestellt.First of all, a molded fiber body or a fiber insert is produced from long and / or short fibers by known methods.

Als Fasermaterial kommen in bevorzugter Weise Al₂O₃ sowie die SiC-Fasern in Betracht, es lassen sich aber auch andere hoch­feste Metallfasern und Kohlenstoffasern sowie Borfasern verarbeiten. Die bevorzugten Al₂O₃-haltigen Fasern sind unmagne­tisch und werden nach der bekannten Sintertechnik zu einem festen Verbund vorgeformt. Dabei können bekannte Bindemittel auf Silikatbasis, z.B. "LUDOX" der Fa. DuPont eingesetzt werden.Al₂O₃ and the SiC fibers are preferred as fiber material, but other high-strength metal fibers and carbon fibers as well as boron fibers can also be processed. The preferred Al₂O₃-containing fibers are non-magnetic and are preformed into a firm bond using the known sintering technique. Known silicate-based binders, e.g. "LUDOX" from DuPont can be used.

Der Faserformkörper wird ggf. nach einer Vorheizung in den Form­hohlraum 7 eingelegt, der sich in der beweglichen und/oder fest­stehenden Formhälfte 6a, b bzw. 16a, b befindet. Der Faserform­körper wird dabei entweder durch Kernteile oder vorzugsweise durch Magnete - wie in Fig. 3 gezeigt - in der Form fixiert, wo­bei die Fasern zusätzlich ferromagnetische Metallteile enthalten müssen.After a preheating, the fiber molding is inserted into the mold cavity 7, which is located in the movable and / or fixed mold half 6a, b or 16a, b. The fiber molded body is fixed in the mold either by core parts or preferably by magnets - as shown in FIG. 3, the fibers additionally having to contain ferromagnetic metal parts.

Nach dem Schließen der Formhälften 6a, b bzw. 16a, b wird die Füllkammer 1 und der Formhohlraum 7 durch den Vakuumkanal 9 eva­kuiert. Der Vakuumkanal 9 ist im Bereich des Gießlaufes 8 zwi­schen dem Ende der Füllkammer 1 und dem Formhohlraum 7 angebun­den. Er kann aus einer Leitung oder auch vorzugsweise aus mehre­ren Leitungen dünnen Querschnitts gebildet werden.After the mold halves 6a, b and 16a, b have been closed, the filling chamber 1 and the mold cavity 7 are evacuated through the vacuum channel 9. The vacuum channel 9 is connected in the area of the casting run 8 between the end of the filling chamber 1 and the mold cavity 7. It can be formed from one line or preferably from a plurality of lines with a thin cross-section.

Zusätzlich kann der Formhohlraum 7 zur Ausgangsseite hin über eine Ringleitung 14 evakuiert werden. Diese sorgt insbesondere bei vorgeheizten Faserformkörpern für eine Absaugung flüchtiger Verunreinigungen und gasförmiger Einschlüsse der Fasern.In addition, the mold cavity 7 can be evacuated to the exit side via a ring line 14. In the case of preheated fiber molded articles in particular, this ensures that volatile contaminants and gaseous inclusions of the fibers are extracted.

Gleichzeitig wird über das Steigrohr 4 Schmelze aus dem Behäl­ter 5 in die Füllkammer 1 angesaugt. Der Enddruck liegt im Be­reich von 100 mbar - vorzugsweise zwischen 95 und 110 mbar - .At the same time, melt is drawn from the container 5 into the filling chamber 1 via the riser pipe 4. The final pressure is in the range of 100 mbar - preferably between 95 and 110 mbar.

Je nach Art der Legierung und der Gießtemperatur wird die Evaku­ierungszeit über ein Vakuumventil 11 im Bereich von 2-10 Sekun­den eingestellt. Danach schießt der Druckkolben 2 die Schmelze mit einer Geschwindigkeit von 0,3 bis 6 m/sek in die Form.Depending on the type of alloy and the casting temperature, the evacuation time is set in the range of 2-10 seconds via a vacuum valve 11. The pressure piston 2 then shoots the melt into the mold at a speed of 0.3 to 6 m / sec.

