EP0272008A1 - Modular circuit board bussing connector - Google Patents
Modular circuit board bussing connector Download PDFInfo
- Publication number
- EP0272008A1 EP0272008A1 EP87310338A EP87310338A EP0272008A1 EP 0272008 A1 EP0272008 A1 EP 0272008A1 EP 87310338 A EP87310338 A EP 87310338A EP 87310338 A EP87310338 A EP 87310338A EP 0272008 A1 EP0272008 A1 EP 0272008A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit board
- bussing
- receptacle contacts
- opposed parallel
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims description 34
- 230000000295 complement effect Effects 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 3
- 239000013536 elastomeric material Substances 0.000 claims 2
- 238000004873 anchoring Methods 0.000 description 5
- 230000013011 mating Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R12/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
- H01R12/70—Coupling devices
- H01R12/7082—Coupling device supported only by cooperation with PCB
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/46—Bases; Cases
- H01R13/514—Bases; Cases composed as a modular blocks or assembly, i.e. composed of co-operating parts provided with contact members or holding contact members between them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R29/00—Coupling parts for selective co-operation with a counterpart in different ways to establish different circuits, e.g. for voltage selection, for series-parallel selection, programmable connectors
Definitions
- the invention relates to a modular circuit board bussing connector and to a contact element therefor.
- the user is normally provided with one or more daughter boards mounted on connectors on a mother or buss board on which several further connectors are mounted to accommodate additional daughter boards when required, to permit increase in capacity of the system.
- further connectors increases the initial capital expenditure, while the fixed design of further connectors may also impose limitations on the connections possible to the further printed daughter boards which may undesirably limit the types that can be used.
- U.S. Patent 4,322,120 for the distribution of power and data signals to and from insulative substrates carrying conductive traces thereon and including a plurality of insulative housing means where each have opposed parallel ends and, on one face, a circuit board receiving slot disposed between and parallel to said ends.
- the housing means also include printed circuit board receptacle contacts disposed in the printed circuit board receiving slots and have bussing means extending between the opposite ends.
- the electrical connection system is characterized by the bussing means having formed at each of the ends resilient contact portions arranged for abutting face-to-face engagement with complementary resilient contact portions of a similar insulative housing when the housings are disposed in end-to-end abutting relation.
- the housing includes contact element receiving channels and the contact elements comprise metal stampings formed with first and second contact portions at respective opposite ends.
- a pin portion extends from the bridge at a medial location and out of the housing for enabling a tap or shunt connection to a similar pin portion of a contact element in an adjacent slot of the same module, the bridge being severable on either side of the pin portion to isolate either the first or the second contact portions both from the pin portion and from the second or first contact portion respectively.
- the provision of the pin portion enables a further combination of connections to the circuit board paths to be obtained by shunting adjacent contact elements of the same connector module.
- the further board engaging contact spring means comprises two contact springs extending from opposite ends of the severable bridge portion, respectively, adjacent the first and second contact portions and between them defining an edge connector for engaging conductive paths on opposite sides of a circuit board.
- one of the further board engaging contact springs is joined to the bridge adjacent the second contact spring by a severable portion and a tool receiving recess extends along the housing across which recess the severable portion extends.
- a second embodiment of connector bussing system includes a flexible substrate which is applied to the housing, the substrate has a plurality of circuit traces thereon, with the flexible substrate and at least a portion of the circuit traces extending to the longitudinal edges thereof where the longitudinal edges include interconnection means for mechanical interconnection to a like housing.
- the like housing including a similar substrate with the substrate similarly overlapped at the mating longitudinal edge such that the interconnection between the two housings mechanically lock the two housings together and electrically interconnect at least a portion of the printed circuit board edge traces.
- the preferred version of the second embodiment has at least one of the longitudinal edges including an elastomeric insert disposed beneath the substrate and the electrical traces along the end edges thereof being resiliently biased against respective traces on the matable printed circuit board. It is further preferred that each longitudinal edge includes a recessed portion with an elastomeric insert positioned within each of the recesses, the inserts being deformable to the extent of abutment with interconnectable end edges.
