EP0261273A1 - Method for the operation of a machine for stress relief by vibration - Google Patents

Method for the operation of a machine for stress relief by vibration Download PDF

Info

Publication number
EP0261273A1
EP0261273A1 EP86113278A EP86113278A EP0261273A1 EP 0261273 A1 EP0261273 A1 EP 0261273A1 EP 86113278 A EP86113278 A EP 86113278A EP 86113278 A EP86113278 A EP 86113278A EP 0261273 A1 EP0261273 A1 EP 0261273A1
Authority
EP
European Patent Office
Prior art keywords
harmonics
vibrator
harmonic
workpiece
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86113278A
Other languages
German (de)
French (fr)
Other versions
EP0261273B1 (en
Inventor
Dietmar Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VSR Martin Engineering GmbH
Original Assignee
VSR Martin Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VSR Martin Engineering GmbH filed Critical VSR Martin Engineering GmbH
Priority to DE8686113278T priority Critical patent/DE3676703D1/en
Priority to AT86113278T priority patent/ATE59319T1/en
Priority to EP86113278A priority patent/EP0261273B1/en
Priority to US07/097,212 priority patent/US4823599A/en
Priority to CA000547898A priority patent/CA1311542C/en
Priority to JP62239082A priority patent/JPS63303622A/en
Priority to ES8702750A priority patent/ES2005350A6/en
Priority to KR1019870010612A priority patent/KR950013283B1/en
Priority to SU874203415A priority patent/SU1620051A3/en
Priority to CN87106584A priority patent/CN1016706B/en
Publication of EP0261273A1 publication Critical patent/EP0261273A1/en
Application granted granted Critical
Publication of EP0261273B1 publication Critical patent/EP0261273B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation

Definitions

  • the invention relates to a machine for unclamping workpieces, in which the workpiece is subjected to vibrations of selected speed values of a vibrator and in which the selection of the speed values of the vibrator is taken from a measurement which reflects the vibration behavior of the workpiece when excited by the vibrator .
  • the speed of the vibrator is usually from 1200 to 6000 rpm or up to 12000 rpm, which Excitation frequencies of 20 - 100 Hz or 200 Hz corresponds, whereby over this working range those speeds or frequencies are determined in a measuring run at which the workpiece tends to vibrate strongly.
  • the vibration behavior is usually determined by an accelerometer attached to the workpiece.
  • the workpiece is then subjected to a treatment by the vibrator at speeds at which the workpiece had resonance frequencies in the previous measuring run.
  • the present invention has for its object to provide a method for operating a machine of the type mentioned, in which the optimal degree of relaxation is more targeted than with previous methods approachable.
  • the characterizing features of claim 1 in that the individual speed values of the vibrator in its working range (e.g. 1,200 to 6,000 rpm or 20 to 100 Hz) in a defined harmonic range (e.g. 100 to 2,000 Hz), the respective harmonics of those vibrations are determined in which resonances or the like stable vibration states occur in the working area, and that those vibrational speed values of the vibrator are selected in its working area to relax the workpiece that are responsible for an accumulation of harmonics in the defined harmonic range are.
  • the individual speed values of the vibrator in its working range e.g. 1,200 to 6,000 rpm or 20 to 100 Hz
  • a defined harmonic range e.g. 100 to 2,000 Hz
  • the present invention is based on the finding that the distribution of the harmonics of the vibrations propagating in a workpiece due to the vibrator excitation provides significantly better information about the excitation frequencies at which the vibrator should be relaxed in its working area than the peaks occurring in the working area itself.
  • Workpieces do not have to be very complex to have a large number of stable vibration states that are far outside the frequency range in which the vibrator is operated.
  • By analyzing the harmonic range for the individual vibrator speeds at which the workpiece tends to vibrate steadily one obtains information about which vibrator speeds lead to an accumulation of vibrations in the harmonic range and which working speeds of the vibrator are essential for relaxation. As N aterial those working vibrations are to be considered of the vibrator, which lead to a possible l ohen number of excitations in Oberwellenbeeich.
  • the harmonics are determined using measurement technology.
  • the amplitudes of the measured harmonics are extracted as an additional selection criterion.
  • the accumulation of harmonics is therefore correlated with the respective amplitude, for example multiplied, in order then to make a selection from the diagram thus obtained.
  • Claim 5 specifies a preferred development which leads to a further optimization of the selection of the speed values of the vibrator for relaxation.
  • This method can be used both in the arithmetical determination of the harmonics (claim 2) and in their metrological determination (claim 3).
  • the method according to claim 5 is particularly suitable for evaluation by a computer. By dividing the harmonic range into adjacent windows with a defined bandwidth of, for example, 7 Hz in each case, one obtains an immediate statement about the frequency ranges in which harmonics occur frequently.
  • the further speed values for vibrator relaxation are determined from the order of the speed values, each of which has supplied the highest number of selected window areas with harmonics.
  • the selection criterion according to claim 8 is such that those harmonics which result from already selected speed values of the vibrator are no longer taken into account. A speed value is therefore selected in each case, and the selected window areas are then redefined. Since those harmonics that belong to the already selected speed are no longer taken into account, window areas that were previously selected are thus eliminated and the next working speed of the vibrator is selected from the remaining or newly selected window areas.
  • Claim 9 specifies different possibilities to determine the measurement diagram from which the harmonics are determined.
  • the acceleration value / speed diagram has usually been used up to now.
  • at least one accelerometer is attached to the workpiece to record the vibration behavior, which indicates relatively well at which frequencies the preferred vibrations of the workpiece lie.
  • an amplitude / speed diagram or a distortion factor / speed diagram instead of such an acceleration value / speed diagram, one can also use an amplitude / speed diagram or a distortion factor / speed diagram.
  • the distortion factor / speed diagram has the advantage that it does not have a quadratic increase with increasing frequencies like the acceleration values / speed diagram, but, apart from the peaks contained therein, has a constant course over the speed.
  • FIG. 1 shows a typical acceleration / speed diagram of a workpiece over a speed range from 1,200 to 4,800 rpm. This diagram shows a large number of maxima or peaks at which increased acceleration values are shown with the associated speed. These peaks need not necessarily be due to resonant vibrations at the frequency of excitation by the vibrator if the accelerometer is sensitive to higher frequencies. In this case, the accelerometer also measures accelerations of vibrations with frequencies outside the working range. It may well happen that the workpiece vibrates only slightly at the excitation frequency of 40 Hz, for example, but the accelerometer nevertheless shows a relatively high value there. This is a sign that the workpiece then vibrates strongly with the harmonics generated at 40 Hz.
  • the window areas are now sorted according to the number of harmonics that have fallen into them.
  • 1 is a curve that represents the statistical harmonic distribution.
  • the statistical harmonic distribution means the one that results when the same harmonic calculation is carried out as above, but does not start from the frequencies at which peaks occur in the workpiece, but is based on a constant step width of, for example, 1 Hz. As this curve shows, the statistical distribution is not constant over the harmonic range, but has a maximum. An improvement of the above method is obtained if the number of harmonics in the individual window areas is normalized in relation to this statistical distribution before the window areas are ranked.
  • the relaxation of a workpiece is further optimized by the following method supplement.
  • the numbers of harmonics in the individual window areas are again determined on the basis of the peaks in the acceleration values / speed diagram, where appropriate normalizing with the statistical distribution.
  • the ranking of the window areas is then determined again and, for example, the highest-ranking 100 of the 317 window areas are selected.
  • the harmonics that made these window areas available for selection are then subjected to a further investigation, in that for each of these 100 window areas those excitation frequencies from the working area of the vibrator are combined into a family that have generated harmonics in this window area.
  • a family can consist of 2 to 14 family members, for example.
  • the family members are now put together for all 100 selected window areas in the vibrator's work area and the order of the family members is determined in a priority list according to the number of their "degrees of kinship".
  • 3a, 3b illustrate what is meant by the "degree of kinship”.
  • two window areas a and b are selected which belong to the selected window areas.
  • the arrow chain belonging to window area a identifies those frequencies from the working area which have generated harmonics which fell into window area a, and the corresponding is done with window area b.
  • the family fam a includes the frequencies f2, f4, f5 and f7 and the family fam b the frequencies f1, f3, f4 and f6.
  • the frequency f4 represents a special case, since this frequency f4 belongs to both the Fam a family and the Fam b family. These families are called related because of the common membership of this frequency f4.
  • the frequency f4 has a degree of relationship, while all other frequencies shown in FIG. 3 each have no further degree of relationship. It is easy to imagine that with the large number of peaks occurring in a measurement protocol according to FIG. 1, families with a large number of family members arise and, accordingly, also high degrees of kinship. In the above-mentioned order of frequencies from the working range of the vibrator, those frequencies which have the greatest number of degrees of relationship are given the highest priorities. In the simplified example according to FIG.
  • the frequency f4 would be in the most senior position, while all the others (zero degrees of kinship) would have an equal rank.
  • this selection criterion results in a very differentiated list with a maximum number of often up to 10 degrees of relationship.
  • the frequencies of the vibrator's working range are selected that have the highest degree of relationship in this list.
  • the described additional selection criterion on "family formation” is based on the knowledge that those frequencies in the working range of the vibrator that are suggested for selection by the investigations in the harmonic range (window formation and selection) are the more essential, which are also possible have a high number of degrees of kinship, since each degree of kinship means that with the selection of only one frequency (frequency f4 in the above example) an additional harmonic range (the two window areas a and b) is detected.
  • an acceleration value / speed diagram was used for the workpiece to be subjected to the relaxation, in which the maxima are determined and the associated harmonics are then calculated.
  • the measurement of the harmonics can be carried out using known Fourier analysis methods or the like. In practice, it is usually sufficient to determine the harmonic distribution for only a few speeds of the vibrator, because due to the mostly strongly non-linear excitation by the vibrator, not only do harmonics arise from the fundamental frequency, but the excitation takes place anyway in a relatively broad frequency spectrum.
  • the above procedure can be carried out identically and, because one also obtains the amplitudes of the harmonics when measuring in the harmonic range, these amplitudes can also be obtained still be included in the optimization, with preference given to those harmonics that lead to higher amplitudes.
  • the distortion factor can be defined using the following formula:
  • the distortion factor can be obtained from the analysis of the frequency spectrum, but also with simple measuring means.
  • the frequency spectrum analysis essentially reproduces the harmonic component of an oscillation in relation to the basic component, which can easily be achieved by a corresponding filter arrangement which provides a limitation at 100 Hz for the above example.
  • the distortion factor / speed diagram has the advantage that it does not have such a strong increase to higher frequencies (even without resonance peaks, the acceleration value / speed diagram has a quadratic increase over the speed.

