EP0262166A1 - Process for identifying the working cycle of a cylinder in an internal combustion engine. - Google Patents

Process for identifying the working cycle of a cylinder in an internal combustion engine.

Info

Publication number
EP0262166A1
EP0262166A1 EP19870901383 EP87901383A EP0262166A1 EP 0262166 A1 EP0262166 A1 EP 0262166A1 EP 19870901383 EP19870901383 EP 19870901383 EP 87901383 A EP87901383 A EP 87901383A EP 0262166 A1 EP0262166 A1 EP 0262166A1
Authority
EP
European Patent Office
Prior art keywords
signal
internal combustion
combustion engine
cylinder
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19870901383
Other languages
German (de)
French (fr)
Other versions
EP0262166B1 (en
Inventor
Hans-Ernst Beyer
Jorg Bonitz
Robert Entenmann
Siegmar Forster
Rochus Knab
Walter Kunzel
Wolfgang Kugler
Alfred Mahlberg
Bernhard Miller
Matthias Philipp
Siegfried Rohde
Stefan Unland
Walter Viess
Herbert Winter
Jurgen Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0262166A1 publication Critical patent/EP0262166A1/en
Application granted granted Critical
Publication of EP0262166B1 publication Critical patent/EP0262166B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • F02P7/0675Electromagnetic pick-up devices, e.g. providing induced current in a coil with variable reluctance, e.g. depending on the shape of a tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/077Circuits therefor, e.g. pulse generators
    • F02P7/0775Electronical verniers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start

Definitions

  • the invention relates to a method for recognizing the operating cycle of a cylinder of an internal combustion engine according to the preamble of the main claim.
  • an encoder is usually provided for this purpose, which responds to a mark attached to the camshaft of the internal combustion engine.
  • this encoder signal is linked to a signal from a speed encoder that responds to marks on an encoder disk rotating with the crankshaft.
  • An electronic ignition system is known from US Pat. No. 3,592,178, in which ignition angle control and cylinder detection an encoder disc rotating synchronously with the distributor finger of the ignition distributor is used.
  • One encoder is provided for continuous rotation angle information, another encoder is provided for cylinder detection.
  • the present invention is based on the object of finding a method for recognizing the operating cycle of a cylinder of an internal combustion engine, which has the high accuracy of the angular resolution of an encoder system and whose encoder wheel is located directly on the crankshaft of the internal combustion engine.
  • the method according to the invention with the characterizing features of the main claim has the particular advantage that it needs only one encoder. This is noticeable on the cost side. Another particular advantage is that the operational reliability of the system is increased, since the number of possible failures is reduced due to the reduced number of system components.
  • Figure 1 shows a signal diagram to explain the mode of operation
  • Figure 2 shows a circuit diagram of the embodiment.
  • FIG. 1 In the first line of FIG. 1, an ignition sequence Z of a running five-cylinder internal combustion engine is shown during two crankshaft revolutions above the elapsed crankshaft angle. The firing order 1-2-4-5-3 of the individual cylinders is also given. It can be seen from this that a distance of two crankshaft revolutions is necessary from one working cycle of a cylinder to the next.
  • the illustration in FIG. 1 corresponds almost exactly to the behavior of the internal combustion engine during a quiet idling operation.
  • the second line of FIG. 1 shows a signal SK which originates from an encoder which responds to a label attached to an encoder disk which rotates synchronously with the crankshaft.
  • the signal SK thus corresponds to a pulse sequence which is formed by a sequence of individual pulses which are triggered every full revolution of the encoder disk.
  • the third line of FIG. 1 shows a signal SM which is proportional to the instantaneous speed of the crankshaft.
  • the signal SM is composed of a constant component SN, which is superimposed on an oscillation resulting from the combustion processes in the internal combustion engine. During each work cycle of a cylinder, the crankshaft of the internal combustion engine is accelerated, while the other cylinders are in the compression, exhaust or intake cycle and consume power.
  • the ripple of the signal SM comes about as a result of the successive change of the individual cylinders in the firing order, which are in a fixed phase relationship to one another via the crankshaft.
  • a signal SD is drawn in, which has arisen from a digital comparison of the signal SM with its own direct component SN. That is, the signal SD changes its state each time the modulated signal SM becomes larger or smaller than its own mean value SN.
  • FIG. 2 shows an encoder disk 1 which corresponds to an encoder disk on the internal combustion engine that actually rotates with the crankshaft.
  • the encoder disc 1 has a reference mark 11 and further angle marks 12.
  • the reference mark 11 simply consists of an angle mark 12 which has been divided for reference recognition.
  • a transmitter 2 is attached, the output signal of which is fed to a converter amplifier 3.
  • the converter amplifier 3 processes the voltage signals induced in the transmitter 2 into signals SM and SK, as shown in FIG. 1.
  • the signal SM appears at an output 31 and the signal SK at an output 32 of the converter amplifier 3.
  • the signal SM is passed on the one hand to a low-pass filter 4 and on the other hand to the inverting input of a comparator 5.
  • the comparator 5 has a low hysteresis, ie it represents a Schmitt trigger.
  • the low-pass filter 4 forms the direct component SN of the signal SM at its output in accordance with the representations in FIG. 1.
  • the logic stage 6 thus represents an AND stage with an inverting input.
  • the signals SE and SN can be tapped at two signal terminals 7, 8 for further processing, which is not shown for reasons of simplification.
  • the circuit shown in FIG. 2 can also be implemented in the software of a microcomputer. Last but not least, this solution is also available This is because the output signals of the encoder 2 are already in a form that is well suited for digital processing.
  • the signals of an increment system are used for cylinder detection according to the invention.
  • Pressure signals in the intake tract, in the combustion chamber or in an exhaust pipe are particularly suitable.
  • battery voltage, temperature and mechanical vibrations of the motor are also suitable physical quantities.