- the modules of either embodiment may be assembled together by means of a mounting rail and/or have longitudinal edges provided with latches or complementary mating portions to secure them together.
- each connector module 11 of the first embodiment comprises a housing 12 molded in one piece of suitably rigid plastic material carrying a row of identical, flat, stamped, metal contact elements 13.
- Each housing module 12 is formed as a block, rectangular in plan, in practice being elongate in the direction of extension Z of a mating printed circuit board edge 15.
- First and second opposite longitudinal edges of the block 16 and 17, respectively, are formed respectively with complementary male and female dovetail joints 19 and 20, respectively, for attachment of adjacent modules 11, in edge-to-edge relation, and a row of contact element receiving channels 21 opening to a board receiving face 22 extend from edge to edge such that on attachment together of adjacent modules 11, corresponding channels 21 will be brought into end-to-end alignment.
- Each channel 21 is intersected by a relatively deep, board receiving slot 23 and a relatively shallow, tool admitting recess 24 extending along the board receiving face 22, parallel to each other and adjacent, but successively spaced from the first longitudinal edge 16 and opening to the face 22.
- the opposite face 26 of the housing module 12 is formed at a generally central location with a similarly oriented, channel-section, connector receiving recess 27.
- a base wall 28 of each channel 21 is discontinuous, parallel wall portions defining a contact element anchoring socket 31, 32 on each longitudinal side of the connector receiving recess 27 and a contact pin receiving aperture 33 centrally of the recess.
- the channels define contact spring cavities 34 and 35, respectively, of increased depth, located adjacent but spaced from respective opposite longitudinal edges 16 and 17 of the housing by contact spring retaining end wall portions 37 and 38, respectively, extending from the base wall part way towards the connector receiving face 22, permitting engagement of aligned contact elements of adjacent modules when assembled together.
- Each contact element 11 comprises substantially identical first and second, oppositely directed, cantilever spring contacts 41 and 42 at respective ends, each comprising first and second orthogonally arranged spring beam elements 43 and 44 extending from stiffly resilient vertical stems 45 and 49, respectively, joined to first and second anchoring posts 51 and 52.
- a generally right-angled cantilever spring arm 53 is joined to the first stem 51 to extend towards the first spring contact and has a reversely inclined first printed circuit board contact portion 54 at a free end located in spaced opposed relation to a second printed circuit board contact portion 55 extending from a cantilever beam spring element 56 joined by a severable portion 57 both to the second anchoring post 52 and merging with a relatively massive stabilizing body portion 58.
- the first and second anchoring portions are joined by a severable bridge 61 from a central location of which extends a contact pin 62.
- the cantilever beam elements may be of progressively decreasing width as they extend to the free contact ends to ensure a desirably progressive increase in spring stiffness with increasing deflection.
- the contact elements 13 are stitched either entirely into respectively channels 21 as shown in Figure 1, or, after the bridge 61 is selectively severed on either side of the contact pin 62, to provide various interconnections to the paths on the printed circuit board 15 as described below.
- the portion 57 may also be severed after receipt in the housing to remove the second printed circuit board contact portion 55 when connection to only one side of the printed circuit board 15 is required.
- the first and second contact springs 41 and 42 are located in the cavities 34 and 35 by the anchoring posts being force-fitted in the sockets so that the first contact portion 65 protrudes beyond the first edge of the housing, and the first and second printed circuit board contact portions 54 and 55 protrude into the printed circuit board receiving slot 23 for electrical connection to paths on respective opposite sides of a printed circuit board inserted into the slot.
- the severable portion 57 extends across the tool receiving recess 24.
- P1 and P2 designate adjacent paths on the same face of a circuit board
- P3 and P4 designate paths on the opposite face aligned with paths P1 and P2, respectively.
- the bridges 61, 61 ⁇ are unsevered resulting in contact portions 54 and 55 connecting both P1 and P3 to both the spring contacts 41 and 42 at each end of the contact element and therefore to aligned contact elements of any adjacent modules assembled therewith.
- the bridge 61 of contact element 11 can be severed to the left of the pin 62, isolating contact springs 41 and 42, resulting in P1 being connected only to contact spring 42, while P2 is connected only to contact spring 41.