Nach einer Erstarrungszeit von 8 bis 60 Sekunden öffnet sich die Form 6a, b bzw. 16a, b, so daß das Gußstück entnommen und das Trennmittel erneut für den nächsten Schuß aufgesprüht werden kann.After a solidification time of 8 to 60 seconds, the mold 6a, b or 16a, b opens, so that the casting can be removed and the release agent can be sprayed on again for the next shot.

In den Figuren 4 bis 6 sind 3 auf verschiedene Weise hergestell­te faserverstärkte Gußteile dargestellt. Fig. 4 zeigt ein Guß­teil, das nach herkömmlicher Vakuumdruckgießtechnik hergestellt wurde, wobei der Vakuumkanal am oberen Ende des Formhohlraums hinter der Fasereinlage angebunden wurde.FIGS. 4 to 6 show 3 fiber-reinforced castings produced in different ways. Fig. 4 shows a casting which was produced by conventional vacuum die casting technology, the vacuum channel being connected at the upper end of the mold cavity behind the fiber insert.

Fig. 5 zeigt ein faserverstärktes Druckgußteil, das nach einer modifizierten Vakuumdruckgußtechnik hergestellt wurde, wobei das Vakuum im Bereich des Gießlaufs und am oberen Ende des Formhohl­raums hinter der Fasereinlage abgezogen wurde.5 shows a fiber-reinforced die-cast part which was produced using a modified vacuum die-casting technique, the vacuum being drawn off in the region of the casting run and at the upper end of the mold cavity behind the fiber insert.

Fig. 6 zeigt ein faserverstärktes Druckgußteil, das nach dem er­findungsgemäßen Verfahren mit einer Vakuumanbindung im Bereich des Gießlaufs hergestellt wurde.6 shows a fiber-reinforced die-cast part which was produced by the method according to the invention with a vacuum connection in the region of the casting run.

Die Gießdaten für alle drei Herstellungsverfahren lauten:
Legierung: AlSi12CuNiMg nach DIN 1725, Blatt 2
Gießtemperatur: 730 °C
Formtemperatur: 200 - 250 °C
Faserformkörper: aus Al₂O₃ auf > 650 °C vorgewärmt
Gießdruck: variierte zwischen 980 und 1020 bar.
Nach dem Herausnehmen wurden die Gußteile an Luft abgekühlt und bei Temperaturen von 500 °C eine Stunde lang lösungsgeglüht. Danach erfolgte ein Abschrecken in heißem Wasser mit einer an­schließenden Warmauslagerung bei 180 - 250 °C für 4 Stunden.
The casting data for all three manufacturing processes are:
Alloy: AlSi12CuNiMg according to DIN 1725, sheet 2
Casting temperature: 730 ° C
Molding temperature: 200 - 250 ° C
Shaped fiber: preheated from Al₂O₃ to> 650 ° C
Casting pressure: varied between 980 and 1020 bar.
After removal, the castings were cooled in air and solution-annealed at 500 ° C for one hour. This was followed by quenching in hot water with subsequent aging at 180-250 ° C. for 4 hours.

Das in Fig. 4 dargestellte Gußteil weist Mikrolunker mit Durch­messern von 10 bis 200 µm sowie gasgefüllte Poren auf, die Restgase aus der Atmosphäre sowie dampfförmige Anteile des Schmiermittels enthalten. Die Porosität betrug bei diesem Teil mehr als 1,5 %, berechnet aus der Differenz zwischen tatsächli­cher Dichte und theoretisch vorhandener Dichte.The casting shown in FIG. 4 has micro voids with diameters of 10 to 200 μm and gas-filled pores which contain residual gases from the atmosphere and vaporous parts of the lubricant. The porosity of this part was more than 1.5%, calculated from the difference between the actual density and the theoretical density.

Teile aus dem im Zusammenhang mit Fig. 5 beschriebenen Herstel­lungsverfahren weisen Porositäten zwischen 0,5 und 1,0 % auf. Es ist erkennbar, daß insbesondere in den Fasereinlagen noch sehr viele gasförmige Einschlüsse vorhanden sind.Parts from the manufacturing process described in connection with FIG. 5 have porosities between 0.5 and 1.0%. It can be seen that very many gaseous inclusions are still present, particularly in the fiber inserts.