Abstract

Dans le procédé ci-décrit, la comparaison d'un signal synchronisé avec l'angle du vilebrequin et d'un signal modulé par les processus de combustion du moteur à combustion interne permet de déterminer si un cylindre se trouve exactement dans le temps moteur.In the method described above, the comparison of a signal synchronized with the angle of the crankshaft and a signal modulated by the combustion processes of the internal combustion engine makes it possible to determine whether a cylinder is exactly in engine time.

Description

Verfahren zur Erkennung des Arbeitstaktes eines Zylinders einer BrennkraftmaschineMethod for recognizing the operating cycle of a cylinder of an internal combustion engine
Stand der TechnikState of the art
Die Erfindung geht aus von einem Verfahren zur Erkennung des Arbeitstaktes eines Zylinders einer Brennkraftmaschine nach der Gattung des Hauptanspruches.The invention relates to a method for recognizing the operating cycle of a cylinder of an internal combustion engine according to the preamble of the main claim.
Bei gewissen Arten von Steuerungen bei Brennkraftmaschinen, insbesondere der Zündung oder Einspritzung, ist eine Erkennung des Arbeitstaktes eines bestimmten Zylinders erforderlich, üblicherweise ist hierfür ein Geber vorgesehen, der auf eine an der Nockenwelle der Brennkraftmaschine angebrachten Marke anspricht. Da aber hauptsächlich aufgrund des mechanischen Spiels die Winkelgenauigkeit dieses Gebers nicht ausreicht, wird dieses Gebersignal mit einem Signal eines Drehzahlgebers verknüpft, der auf Marken einer sich mit der Kurbelwelle drehenden Geberscheibe anspricht.Certain types of controls in internal combustion engines, in particular ignition or injection, require recognition of the operating cycle of a specific cylinder; an encoder is usually provided for this purpose, which responds to a mark attached to the camshaft of the internal combustion engine. However, since the angular accuracy of this encoder is not sufficient mainly due to the mechanical play, this encoder signal is linked to a signal from a speed encoder that responds to marks on an encoder disk rotating with the crankshaft.
Aus der US-PS 3 592 178 ist ein elektronisches Zündsystem bekannt, bei dem zur Zündwinkelregelung und Zylindererken nung eine sich synchron mit dem Verteilerfinger des Zündverteilers drehende Geberscheibe verwendet wird. Ein Geber ist für eine kontinuierliche Drehwinkelinformation vorgesehen, ein weiterer Geber ist für eine Zylindererkennung vorgesehen.An electronic ignition system is known from US Pat. No. 3,592,178, in which ignition angle control and cylinder detection an encoder disc rotating synchronously with the distributor finger of the ignition distributor is used. One encoder is provided for continuous rotation angle information, another encoder is provided for cylinder detection.
Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zur Erkennung des Arbeitstaktes eines Zylinders einer Brennkraftmaschine zu finden, das die hohe Genauigkeit der Winkelauflösung eines Gebersystems besitzt und dessen Geberrad sich direkt an der Kurbelwelle der Brennkraftmaschine befindet.The present invention is based on the object of finding a method for recognizing the operating cycle of a cylinder of an internal combustion engine, which has the high accuracy of the angular resolution of an encoder system and whose encoder wheel is located directly on the crankshaft of the internal combustion engine.
Die gestellte Aufgabe wird durch das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs gelöst.The stated object is achieved by the method according to the invention with the characterizing features of the main claim.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den besonderen Vorteil, daß es mit einem einzigen Geber auskommt. Das macht sich vorteilhaft auf der Kostenseite bemerkbar. Ein weiterer besonderer Vorteil besteht darin, daß die Betriebssicherheit des Systems erhöht wird, da durch die verringerte Anzahl von Systemkomponenten die Anzahl der möglichen Ausfälle verringert wird.The method according to the invention with the characterizing features of the main claim has the particular advantage that it needs only one encoder. This is noticeable on the cost side. Another particular advantage is that the operational reliability of the system is increased, since the number of possible failures is reduced due to the reduced number of system components.
Besonders vorteilhafte Augestaltungen der erfindungsgemäßen Lösung sind in den Unteransprüchen angegeben. Sie beruhen auf der Verwendung von physikalischen Größen der Brennkraftmaschine, die durch die laufenden Arbeitsprozesse der Brennkraftmaschine eine Veränderung erfahren. Die Signale von möglicherweise bereits für andere Zwecke an der Brennkraftmaschine angebrachten Gebern könnenbeider erfindungsgemäßen Lösung mitverwandt werden. Durch die damit mögliche Doppelausnutzung von Systemkomponenten ist eine weitere besonders vorteilhafte Kostenreduzierung für das Gesamtsystem möglich.Particularly advantageous refinements of the solution according to the invention are specified in the subclaims. They are based on the use of physical quantities of the internal combustion engine, which undergo a change due to the ongoing work processes of the internal combustion engine. The signals from may already be used for other purposes donors attached to the internal combustion engine can also be used in the solution according to the invention. As a result of the double utilization of system components that is possible, a further particularly advantageous cost reduction for the overall system is possible.
Zeichnungdrawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dar gest ellt und in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt ein Signaldiagramm zur Erläuterung der Wirkungsweise; Figur 2 zeigt ein Schaltdiagramm des Ausführungsbeispieles.An embodiment of the invention is illustrated in the drawing and illustrated in the following description. Figure 1 shows a signal diagram to explain the mode of operation; Figure 2 shows a circuit diagram of the embodiment.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In der ersten Zeile der Figur 1 ist eine Zündreihenfolge Z einer laufenden Fünfzylinder-Brennkraftmaschine während zwei Kurbelwellenumdrehungen über dem abgelaufenen Kurbelwellenwinkel dargestellt. Weiterhin ist die Zündreihenfolge 1-2-4-5-3 der einzelnen Zylinder angegeben. Es ist daraus ersichtlich, daß von einem Arbeitstakt eines Zylinders bis zum nächsten jeweils ein Abstand von zwei Kurbelwellenumdrehungen notwendig ist. Die Darstellung in der Figur 1 entspricht ziemlich genau dem Verhalten der Brennkraftmaschine während eines ruhigen Leerlaufbetriebes.In the first line of FIG. 1, an ignition sequence Z of a running five-cylinder internal combustion engine is shown during two crankshaft revolutions above the elapsed crankshaft angle. The firing order 1-2-4-5-3 of the individual cylinders is also given. It can be seen from this that a distance of two crankshaft revolutions is necessary from one working cycle of a cylinder to the next. The illustration in FIG. 1 corresponds almost exactly to the behavior of the internal combustion engine during a quiet idling operation.
In der zweiten Zeile der Figur 1 ist ein Signal SK dargestellt, das von einem Geber herrührt, der auf eine an einer sich mit der Kurbelwelle synchron drehenden Geberscheibe angebrachten Marke anspricht. Das Signal SK entspricht also einer Pulsfolge, die durch eine Folge von Einzelimpulsen gebildet wird, welche bei jeder vollen Umdrehung der Geberscheibe ausgelöst werden. In der dritten Zeile der Figur 1 ist ein Signal SM dargestellt, das proportional zur augenblicklichen Drehzahl der Kurbelwelle ist. Das Signal SM setzt sich zusammen aus einem Gleichanteil SN, dem eine von den Verbrennungsvorgängen in der Brennkraftmaschine herrührende Schwingung überlagert ist. Während jedes Arbeitstaktes eines Zylinders wird nämlich die Kurbelwelle der Brennkraftmaschine beschleunigt, während sich die anderen Zylinder im Verdichtungs-, Ausstoß- oder Ansaugtakt befinden und dabei Leistung verbrauchen. Durch den in der Zündreihenfolge aufeinanderfolgenden Wechsel der einzelnen Zylinder, die über die Kurbelwelle in einer festen Phasenbeziehung zueinander stehen, kommt dabei die Welligkeit des Signals SM zustande.The second line of FIG. 1 shows a signal SK which originates from an encoder which responds to a label attached to an encoder disk which rotates synchronously with the crankshaft. The signal SK thus corresponds to a pulse sequence which is formed by a sequence of individual pulses which are triggered every full revolution of the encoder disk. The third line of FIG. 1 shows a signal SM which is proportional to the instantaneous speed of the crankshaft. The signal SM is composed of a constant component SN, which is superimposed on an oscillation resulting from the combustion processes in the internal combustion engine. During each work cycle of a cylinder, the crankshaft of the internal combustion engine is accelerated, while the other cylinders are in the compression, exhaust or intake cycle and consume power. The ripple of the signal SM comes about as a result of the successive change of the individual cylinders in the firing order, which are in a fixed phase relationship to one another via the crankshaft.
In der vierten Zeile der Figur 1 ist ein Signal SD eingezeichnet, das durch einen digitalen Vergleich des Signals SM mit seinem eigenen Gleichanteil SN entstanden ist. D.h., das Signal SD wechselt jedesmal dann seinen Zustand, wenn das modulierte Signal SM jeweils größer oder kleiner als sein eigener Mittelwert SN wird.In the fourth line of FIG. 1, a signal SD is drawn in, which has arisen from a digital comparison of the signal SM with its own direct component SN. That is, the signal SD changes its state each time the modulated signal SM becomes larger or smaller than its own mean value SN.