- P1 is also connected to both contact springs 41 ⁇ and 42 ⁇ of contact element 13 ⁇ , and thereby both to P2 and P4 of the circuit board.
- Figure 3 also illustrates that the bridge 61 of contact element 13 can be severed to the right of pin 62, providing the same connections as aforementioned. However, when pins 62 and 62 ⁇ are shunted, Pl is connected to 42 only. P2 is connected to 41, 41 ⁇ and 42 ⁇ , and P3 is connected to both contact springs 41 ⁇ and 42 ⁇ of contact element 13 ⁇ and thereby to both P2 and P4.
- the pin 62 is replaced by a conventional wire receiving slot into which a wire can be forced to effect connection therewith.
- the second embodiment of the modular connector system includes a modular connector assembly, shown generally as 102 including an insulative housing such as 104 having endwalls 106 and 108. Extending between the endwalls 106 and 108 is a recess such as 110 having sidewalls 112 and a floor 114 ( Figure 5). The sidewalls 106 and 108 further include dove tail extensions 116 and dove tail slots 118 respectively for mechanically interconnecting two identical housing members. Figure 4 also shows that a slot such as 120 which is provided on the underside of the insulative housing 104 which includes a groove such as 122 for receiving side edges 172 of the locking rail 170.
- a connector subassembly will be formed from a continuous flexible substrate such as 182 which is removed from a reel such as 174.
- the flexible substrate 182 includes electrical traces generally shown as 184 in Figure 6.
- the continuous flexible substrate is unrolled from the reel 174 and placed in juxtaposition over a plurality of elastomeric inserts such as 150.
- the elastomeric inserts include a planar surface such as 152 and two angled surfaces such as 154 which digress away from the planar surface 152.
- the flexible substrate 182 can be heat fused or adhesively fixed to the elastomeric inserts with the flexible substrate 182 conforming to the shape of the planar surface and the angled surfaces 154.
- the elastomeric inserts and the flexible substrate can be adhesively fixed to the insulative block which is shown as 132 in Figure 8.
- the elastomeric inserts 150 are spaced appropriately to allow the flexible substrate to conform to the configuration as shown in Figure 8. It is desirous to have the flexible substrate lying along the top of the planar surface of the insulative block 132, yet draping into a recess such as 140 with the elastomeric inserts adhesively fixed to the side walls 142, 144 of the recess 140 with the planar surfaces of the recess in facing opposition with the flexible substrate between the two inserts conforming along the floor 146 of the recess 140.
- one insert 150 and a flexible substrate partially overlapping the insert 150 is affixed to an end wall such as 136 of the housing block 132 while a second elastomeric insert 150 with a second overlapping end of the flexible substrate is affixed to an end wall such as 138.
- bussing portions such as 160 and 162 extend between opposite end walls.
- the elastomeric inserts which are affixed to the end walls 136 and 138 of the insulative block 132 are somewhat recessed within the end walls 106 and 108 of the housing 104, yet the planar surfaces 152 of the elastomeric inserts extend beyond the end walls 106 and 108.
- a first insulative housing such as 102 is aligned with an identical connector housing such as 2 ⁇ , the elastomeric inserts along the end walls 106 and 108 will be in a resiliently biased electrical interconnection.
- the two inserts 150 which are adhesively affixed within the recess 140 form an electrical connector for interconnecting a printed circuit board such as 200 which includes edge guides 202 ( Figure 4) having circuit traces such as 204 extending to the edge guides 202.
- the flexible circuit 182 includes a programming feature which can allow electrical interconnection between two traces on opposite sides of a printed circuit board where the two traces are not aligned and the two traces jumper at least one intermediate trace.
- the flexible substrates includes a trace such as 186 which is aligned with trace 190, although trace 186 and 190 are not electrically interconnected together but are rather discontinuous at the area of the flexible substrate which drapes into the recess 140.
- trace 186 is interconnected to trace 188 jumpering trace 192.
- Trace 194 and trace 192 are still in line as are trace 188 and 196.