Die Porosität eines nach dem erfindungsgemäßen Verfahren her­gestellten Gußteils lag unter 0,3 %. Das Gefüge ist homogen und ohne Störstellen.The porosity of a casting produced by the process according to the invention was less than 0.3%. The structure is homogeneous and without defects.

Fig. 7 und 8 zeigen Querschnitte durch ein mit und ohne Wärme­behandlung (Anspruch 4) hergestelltes Gußteil. Es handelt sich um energiedispersive Röntgenaufnahmen zur Magnesiumverteilung bei einer AlSi12CuNiMg-Legierung mit einem Vergrößerungsfaktor von 3600.7 and 8 show cross sections through a cast part produced with and without heat treatment (claim 4). These are energy-dispersive X-rays for magnesium distribution in an AlSi12CuNiMg alloy with a magnification factor of 3600.

Man erkennt in Fig. 7 eine relativ gleichmäßige Magnesiumver­teilung zwischen den Fasern 27, 28, während in Fig. 8 nach einer Wärmebehandlung von 500 °C für 3,5 Stunden und einer anschlie­ßenden Abschreckung mit heißem Wasser eine ringförmige Reak­tionsschicht 29 um die Al₂O₃ Fasern 30 entstanden ist.7 shows a relatively uniform magnesium distribution between the fibers 27, 28, while in FIG. 8 an annular reaction layer 29 around the Al 2 O 3 fibers 30 after heat treatment at 500 ° C. for 3.5 hours and subsequent quenching with hot water arose.

Die Reaktionsschicht besteht im vorliegend gewählten Beispiel aus AlMg-Spinellen vom Typ MgO × Al₂O₃, die die Haftung zwi­schen der Matrix und den Fasern durch chemische Bindung um einen Faktor 2 bis 10 verstärken, wobei die höheren Werte mit einer anschließenden Warmauslagerung bei 200 °C für 4 Stunden er­zielt wurden.The reaction layer in the example chosen here consists of AlMg spinels of the MgO × Al₂O₃ type, which increase the adhesion between the matrix and the fibers by a chemical bond by a factor of 2 to 10, the higher values with a subsequent aging at 200 ° C. for 4 hours were achieved.

Weitere Versuche haben gezeigt, daß Gußteile mit einer ring­förmigen Reaktionsschicht zwischen Fasern und Matrix ca. 90 % und mehr der maximal erzielbaren Verbundfestigkeit erreichen. Die theoretische Verbundfestigkeit wird dabei ermittelt aus den Festigkeitswerten der Fasern und des Matrixwerkstoffes im Verhältnis zu ihrem jeweiligen Volumenanteil.Further tests have shown that castings with an annular reaction layer between fibers and matrix achieve approximately 90% and more of the maximum achievable bond strength. The theoretical bond strength is determined from the strength values of the fibers and the matrix material in relation to their respective volume fraction.

Ohne die erfindungsgemäße Reaktionsschicht lassen sich nur ca. 50 % der theoretisch möglichen Verbundfestigkeit erreichen. Dieses liegt daran, daß durch Adhäsionskräfte nur ein Teil der Zugspannungen zwischen Fasern und Matrix übertragen werden können.Without the reaction layer according to the invention, only about 50% of the theoretically possible bond strength can be achieved. This is due to the fact that only a part of the tensile stresses can be transferred between the fibers and the matrix by adhesive forces.

Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß durch die große Porenfreiheit auch aushärtbare Alu­miniumlegierungen als Matrixwerkstoff verwendet werden können. Bisher wurden durch die bei der Aushärtung erforderlichen hohen Temperaturen die Gefüge durch gasförmige Einschlüsse und Mikro­lunker derart gedehnt, daß große Risse und Blasen auf der Ober­fläche entstanden. Mit dem erfindungsgemäßen Verfahren kann da­her nicht nur die Einbettung der Fasern mittels einer reaktions­fähigen Zwischenschicht verbessert, sondern gleichzeitig die Fe­stigkeit der Matrix an sich und damit die Gesamtfestigkeit des Verbundwerkstoffs erhöht werden.A particular advantage of the method according to the invention is that hardenable aluminum alloys can also be used as the matrix material due to the large absence of pores. So far, the high temperatures required during curing have caused the structure to be expanded by gaseous inclusions and micro-cavities in such a way that large cracks and bubbles have formed on the surface. With the method according to the invention, not only can the embedding of the fibers be improved by means of a reactive intermediate layer, but at the same time the strength of the matrix itself and thus the overall strength of the composite material can be increased.