Wie nun leicht ersichtlich ist, läßt sich aus einer gemeinsamen Betrachtung der Signale SK und SD in einfacher Weise die Erkennung des Arbeitstaktes des Zylinders Nr. 1 erkennen. Durch eine einfache logische Verknüpfung der Signale SK und SD ergibt sich also ein Erkennungs signal SE, wie es in der fünften und letzten Zeile der Figur 1 aufgetragen ist. Da die einzelnen Zylinder der Brennkraftmaschine in einer festen Phasenbeziehung zueinander stehen, lassen sich durch einfache Winkeladdition gleichfalls die Arbeitstakte jedes beliebigen Zylinders erkennen, was zur Vereinfachung der Darstellung aber hier nicht weiter gezeigt ist. In Figur 2 ist eine Geberscheibe 1 dargestellt, die einer in Wirklichkeit sich mit der Kurbelwelle drehenden Geberscheibe an der Brennkraftmaschine entspricht. Die Geberscheibe 1 weist eine Bezugsmarke 11 und weitere Winkelmarken 12 auf. Die Bezugsmarke 11 besteht einfach aus einer Winkelmarke 12, die zur Bezugserkennung geteilt wurde. Gegenüber den Marken der Geberscheibe 1 ist ein Geber 2 angebracht, dessen Ausgangssignal auf einen Wandler-Verstärker 3 geführt wird. Der Wandlerverstärker 3 verarbeitet die im Geber 2 induzierten Spannungs signale zu Signalen SM und SK, wie sie in Figur 1 dargestellt sind. Dabei erscheint das Signal SM an einem Ausgang 31 und das Signal SK an einem Ausgang 32 des Wandlerverstärkers 3. Das Signal SM wird einerseits auf ein Tiefpaßfilter 4 und andererseits auf den invertierenden Eingang eines Vergleichers 5 geführt. Zur Verringerung der Stδrempfindlichkeit weist der Vergleicher 5 eine geringe Hysterese auf, stellt also einen Schmitt-Trigger dar. Das Tiefpaßfilter 4 bildet an seinem Ausgang den Gleichanteil SN des Signales SM entsprechend den Darstellungen in der Figur 1. Das Signal SK aus dem Wandlerverstärker 3 und das Ausgangssignal des Vergleichers 5, das dem Signal SD der Figur 1 entspricht, werden auf eine logische Verknüpfungsstufe 6 geführt, die so geschaltet ist, daß an ihrem Ausgang ein Signal entsprechend dem Erkennungssignal SE der Figur 1 entsteht. Die Verknüpfungsstufe 6 stellt also eine UND-Stufe mit einem invertierenden Eingang dar. An zwei Signalklemmen 7, 8 können für eine aus Gründen der Vereinfachung nicht näher dargestellte Weiterverarbeitung die Signale SE bzw. SN abgegriffen werden.As can now be easily seen, the detection of the operating cycle of cylinder No. 1 can be recognized in a simple manner from a joint examination of the signals SK and SD. A simple logical combination of the SK and SD signals results in a detection signal SE as shown in the fifth and last line of FIG. 1. Since the individual cylinders of the internal combustion engine are in a fixed phase relationship to one another, the work cycles of any cylinder can also be recognized by simple angle addition, but this is not shown further here to simplify the illustration. FIG. 2 shows an encoder disk 1 which corresponds to an encoder disk on the internal combustion engine that actually rotates with the crankshaft. The encoder disc 1 has a reference mark 11 and further angle marks 12. The reference mark 11 simply consists of an angle mark 12 which has been divided for reference recognition. Compared to the brands of the encoder disk 1, a transmitter 2 is attached, the output signal of which is fed to a converter amplifier 3. The converter amplifier 3 processes the voltage signals induced in the transmitter 2 into signals SM and SK, as shown in FIG. 1. The signal SM appears at an output 31 and the signal SK at an output 32 of the converter amplifier 3. The signal SM is passed on the one hand to a low-pass filter 4 and on the other hand to the inverting input of a comparator 5. To reduce the susceptibility to interference, the comparator 5 has a low hysteresis, ie it represents a Schmitt trigger. The low-pass filter 4 forms the direct component SN of the signal SM at its output in accordance with the representations in FIG. 1. The signal SK from the converter amplifier 3 and the output signal of the comparator 5, which corresponds to the signal SD in FIG. 1, is fed to a logic combination stage 6, which is connected such that a signal corresponding to the detection signal SE in FIG. 1 is produced at its output. The logic stage 6 thus represents an AND stage with an inverting input. The signals SE and SN can be tapped at two signal terminals 7, 8 for further processing, which is not shown for reasons of simplification.
In glatt äquivalenter Weise kann die in Figur 2 gezeigte Schaltung auch in der Software eines Mikrorechners realisiert werden. Diese Lösung bietet sich nicht zuletzt auch deswegen an, weil die Ausgangssignale des Gebers 2 bereits in einer für digitale Verarbeitung gut geeignten Form vorliegen.In a smoothly equivalent manner, the circuit shown in FIG. 2 can also be implemented in the software of a microcomputer. Last but not least, this solution is also available This is because the output signals of the encoder 2 are already in a form that is well suited for digital processing.
Im bevorzugten Ausführungsbeispiel werden zur erfindungsgemäßen Zylindererkennung die Signale eines Inkrementsystems verwendet. Bei anderen bekannten Segmentsystemen bieten s ich zur erf indungs gemäßen Zylindererkennung andere S i gnale an, die ebenfalls wie die Rotation der Kurbelwelle durch die Verbrennungsvorgänge in der Brennkraftmaschine moduliert werden. Hierbei sind insbesondere Drucksignale im Ansaugtrakt, im Verbrennungsraum oder in einer abgasführenden Leitung geeignet. Es bieten sich aber auch Batteriespannung, Temperatur und mechanische Schwingungen des Motors als geeignete physikalische Größen an. In the preferred exemplary embodiment, the signals of an increment system are used for cylinder detection according to the invention. In other known segment systems, I offer other signals for cylinder detection according to the invention, which, like the rotation of the crankshaft, are also modulated by the combustion processes in the internal combustion engine. Pressure signals in the intake tract, in the combustion chamber or in an exhaust pipe are particularly suitable. However, battery voltage, temperature and mechanical vibrations of the motor are also suitable physical quantities.