- the flexible substrate 182 conforms to the elastomeric inserts 150 such as shown in Figure 7, and installed within a recess 140 as shown in Figure 8, the jumper portions are tucked away under the inserts 150 and cannot be contacted by the printed circuit board during the insertion of the board.
- traces 194 and 196 can still be used as electrical interconnections to associated traces on a first side of a printed circuit board and traces 190 and 192 can be used for electrical interconnection on opposite sides of the printed circuit board.
- Traces 186 and 188 jumper traces 192 and 194 to electrically interconnect associated traces on opposite sides of the printed circuit board which are not aligned.
- the modular connectors such as 11 and 102 are expandable to any degree.
- the modular connectors such as 11 and 102 are advantageous in equipment in which several options are required where the options are not always supplied by the manufacturer, as standard equipment.
- the subject invention would be used as a modular power buss system and as a modular printed circuit board. Options can be added on to equipment by the manufacturer or by the end user, by simply expanding the electrical interconnection between two modular connectors and by inserting the logic to the options via the printed circuit boards 15 and 200.
Landscapes
- Coupling Device And Connection With Printed Circuit (AREA)
Abstract
Description
- The invention relates to a modular circuit board bussing connector and to a contact element therefor.
- There is an increasing requirement to provide automated process control in various production units (such as wire E.D.M. equipment). However, in the interests of minimizing capital outlay, the user desires initially to install a relatively inexpensive unit which provides only basic control functions and to have the capacity for expansion when justified at a later date.
- In order to enable such future expansion, the user is normally provided with one or more daughter boards mounted on connectors on a mother or buss board on which several further connectors are mounted to accommodate additional daughter boards when required, to permit increase in capacity of the system. However, the provision of the further connectors increases the initial capital expenditure, while the fixed design of further connectors may also impose limitations on the connections possible to the further printed daughter boards which may undesirably limit the types that can be used.
- An electrical connection system is disclosed in U.S. Patent 4,322,120 for the distribution of power and data signals to and from insulative substrates carrying conductive traces thereon and including a plurality of insulative housing means where each have opposed parallel ends and, on one face, a circuit board receiving slot disposed between and parallel to said ends. The housing means also include printed circuit board receptacle contacts disposed in the printed circuit board receiving slots and have bussing means extending between the opposite ends.
- According to the invention, the electrical connection system is characterized by the bussing means having formed at each of the ends resilient contact portions arranged for abutting face-to-face engagement with complementary resilient contact portions of a similar insulative housing when the housings are disposed in end-to-end abutting relation.
- Thus, additional connector modules need be added only when required, thereby avoiding the initial capital expenditure required with former proposals. In addition, selective severing of the bridge portion before or after insertion of the contact elements into the housing enables different combinations of connections both to the circuit board and the adjacent modules and circuit board connected therein.
- In one version of the connector module, the housing includes contact element receiving channels and the contact elements comprise metal stampings formed with first and second contact portions at respective opposite ends. In a preferred example, a pin portion extends from the bridge at a medial location and out of the housing for enabling a tap or shunt connection to a similar pin portion of a contact element in an adjacent slot of the same module, the bridge being severable on either side of the pin portion to isolate either the first or the second contact portions both from the pin portion and from the second or first contact portion respectively.
- The provision of the pin portion enables a further combination of connections to the circuit board paths to be obtained by shunting adjacent contact elements of the same connector module.
- It is further preferred that the further board engaging contact spring means comprises two contact springs extending from opposite ends of the severable bridge portion, respectively, adjacent the first and second contact portions and between them defining an edge connector for engaging conductive paths on opposite sides of a circuit board.
- It is also preferred that one of the further board engaging contact springs is joined to the bridge adjacent the second contact spring by a severable portion and a tool receiving recess extends along the housing across which recess the severable portion extends.
- It will be apparent that selective severing of the bridge on either side of the pin portion, in combination with the capability of both severing the severable portion of the second contact spring and selective shunting to adjacent contact elements, enables a large permutation of different connections to be obtained.