Die Fig. 9 bis 11 zeigen Aufnahmen der Röntgendurchstrahlung im Maßstab 1:1 von faserverstärkten Pleueln, wobei analog zu den Figuren 4 bis 6 drei verschiedene Herstellungsverfahren verwen­det wurden. Das Teil in Fig. 9 wurde nach herkömmlicher Vakuum­druckgießtechnik hergestellt, wobei der Vakuumkanal am oberen Ende des Formhohlraums hinter der Fasereinlage angebunden war. Beim Teil nach Fig. 5 wurde ein modifiziertes Vakuumdruckgieß­verfahren angewendet, bei dem das Vakuum im Bereich des Gieß­laufs und am oberen Ende des Formhohlraums hinter der Faserein­lage gleichzeitig abgezogen wurde. Das Teil in Fig. 11 wurde nach dem erfindungsgemäßen Verfahren mit einer Vakuumanbindung im Bereich des Gießlaufs hergestellt. Die Gießdaten sind im Zusammenhang mit den Figuren 4 bis 6 näher erläutert worden.FIGS. 9 to 11 show X-ray radiographs on a 1: 1 scale of fiber-reinforced connecting rods, three different production methods being used analogously to FIGS. 4 to 6. The part in Fig. 9 was manufactured using conventional vacuum die casting technology, the vacuum channel being connected at the upper end of the mold cavity behind the fiber insert. 5, a modified vacuum die-casting process was used, in which the vacuum in the region of the casting run and at the upper end of the mold cavity behind the fiber insert was removed simultaneously. The part in FIG. 11 was produced by the method according to the invention with a vacuum connection in the area of the casting run. The casting data have been explained in more detail in connection with FIGS. 4 to 6.

Man erkennt in Fig. 9 zahlreiche Gasporen und Lunker im Bereich des Angusses, während im Schaftbereich nur einzelne Poren er­kennbar sind. Nach Fig. 10 sind im Bereich des Pleuellagers noch einige Gasporen und Lunker vorhanden, während in Fig. 11 diese Stelle keinerlei Unregelmäßigkeiten mehr aufweist. Die Unregel­mäßigkeiten (Lunker und Glasblasen) im Gefüge sind Ansatzpunkte für Rißbildungen, die zu einer Schwächung der Festigkeitswerte insbesondere der Kerbschlagzähigkeit führen. Vergleichende Untersuchungen zeigen, daß die Festigkeit etwa proportional zur Menge des Porenvolumens abnimmt.9 shows numerous gas pores and voids in the area of the sprue, while only individual pores can be seen in the shaft area. According to FIG. 10, there are still some gas pores and cavities in the area of the connecting rod bearing, while in FIG. 11 this point no longer has any irregularities. The irregularities (blowholes and glass bubbles) in the structure are starting points for cracks, which lead to a weakening of the strength values, in particular the notched impact strength. Comparative studies show that the strength decreases approximately in proportion to the amount of pore volume.

Claims (11)