Claims

Ansprüc he Expectations
1. Verfahren zur Erkennung des Arbeitstaktes eines Zylinders einer Brennkraftmaschine, insbesondere eines Viertaktkolbenmotors mit ungerader Zylinderzahl, wobei ein erstes Signal (SK) gebildet wird, das einem festen Kurbelwellenwinkel zugeordnet ist, dadurch gekennzeichnet, daß ein zweites Signal (SD) gebildet wird, das der Grundfrequenz der Verbrennungsvorgänge in der Brennkraftmaschine zugeordnet ist und daß ein Erkennungsignal (SE) durch eine logische Verknüpfung des ersten und zweiten Signals gebildet wird.1. A method for detecting the operating cycle of a cylinder of an internal combustion engine, in particular a four-stroke piston engine with an odd number of cylinders, a first signal (SK) being formed which is associated with a fixed crankshaft angle, characterized in that a second signal (SD) is formed which is assigned to the basic frequency of the combustion processes in the internal combustion engine and that a detection signal (SE) is formed by a logical combination of the first and second signals.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das zweite Signal durch eine Drehzahlvariation oder Beschleunigung der Kurbelwelle der Brennkraftmaschine gebildet wird.2. The method according to claim 1, characterized in that the second signal is formed by a speed variation or acceleration of the crankshaft of the internal combustion engine.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das zweite Signal durch ein Drucksignal der Brennkraftmaschine gebildet wird.3. The method according to claim 1, characterized in that the second signal is formed by a pressure signal from the internal combustion engine.
4 . Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das zweite Signal durch die Batteriespannung gebildet wird4th A method according to claim 1, characterized in that the second signal is formed by the battery voltage
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das zweite Signal durch ein Temperatursignal der Brennkraftmaschine gebildet wird. 5. The method according to claim 1, characterized in that the second signal is formed by a temperature signal of the internal combustion engine.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das erste und zweite Signal digitale Signale sind, daß das erste Signal dann einen bestimmten logischen Zustand einnimmt, wenn sich in einem Zylinder der Brennkraftmaschine durch die Kolbenbewegung der Arbeitsraum vergrößert und daß das zweite Signal dann einen bestimmten logischen Zustand einnimmt, wenn in der Brennkraftmaschine ein Verbrennungsvorgang stattfindet.6. The method according to any one of the preceding claims, characterized in that the first and second signals are digital signals, that the first signal assumes a certain logical state when the working space increases in a cylinder of the internal combustion engine by the piston movement and that the second Signal then assumes a certain logic state when a combustion process takes place in the internal combustion engine.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die logische Verknüpfung eine UND-Verknüpfung ist. 7. The method according to any one of the preceding claims, characterized in that the logical link is an AND link.
EP87901383A 1986-04-04 1987-03-06 Process for identifying the working cycle of a cylinder in an internal combustion engine Expired - Lifetime EP0262166B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3611262 1986-04-04
DE19863611262 DE3611262A1 (en) 1986-04-04 1986-04-04 METHOD FOR DETECTING THE WORKING STATE OF A CYLINDER OF AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0262166A1 true EP0262166A1 (en) 1988-04-06
EP0262166B1 EP0262166B1 (en) 1992-06-10

Family

ID=6297892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87901383A Expired - Lifetime EP0262166B1 (en) 1986-04-04 1987-03-06 Process for identifying the working cycle of a cylinder in an internal combustion engine

Country Status (5)