- A second embodiment of connector bussing system includes a flexible substrate which is applied to the housing, the substrate has a plurality of circuit traces thereon, with the flexible substrate and at least a portion of the circuit traces extending to the longitudinal edges thereof where the longitudinal edges include interconnection means for mechanical interconnection to a like housing. The like housing including a similar substrate with the substrate similarly overlapped at the mating longitudinal edge such that the interconnection between the two housings mechanically lock the two housings together and electrically interconnect at least a portion of the printed circuit board edge traces.
- The preferred version of the second embodiment has at least one of the longitudinal edges including an elastomeric insert disposed beneath the substrate and the electrical traces along the end edges thereof being resiliently biased against respective traces on the matable printed circuit board. It is further preferred that each longitudinal edge includes a recessed portion with an elastomeric insert positioned within each of the recesses, the inserts being deformable to the extent of abutment with interconnectable end edges.
- The modules of either embodiment may be assembled together by means of a mounting rail and/or have longitudinal edges provided with latches or complementary mating portions to secure them together.
- An example of the invention will now be described with reference to the accompanying drawing in which:
- Figure 1 is a fragmentary perspective view, partly in cross section, of two connector modules assembled together;
- Figure 2 is a perspective schematic view of adjacent contact elements aligned with conductive paths of a printed circuit board;
- Figure 3 is a similar view to Figure 2 indicating schematically various connections to the circuit board that can be obtained by selective severing and shunting adjacent contact elements.
- Figure 4 is an isometric view of another embodiment of modular bussing system showing two modular housings mechanically interconnected with a printed circuit card shown poised for receipt within the slots which form an entry for the edge guide of the printed circuit board.
- Figure 5 is a cross sectional view substantially through lines 5-5 of Figure 4, showing a second housing assembly poised for reception into a first housing.
- Figure 6 is a view showing the continuous reel of flexible substrate which forms the modular connector subassemblies poised for receipt over the elastomeric inserts.
- Figure 7 shows the flexible substrate after it has been heat fused or adhesively interconnected to the elastomeric inserts.
- Figure 8 is an isometric view of the assembled elastomeric connector subassembly.
- As shown particularly in Figure 1, each connector module 11 of the first embodiment comprises a
housing 12 molded in one piece of suitably rigid plastic material carrying a row of identical, flat, stamped,metal contact elements 13. - Each
housing module 12 is formed as a block, rectangular in plan, in practice being elongate in the direction of extension Z of a mating printedcircuit board edge 15. First and second opposite longitudinal edges of theblock female dovetail joints 19 and 20, respectively, for attachment of adjacent modules 11, in edge-to-edge relation, and a row of contactelement receiving channels 21 opening to aboard receiving face 22 extend from edge to edge such that on attachment together of adjacent modules 11,corresponding channels 21 will be brought into end-to-end alignment. Eachchannel 21 is intersected by a relatively deep, board receiving slot 23 and a relatively shallow,tool admitting recess 24 extending along theboard receiving face 22, parallel to each other and adjacent, but successively spaced from the firstlongitudinal edge 16 and opening to theface 22. Theopposite face 26 of thehousing module 12 is formed at a generally central location with a similarly oriented, channel-section,connector receiving recess 27. Abase wall 28 of eachchannel 21 is discontinuous, parallel wall portions defining a contactelement anchoring socket connector receiving recess 27 and a contact pin receiving aperture 33 centrally of the recess. On each side of the recess the channels definecontact spring cavities longitudinal edges end wall portions connector receiving face 22, permitting engagement of aligned contact elements of adjacent modules when assembled together. - Each contact element 11 comprises substantially identical first and second, oppositely directed,
cantilever spring contacts spring beam elements vertical stems 45 and 49, respectively, joined to first andsecond anchoring posts first stem 51 to extend towards the first spring contact and has a reversely inclined first printed circuitboard contact portion 54 at a free end located in spaced opposed relation to a second printed circuitboard contact portion 55 extending from a cantileverbeam spring element 56 joined by aseverable portion 57 both to the second anchoringpost 52 and merging with a relatively massive stabilizing body portion 58. The first and second anchoring portions are joined by aseverable bridge 61 from a central location of which extends acontact pin 62. - It should be noted that the cantilever beam elements may be of progressively decreasing width as they extend to the free contact ends to ensure a desirably progressive increase in spring stiffness with increasing deflection.