1. Verfahren zur Herstellung faserverstärkter Aluminium-Druck­gußteile mittels Vakuumdruckgießtechnik in einer horizontalen Kaltkammer-Druckgießmaschine, bestehend aus Füllkammer mit Druckkolben und mindestens einem Formhohlraum, der mit der Füllkammer über einen Gießlauf verbunden ist, wobei vor bzw. während der Formfüllung ein Vakuums in der Füllkammer und dem Formhohlraum aufrechterhalten wird, dadurch gekennzeichnet, daß das Vakuum im Bereich des Gießlaufs einen geringeren Gas­druck aufweist als im Innern des Formhohlraums.1. Process for the production of fiber-reinforced aluminum die-cast parts by means of vacuum die casting technology in a horizontal cold chamber die casting machine, consisting of a filling chamber with a pressure piston and at least one mold cavity which is connected to the filling chamber via a casting run, with a vacuum in the filling chamber before or during the mold filling and the mold cavity is maintained, characterized in that the vacuum in the region of the casting run has a lower gas pressure than in the interior of the mold cavity. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Vakuum im Bereich des Gießlaufs einen geringeren Gasdruck aufweist als im Innern der Füllkammer.2. The method according to claim 1, characterized in that the vacuum in the region of the pouring barrel has a lower gas pressure than in the interior of the filling chamber. 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß unmittelbar vor Eintritt der Schmelze in den Gießlauf der Druck am Vakuumanschluß des Gießlaufs 50 bis 100 mbar und im Formhohlraum 100 bis 150 mbar beträgt.3. The method according to any one of the preceding claims, characterized in that immediately before the melt enters the casting run, the pressure at the vacuum connection of the casting run is 50 to 100 mbar and in the mold cavity 100 to 150 mbar. 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das faserverstärkte Druckgußteil zur Ausbildung einer Reaktionsschicht zwischen Fasern und Matrix nach Beendigung der Evakuierung auf eine Temperatur von 450 bis 550 °C für 0,5 bis 5 Stunden erhitzt und an­schließend mit heißem Wasser abgeschreckt wird.4. The method according to any one of the preceding claims, characterized in that the fiber-reinforced die-cast part to form a reaction layer between fibers and matrix after the end of the evacuation to a temperature of 450 to 550 ° C for 0.5 to 5 hours and then heated with hot water is deterred. 5. Faserverstärktes Druckgußteil, hergestellt nach einem der vorhergehenden Verfahren, dadurch gekennzeichnet, daß die Matrix aus einer aushärtbaren Aluminiumlegierung mit mindestens einem Zusatz an reaktionsfähigen Elementen der Gruppe Beryllium, Kalzium, Magnesium, Strontium und Barium in Gehalten von 0,1 bis 5 Gew.-% und die Fasern aus Alpha- ­und/oder Delta-Aluminiumoxid bestehen.5. Fiber-reinforced die-cast part, produced by one of the preceding methods, characterized in that the matrix made of a hardenable aluminum alloy with at least one addition of reactive elements from the group beryllium, calcium, magnesium, strontium and barium in contents of 0.1 to 5 wt. -% and the fibers consist of alpha and / or delta aluminum oxide. 6. Druckgußteile nach dem vorhergehenden Anspruch, dadurch ge­kennzeichnet, daß jede Faser von einer Reaktionsschicht aus Mischoxiden des Al₂O₃ mit den Legierungselementen der Al-Le­gierung umgeben ist.6. Die-cast parts according to the preceding claim, characterized in that each fiber is surrounded by a reaction layer of mixed oxides of Al₂O₃ with the alloying elements of the Al alloy. 7. Druckgußteil nach einem der vorhergehenden Ansprüche, da­durch gekennzeichnet, daß die Reaktionsschicht aus dem Spi­nell MgO × Al₂O₃ besteht.7. Die casting according to one of the preceding claims, characterized in that the reaction layer consists of the spinel MgO × Al₂O₃. 8. Druckgußteil nach einem der vorhergehenden Ansprüche, da­durch gekennzeichnet, daß die Reaktionsschicht folgende Dicke aufweist: 0,1 bis 5 µm.8. Die casting according to one of the preceding claims, characterized in that the reaction layer has the following thickness: 0.1 to 5 µm. 9. Vorrichtung von faserverstärkten Metallgußstücken mittels Vakuumdruckgießen, bestehend aus einer Füllkammer (1) mit einem Druckkolben (2) in Formhälften (6a, b) dem Formhohl raum (7), dem Gießlauf (8) und einem Vakuumkanal (9), dadurch gekennzeichnet, daß der Vakuumkanal (9) im Bereich des Gießlaufs (8) zwischen Füllkammer (1) und Formhohl­raum (7) angeordnet ist.9. Device of fiber-reinforced metal castings by means of vacuum pressure casting, consisting of a filling chamber (1) with a pressure piston (2) in mold halves (6a, b), the mold cavity (7), the casting barrel (8) and a vacuum channel (9), characterized that the vacuum channel (9) is arranged in the region of the casting run (8) between the filling chamber (1) and the mold cavity (7). 10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Anbindung des Vakuumkanals (9) in dem Bereich des Gießlaufs erfolgt, welcher der Füll­kammer (1) am nächsten liegt.10. Device according to one of the preceding claims, characterized in that the connection of the vacuum channel (9) takes place in the region of the pouring run which is closest to the filling chamber (1). 11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zusätzlich zum Vakuumkanal (9) weitere Vakuumkanäle (14a, b, c) im Eingangsbereich des Formhohlrau­mes (7) angeordnet sind.11. Device according to one of the preceding claims, characterized in that in addition to the vacuum channel (9), further vacuum channels (14a, b, c) are arranged in the input region of the mold cavity (7).
EP87117752A 1987-01-17 1987-12-01 Method of and installation for producing fiber reinforced metal pieces Expired - Lifetime EP0275426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117752T ATE68732T1 (en) 1987-01-17 1987-12-01 METHOD AND APPARATUS FOR THE MANUFACTURE OF FIBER REINFORCED METAL PARTS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873701218 DE3701218A1 (en) 1987-01-17 1987-01-17 METHOD AND DEVICE FOR PRODUCING FIBER REINFORCED METAL PARTS
DE3701218 1987-01-17