Country Link
US (1) US4889094A (en)
EP (1) EP0262166B1 (en)
JP (1) JPH086633B2 (en)
DE (2) DE3611262A1 (en)
WO (1) WO1987005971A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402675A (en) * 1990-01-26 1995-04-04 Robert Bosch Gmbh Method for recognizing the power stroke of a four-stroke engine
DE4042629C2 (en) * 1990-01-26 1998-04-23 Bosch Gmbh Robert Power-stroke detection for four stroke engine
US5027785A (en) * 1990-04-19 1991-07-02 Motorola, Inc. Simplified ignition system for multi-cylinder engines
US5370099A (en) * 1990-08-24 1994-12-06 Robert Bosch Gmbh Ignition system for internal combustion engines
US5165271A (en) * 1991-03-29 1992-11-24 Cummins Electronics Single sensor apparatus and method for determining engine speed and position
DE4114797C2 (en) * 1991-05-07 2003-08-28 Bosch Gmbh Robert Method and device for working cycle detection in a four-stroke engine
US5174267A (en) * 1991-07-22 1992-12-29 Ford Motor Company Cylinder identification by spark discharge analysis for internal combustion engines
DE4129344C2 (en) * 1991-09-04 2001-08-16 Bosch Gmbh Robert Device for detecting the angle of rotation of two rotating parts
JPH05163997A (en) * 1991-12-10 1993-06-29 Mitsubishi Electric Corp Device and mehtod for controlling internal combustion engine
US5493496A (en) * 1992-12-15 1996-02-20 Ford Motor Company Cylinder number identification on a distributorless ignition system engine lacking CID
US5613473A (en) * 1993-08-26 1997-03-25 Siemens Aktiengesellschaft Method of identifying the stroke positions in an internal combustion engine upon startup
JP3186545B2 (en) * 1995-10-06 2001-07-11 三菱電機株式会社 4-cycle internal combustion engine controller
DE19638010A1 (en) * 1996-09-18 1998-03-19 Bosch Gmbh Robert Method for determining the phase position in a 4-stroke internal combustion engine
ES2191734T3 (en) * 1996-12-03 2003-09-16 Fiat Ricerche A METHOD FOR SYNCHRONIZING AN INTERNAL COMBUSTION ENGINE WITHOUT A CAM POSITION SENSOR.
DE19652896B4 (en) * 1996-12-19 2004-01-29 Vogt Electronic Aktiengesellschaft Device and method for cylinder recognition in an internal combustion engine
JP3839119B2 (en) * 1997-02-13 2006-11-01 本田技研工業株式会社 4-cycle engine stroke discrimination device
GB2337123A (en) * 1998-05-09 1999-11-10 Rover Group Calculation of crankshaft angle in a four stroke engine having an odd number of cylinders
EP1050676A3 (en) * 1999-05-05 2002-06-05 Delphi Technologies, Inc. Engine position sensing
JP4093682B2 (en) * 1999-05-28 2008-06-04 本田技研工業株式会社 4-cycle engine stroke discrimination device
DE10015595A1 (en) * 2000-03-29 2001-10-04 Bayerische Motoren Werke Ag Method to recognize combustion stroke in single-cylinder four-stroke engine measures and compares periods of two subsequent crankshaft rotations, with combustion stroke during shorter period
SE518102C2 (en) * 2000-04-14 2002-08-27 Scania Cv Ab Methods and apparatus for determining where in their duty cycles an internal combustion engine cylinders are located
DE10036436C2 (en) * 2000-07-26 2002-06-13 Siemens Ag Method for synchronizing an internal combustion engine
EP1197656B1 (en) * 2000-10-12 2008-02-20 Kabushiki Kaisha Moric Engine control method and apparatus
US6542798B2 (en) 2000-12-06 2003-04-01 Ford Global Technologies, Inc. Engine ready signal using peak engine cylinder pressure detection
FR2821887B1 (en) * 2001-03-07 2003-08-15 Siemens Automotive Sa METHOD FOR DETECTING THE CYCLE PHASE OF AN INTERNAL COMBUSTION ENGINE WITH NUMBER OF ODD CYLINDERS
DE10113194A1 (en) * 2001-03-19 2002-09-26 Volkswagen Ag Detecting working cycle of internal combustion engine cylinder involves detecting pressure variation in cylinder, differentiating, identifying compression cycle if differential has null crossing
DE10116485B4 (en) * 2001-04-03 2007-01-11 Bayerische Motoren Werke Ag Device and method for determining the engine speed of an internal combustion engine