- When assembling the module, the
contact elements 13 are stitched either entirely into respectivelychannels 21 as shown in Figure 1, or, after thebridge 61 is selectively severed on either side of thecontact pin 62, to provide various interconnections to the paths on the printedcircuit board 15 as described below. In addition, theportion 57 may also be severed after receipt in the housing to remove the second printed circuitboard contact portion 55 when connection to only one side of the printedcircuit board 15 is required. - When stitched into these channels, the first and
second contact springs cavities first contact portion 65 protrudes beyond the first edge of the housing, and the first and second printed circuitboard contact portions severable portion 57 extends across thetool receiving recess 24. - Some of the possible interconnections will now be described with reference to the drawings in which P1 and P2 designate adjacent paths on the same face of a circuit board, while P3 and P4 designate paths on the opposite face aligned with paths P1 and P2, respectively.
- As shown in Figure 2, in the entire contact element, the
bridges 61, 61ʹ are unsevered resulting incontact portions spring contacts pins 62 and 62ʹ by a shunt, as shown in phantom Figure 3, connects all paths P1-P4 to bothadjacent contact elements 13, 13ʹ. - As shown in phantom Figure 3, the
bridge 61 of contact element 11 can be severed to the left of thepin 62, isolatingcontact springs spring 42, while P2 is connected only to contactspring 41. When thepins 62 and 62ʹ are shunted, as shown in phantom, P1 is also connected to both contact springs 41ʹ and 42ʹ of contact element 13ʹ, and thereby both to P2 and P4 of the circuit board. - Figure 3 also illustrates that the
bridge 61 ofcontact element 13 can be severed to the right ofpin 62, providing the same connections as aforementioned. However, whenpins 62 and 62ʹ are shunted, Pl is connected to 42 only. P2 is connected to 41, 41ʹ and 42ʹ, and P3 is connected to both contact springs 41ʹ and 42ʹ of contact element 13ʹ and thereby to both P2 and P4. - As will be observed from a careful study of Figure 3, many combinations of interconnection can be obtained through the severing of
bridges 61 and 61ʹ and, in addition, by severingarm portions 57 or 57ʹ to removecontact portions 55 or 55ʹ, isolating P1 and P2 after the contact elements have been mounted in the housing module. - In an alternative example (not shown), the
pin 62 is replaced by a conventional wire receiving slot into which a wire can be forced to effect connection therewith. - With reference first to Figure 4, the second embodiment of the modular connector system includes a modular connector assembly, shown generally as 102 including an insulative housing such as 104 having
endwalls endwalls sidewalls 112 and a floor 114 (Figure 5). Thesidewalls dove tail extensions 116 anddove tail slots 118 respectively for mechanically interconnecting two identical housing members. Figure 4 also shows that a slot such as 120 which is provided on the underside of theinsulative housing 104 which includes a groove such as 122 for receivingside edges 172 of thelocking rail 170. It should be noted that when the two housings are locked together with the dove tail extensions within the dove tail slots, and thelocking rail 170 in place within theslot 120, the modular connectors are securely fastened together as the modular connector housings are locked together in two different axes. - With reference now to Figure 6, a connector subassembly will be formed from a continuous flexible substrate such as 182 which is removed from a reel such as 174. The
flexible substrate 182 includes electrical traces generally shown as 184 in Figure 6. The continuous flexible substrate is unrolled from thereel 174 and placed in juxtaposition over a plurality of elastomeric inserts such as 150. It should be noted from Figure 6 that the elastomeric inserts include a planar surface such as 152 and two angled surfaces such as 154 which digress away from theplanar surface 152. With the flexible substrate properly aligned over the elastomeric inserts, theflexible substrate 182 can be heat fused or adhesively fixed to the elastomeric inserts with theflexible substrate 182 conforming to the shape of the planar surface and the angled surfaces 154. - With the