Publications (3)

Publication Number Publication Date
EP0275426A2 true EP0275426A2 (en) 1988-07-27
EP0275426A3 EP0275426A3 (en) 1988-11-23
EP0275426B1 EP0275426B1 (en) 1991-10-23

Family

ID=6318980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117752A Expired - Lifetime EP0275426B1 (en) 1987-01-17 1987-12-01 Method of and installation for producing fiber reinforced metal pieces

Country Status (3)

Country Link
EP (1) EP0275426B1 (en)
AT (1) ATE68732T1 (en)
DE (2) DE3701218A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903310C1 (en) * 1989-02-04 1990-04-26 Mahle Gmbh, 7000 Stuttgart, De
EP0441289A1 (en) * 1990-02-05 1991-08-14 Yamasaki Engineering Co., Ltd. Vacuum die casting process
DE19635326C2 (en) * 1995-08-30 2001-08-09 Mazda Motor Method and apparatus for making a light alloy composite member
CN104259430A (en) * 2014-10-21 2015-01-07 湖南航天诚远精密机械有限公司 Metal and alloy vacuum die casting forming device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418750C2 (en) * 1994-05-28 2000-06-15 Vaw Ver Aluminium Werke Ag Process for the production of wear-resistant surfaces on molded parts
CN108356249A (en) * 2018-03-14 2018-08-03 马鞍山市万兴耐磨金属制造有限公司 A kind of cast iron cooling structure device based on Water-cooling circulating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3404092C1 (en) * 1984-02-07 1985-06-13 Daimler-Benz Ag, 7000 Stuttgart Process for the production of fiber-reinforced light metal castings by die casting
DE3504118C1 (en) * 1985-02-07 1985-10-31 Daimler-Benz Ag, 7000 Stuttgart Process for the production of fiber-reinforced light metal castings
DE3546148A1 (en) * 1984-12-28 1986-07-10 Ube Industries, Ltd., Ube, Yamaguchi DEVICE FOR PRODUCING COMPOSITE MATERIAL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3404092C1 (en) * 1984-02-07 1985-06-13 Daimler-Benz Ag, 7000 Stuttgart Process for the production of fiber-reinforced light metal castings by die casting
DE3546148A1 (en) * 1984-12-28 1986-07-10 Ube Industries, Ltd., Ube, Yamaguchi DEVICE FOR PRODUCING COMPOSITE MATERIAL
DE3504118C1 (en) * 1985-02-07 1985-10-31 Daimler-Benz Ag, 7000 Stuttgart Process for the production of fiber-reinforced light metal castings