JP2006037944A (en) * 2004-06-24 2006-02-09 Yamaha Motor Co Ltd Stroke discrimination device of four-stroke cycle engine
JP4420348B2 (en) * 2005-03-29 2010-02-24 本田技研工業株式会社 4-cycle engine stroke discrimination device
JP4825783B2 (en) * 2007-12-07 2011-11-30 本田技研工業株式会社 Engine control method
JP2009236036A (en) * 2008-03-27 2009-10-15 Aisin Seiki Co Ltd Single cylinder four cycle engine
JP5359932B2 (en) 2010-02-26 2013-12-04 日産自動車株式会社 4-stroke cycle internal combustion engine and cylinder discrimination method thereof
DE102011086124B3 (en) * 2011-11-10 2013-01-31 Continental Automotive Gmbh Method for cylinder detection in an internal combustion engine and control unit
CN102678362A (en) * 2012-05-16 2012-09-19 联合汽车电子有限公司 System of phase-free sensor for identifying one cylinder compression TDC (Top Dead Center) of three-cylinder engine
WO2014010164A1 (en) * 2012-07-09 2014-01-16 Yamaha Hatsudoki Kabushiki Kaisha Synchronisation system for an internal combustion engine with a toothed wheel with more than two reference positions
DE102014206182A1 (en) * 2014-04-01 2015-10-01 Robert Bosch Gmbh Method for determining a crankshaft position of an internal combustion engine
US9500175B2 (en) * 2014-06-18 2016-11-22 Startec Ltd. Motorcycle engine control system and method for enabling the use of traditional crankshaft
US9617935B2 (en) * 2014-06-18 2017-04-11 Startec Ltd. Small engine control system and method for enabling the use of traditional crankshaft
DE102018200521A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Method for determining a position of an internal combustion engine
DE102018200527A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Method for determining a position of an internal combustion engine
DE102018200526A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Method for detecting a starting mode of an internal combustion engine
FR3083572A1 (en) * 2018-07-06 2020-01-10 Continental Automotive France CRANKSHAFT TARGET WITH NUT TOOTH AND METHOD FOR SYNCHRONIZING AN INTERNAL COMBUSTION ENGINE
EP4219925A3 (en) 2022-01-31 2023-08-09 BRP-Rotax GmbH & Co. KG Method for managing start up of a four-stroke engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7215676A (en) * 1971-12-04 1973-06-06
DE2357061C2 (en) * 1973-11-15 1985-02-14 Robert Bosch Gmbh, 7000 Stuttgart Device for the delivery of uniform pulses at certain angular positions of a rotatable shaft and for the formation of at least one reference signal
FR2374528A1 (en) * 1976-12-17 1978-07-13 Cii ELECTRONIC IGNITION SYSTEM AND INTERNAL COMBUSTION ENGINE EQUIPPED WITH SUCH A SYSTEM
JPS5436961A (en) * 1977-08-29 1979-03-19 Nissan Motor Angleeoffrotation detector
JPS6027363B2 (en) * 1978-03-01 1985-06-28 株式会社日立製作所 Rotation angle detection device
FR2428152B1 (en) * 1978-06-07 1987-04-10 Bosch Gmbh Robert DEVICE FOR CONTROLLING FUNCTIONAL PROCESSES OF REPETITIVE PARAMETERS FOR INTERNAL COMBUSTION ENGINES
DE2842998C2 (en) * 1978-10-03 1986-09-25 Robert Bosch Gmbh, 7000 Stuttgart Device for generating speed-dependent control signals, in particular for ignition systems with a dwell angle control device for internal combustion engines
DE2927538C2 (en) * 1979-07-07 1984-08-23 Audi Nsu Auto Union Ag, 7107 Neckarsulm Device for generating a reference signal corresponding to a specific working state of a four-stroke internal combustion engine
US4429365A (en) * 1981-08-10 1984-01-31 General Motors Corporation Spark timing control system
JPS6073059A (en) * 1983-09-28 1985-04-25 Mitsubishi Electric Corp Igniter for internal-combustion engine
JPS60148909U (en) * 1984-03-14 1985-10-03 日産自動車株式会社 Crank angle detection device
IT8467667A0 (en) * 1984-06-29 1984-06-29 Marelli Autronica SENSOR TO DETECT THE PASSAGE OF A PISTON OR A GROUP OF PISTONS OF AN INTERNAL COMBUSTION ENGINE INTO THE TOP DEAD CENTER POSITION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8705971A1 *