flexible substrate 182 securely fixed to the elastomeric inserts, the elastomeric inserts and the flexible substrate can be adhesively fixed to the insulative block which is shown as 132 in Figure 8. It should be noted that theelastomeric inserts 150 are spaced appropriately to allow the flexible substrate to conform to the configuration as shown in Figure 8. It is desirous to have the flexible substrate lying along the top of the planar surface of theinsulative block 132, yet draping into a recess such as 140 with the elastomeric inserts adhesively fixed to theside walls recess 140 with the planar surfaces of the recess in facing opposition with the flexible substrate between the two inserts conforming along thefloor 146 of therecess 140. It should also be noted that oneinsert 150 and a flexible substrate partially overlapping theinsert 150 is affixed to an end wall such as 136 of thehousing block 132 while a secondelastomeric insert 150 with a second overlapping end of the flexible substrate is affixed to an end wall such as 138. It should also be noted that bussing portions such as 160 and 162 extend between opposite end walls. Once the insulative block has the flexible substrate attached thereto, theinsulative block 132 is insertable within therecess 110 and adhesively fixed therein. It should be noted that theblock 132 and thehousing 104 could be formed integrally into a single unitary component. As shown in Figures 4 and 5, the elastomeric inserts which are affixed to theend walls insulative block 132 are somewhat recessed within theend walls housing 104, yet theplanar surfaces 152 of the elastomeric inserts extend beyond theend walls end walls inserts 150 which are adhesively affixed within therecess 140 form an electrical connector for interconnecting a printed circuit board such as 200 which includes edge guides 202 (Figure 4) having circuit traces such as 204 extending to the edge guides 202. It should be noted from Figure 6 that theflexible circuit 182 includes a programming feature which can allow electrical interconnection between two traces on opposite sides of a printed circuit board where the two traces are not aligned and the two traces jumper at least one intermediate trace. More specifically, the flexible substrates includes a trace such as 186 which is aligned withtrace 190, althoughtrace recess 140. Rather, trace 186 is interconnected to trace 188jumpering trace 192.Trace 194 and trace 192 are still in line as aretrace flexible substrate 182 conforms to theelastomeric inserts 150 such as shown in Figure 7, and installed within arecess 140 as shown in Figure 8, the jumper portions are tucked away under theinserts 150 and cannot be contacted by the printed circuit board during the insertion of the board. In this manner, traces 194 and 196 can still be used as electrical interconnections to associated traces on a first side of a printed circuit board and traces 190 and 192 can be used for electrical interconnection on opposite sides of the printed circuit board.Traces - It should be noted from Figures 1 and 4 that the modular connectors such as 11 and 102 are expandable to any degree. The modular connectors such as 11 and 102 are advantageous in equipment in which several options are required where the options are not always supplied by the manufacturer, as standard equipment. The subject invention would be used as a modular power buss system and as a modular printed circuit board. Options can be added on to equipment by the manufacturer or by the end user, by simply expanding the electrical interconnection between two modular connectors and by inserting the logic to the options via the printed
circuit boards
Claims (12)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB868630450A GB8630450D0 (en) | 1986-12-19 | 1986-12-19 | Modular circuit board bussing connector |
GB8630450 | 1986-12-19 | ||
GB8721677 | 1987-09-15 | ||
GB878721677A GB8721677D0 (en) | 1987-09-15 | 1987-09-15 | Modular bussing system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0272008A1 true EP0272008A1 (en) | 1988-06-22 |
EP0272008B1 EP0272008B1 (en) | 1994-06-01 |
Family
ID=26291719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87310338A Expired - Lifetime EP0272008B1 (en) | 1986-12-19 | 1987-11-24 | Modular circuit board bussing connector |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0272008B1 (en) |
DE (1) | DE3789947T2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0347077A1 (en) * | 1988-06-15 | 1989-12-20 | The Whitaker Corporation | High density board to board interconnection system |
CN113555709A (en) * | 2020-04-01 | 2021-10-26 | 霍尼韦尔国际公司 | Electrical connector for controller |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3924915A (en) * | 1971-11-26 | 1975-12-09 | Teledyne Inc | Electrical connector |