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903310C1 (en) * 1989-02-04 1990-04-26 Mahle Gmbh, 7000 Stuttgart, De
WO1990008610A1 (en) * 1989-02-04 1990-08-09 Mahle Gmbh Process for manufacturing a casting, in particular of aluminium, provided with a porous insert
DE3903310C2 (en) * 1989-02-04 1992-10-22 Mahle Gmbh METHOD FOR PRODUCING A MOLDED PART FROM IN PARTICULAR TO BE PROVIDED WITH A POROUS NIGHT-DUTY, IN PARTICULAR ALUMINUM.
EP0441289A1 (en) * 1990-02-05 1991-08-14 Yamasaki Engineering Co., Ltd. Vacuum die casting process
DE19635326C2 (en) * 1995-08-30 2001-08-09 Mazda Motor Method and apparatus for making a light alloy composite member
DE19635326C5 (en) * 1995-08-30 2006-06-08 Mazda Motor Corp. Method and apparatus for producing a light alloy composite element
CN104259430A (en) * 2014-10-21 2015-01-07 湖南航天诚远精密机械有限公司 Metal and alloy vacuum die casting forming device and method
CN104259430B (en) * 2014-10-21 2016-03-30 湖南航天诚远精密机械有限公司 Metal and alloy evacuated die-casting process Forming Equipments thereof and method

Also Published As

Publication number Publication date
DE3774105D1 (en) 1991-11-28
EP0275426B1 (en) 1991-10-23
DE3701218A1 (en) 1988-07-28
ATE68732T1 (en) 1991-11-15
EP0275426A3 (en) 1988-11-23

Similar Documents

Publication Publication Date Title
EP1183120B2 (en) Casting tool and method of producing a component
DE69218082T2 (en) Process for the production of composite castings and castings produced in this way
DE69816543T2 (en) High vacuum pressure casting
DE19635326C2 (en) Method and apparatus for making a light alloy composite member
CH654768A5 (en) DEGASSING DEVICE ON A PRESSURE OR INJECTION MOLD.
EP0640759B1 (en) Partially reinforced aluminium cast construction part and method of manufacturing same
DE3546148C2 (en)
DD155959A5 (en) METHOD FOR PRODUCING A METALLIC SINTER MOLDING PART
DE69223178T2 (en) METHOD FOR PRODUCING CAST COMPOSITE CYLINDER HEADS
EP0275426B1 (en) Method of and installation for producing fiber reinforced metal pieces
DE10025014C2 (en) Device for producing light metal castings, in particular parts made of magnesium or magnesium alloys
DE69809166T2 (en) Process for injection molding a light metal alloy
DE3300701A1 (en) DIE CASTING METHOD AND DEVICE FOR ITS IMPLEMENTATION
DE3851593T2 (en) Process for producing a fiber reinforced metal composition.
DE3930081A1 (en) METHOD FOR PRODUCING A PRESS-MOLDED FIBER-REINFORCED COMPONENT
AT402615B (en) METHOD FOR PRODUCING METHOD FOR PRODUCING METAL-MATRIX COMPOSITIONS METAL-MATRIX COMPOSITIONS
DE2210771C3 (en) Process for the production of a fiber composite material
DE10244471A1 (en) Method for producing a component from a wrought aluminum alloy
DE3307000C2 (en) Method of manufacturing a composite metal body
DE4139421A1 (en) Sinter coating of ferrous substrate - using powder material contg. one liq. and one solid element at sintering temp.
DE19943153C1 (en) Apparatus for vacuum or pressure casting workpieces comprises a closing device and a pressure producing device formed as a one-piece piston arranged above a riser pipe
WO1999046072A1 (en) Casting device and casting method with post compression
DE19728358A1 (en) Method for producing cast light-alloy brake disks with local ceramic reinforcement
DE4123677A1 (en) FIBER MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF AND USE OF THE MOLDED BODY FOR THE PRODUCTION OF FIBER REINFORCED ALUMINUM CASTING PARTS
DE10163763B4 (en) Process for the manufacture of products such as components or semi-finished products from powdered materials based on magnesium or magnesium alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890411

17Q First examination report despatched

Effective date: 19900510

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 68732

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3774105

Country of ref document: DE

Date of ref document: 19911128

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931115

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940104

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940119

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941201

Ref country code: GB

Effective date: 19941201

Ref country code: AT

Effective date: 19941201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941231

Ref country code: CH

Effective date: 19941231

Ref country code: BE

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 87117752.3

BERE Be: lapsed

Owner name: VEREINIGTE ALUMINIUM-WERKE A.G.

Effective date: 19941231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 87117752.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991223

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051201