Also Published As

Publication number Publication date
WO1987005971A1 (en) 1987-10-08
US4889094A (en) 1989-12-26
DE3611262A1 (en) 1987-10-08
EP0262166B1 (en) 1992-06-10
DE3779713D1 (en) 1992-07-16
JPS63502844A (en) 1988-10-20
JPH086633B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
EP0262166A1 (en) Process for identifying the working cycle of a cylinder in an internal combustion engine.
EP0643803B1 (en) Sensor arrangement for rapid cylinder identification in a multi-cylinder internal combustion engine
EP0572584B1 (en) Transmitter arrangement for cylinder recognition in an internal combustion engine
DE4141714C2 (en) Control system for an internal combustion engine
DE69634187T2 (en) Method and device for detecting misfires
EP0230560B1 (en) Angle sensor arrangement
DE4227104A1 (en) Tracing misfire in internal combustion engine - using non-uniformities in the engine torque detected by measuring crankshaft angular speed and comparing with derived reference value
WO1998012432A1 (en) Methods to determine the phase angle of a four stroke internal combustion engine with an odd number of cylinders
DE10329586B4 (en) Crank angle detector device for internal combustion engines
DE19737999A1 (en) Device for angle detection and angle assignment
DE3238314C2 (en)
DE19638338A1 (en) Encoder arrangement for quick cylinder recognition in an internal combustion engine
DE2625971C2 (en) Method and device for the detection of malfunctions in individual cylinders of internal combustion engines
DE4231322C2 (en) Misfire detection device for an internal combustion engine
EP0898070B1 (en) Method for identifying the combustion stroke of a selected cylinder during the starting phase of a combustion engine
DE4011503A1 (en) IC engine camshaft rotation detection system - uses disc attached to camshaft and cooperating sensor
DE3933147C2 (en)
DE19527347B4 (en) Single-chip microcomputer for control devices such as an automotive engine control device
DE3743066A1 (en) METHOD FOR DETERMINING THE MEDIUM ACTION TORQUE OF AN INTERNAL COMBUSTION ENGINE
DE4243177C2 (en) Device for rapid cylinder recognition in an internal combustion engine
EP0560793B1 (en) Method of detecting irregular combustion in an engine cylinder
DE3323797A1 (en) TIMING SYSTEM FOR EVENTS RELATED TO ENGINE OPERATION
DE19610609B4 (en) Arrangement for controlling cyclically repeating processes in internal combustion engines
DE10159347B4 (en) Control device and control method for controlling an internal combustion engine
DE19821354A1 (en) Suppression and/or indication of interference with reference mark identification e.g. position of piston in engine of motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 19900409

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 3779713

Country of ref document: DE

Date of ref document: 19920716

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030319

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030425

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050306