GB2036464A (en) * | 1979-10-08 | 1980-06-25 | Int Computers Ltd | Improvements in Electrical Connectors |
US4322120A (en) * | 1980-05-19 | 1982-03-30 | Hans Rilling | Plug-in connector with improved spring contact |
EP0081986A2 (en) * | 1981-12-11 | 1983-06-22 | Miraco, Inc. | Programmable header |
US4401351A (en) * | 1981-09-28 | 1983-08-30 | Advant Corporation | Expandable card cage |
-
1987
- 1987-11-24 DE DE3789947T patent/DE3789947T2/en not_active Expired - Fee Related
- 1987-11-24 EP EP87310338A patent/EP0272008B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3924915A (en) * | 1971-11-26 | 1975-12-09 | Teledyne Inc | Electrical connector |
GB2036464A (en) * | 1979-10-08 | 1980-06-25 | Int Computers Ltd | Improvements in Electrical Connectors |
US4322120A (en) * | 1980-05-19 | 1982-03-30 | Hans Rilling | Plug-in connector with improved spring contact |
US4401351A (en) * | 1981-09-28 | 1983-08-30 | Advant Corporation | Expandable card cage |
EP0081986A2 (en) * | 1981-12-11 | 1983-06-22 | Miraco, Inc. | Programmable header |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0347077A1 (en) * | 1988-06-15 | 1989-12-20 | The Whitaker Corporation | High density board to board interconnection system |
CN113555709A (en) * | 2020-04-01 | 2021-10-26 | 霍尼韦尔国际公司 | Electrical connector for controller |
US11777242B2 (en) | 2020-04-01 | 2023-10-03 | Honeywell International Inc. | Electrical connector for a controller |
CN113555709B (en) * | 2020-04-01 | 2023-11-07 | 霍尼韦尔国际公司 | Electrical connector for controller |
Also Published As
Publication number | Publication date |
---|---|
DE3789947D1 (en) | 1994-07-07 |
EP0272008B1 (en) | 1994-06-01 |
DE3789947T2 (en) | 1994-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4897054A (en) | Modular circuit board bussing connector | |
US6767223B2 (en) | Input/output device having removable module | |
EP1087300B1 (en) | Computer bus bar assembly | |
EP0492944B1 (en) | A high density connector system | |
EP0292538B1 (en) | Impedance matched electrical connector | |
EP0627788B1 (en) | Connector assembly | |
EP0746063B1 (en) | Connector for a circuit board | |
US7220130B2 (en) | Electrical connector and system having contact array interface for engaging contacts at varying centerline spacing | |
EP0039175A2 (en) | Electrical connecting assembly for circuit cards | |
US4887353A (en) | Conduction cooled module connector system and method of making | |
EP0835538A1 (en) | Board to board matable assembly | |
US3372308A (en) | Interconnecting frame assembly with improved connector structure | |
WO2004019455A1 (en) | Multi-sequenced contacts from single lead frame | |
EP0661779B1 (en) | Multi-connector assembly | |
EP1173902B1 (en) | Electrical terminal for an input-output module | |
US6171116B1 (en) | Pin terminal alignment system | |
US6038138A (en) | Connection arrangement for electronic equipment to provide functional expansion in at least one dimension | |
JP2001068237A (en) | Electric connector | |
EP0272008B1 (en) | Modular circuit board bussing connector | |
EP1102352B1 (en) | Electrical connection box containing bus bars | |
US4508398A (en) | Printed circuit connecting device | |
US4490000A (en) | Multi-plane crossover contact | |
EP0634819B1 (en) | Method and apparatus for mechanically and electrically coupling metal terminals in a housing | |
US4871326A (en) | Electrical harness having one connector intended for circuit board mounting | |
US4489998A (en) | Bussing connector system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19881017 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMP INCORPORATED (A NEW JERSEY CORPORATION) |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMP INCORPORATED |
|
17Q | First examination report despatched |
Effective date: 19911107 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THE WHITAKER CORPORATION |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3789947 Country of ref document: DE Date of ref document: 19940707 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980914 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19981008 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19981109 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19981125 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19991124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000731 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20000601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051124 |