Abstract

Method for operating a machine for the relaxation of workpieces, in which the workpiece is subjected to vibrations of selected speeds of a vibrator and in which the selection of the speeds of the vibrator is taken from a measurement which reproduces the vibratory behavior of the workpiece upon excitation by the vibrator within its operating range and in which, for the individual speeds of the vibrator within its operating range, there are determined within a defined harmonics region those harmonics corresponding to those vibrations in the operating range in which resonances or similar stable states of vibration occur and in which connection, for the relaxation of the workpiece, there are selected those speeds which are causal for an accumulating of harmonics in the defined harmonics region.

Description

Die Erfindung bezieht- sich auf eine Maschine zum Entspannen von Werkstücken, bei dem das Werkstück Vibrationen ausgewählter Drehzahlwerte eines Vibrators unterworfen wird und bei dem die Auswahl der Drehzahlwerte des Vibrators aus einer Messung entnommen wird, welche das Schwingverhalten des Werkstücks bei Anregung durch den Vibrator wiedergibt.The invention relates to a machine for unclamping workpieces, in which the workpiece is subjected to vibrations of selected speed values of a vibrator and in which the selection of the speed values of the vibrator is taken from a measurement which reflects the vibration behavior of the workpiece when excited by the vibrator .

Das obige Verfahren ist ausführlich beschrieben in der DE-U 70 05 792 oder der US-PS 36 77 831. Zur Entspannung von Werkstücken arbeitet man üblicherweise mit Drehzahlen des Vibrators von 1.200 bis 6.000 U/min oder auch bis 12.000 U/min, was Erregerfrequenzen von 20 - 100 Hz bzw. 200 Hz entspricht, wobei über diesen Arbeitsbereich zunächst in einem Meßlauf diejenigen Drehzahlen bzw. Frequenzen festgestellt werden, bei denen das Werkstück zu starken Schwingungen neigt. Das Schwingverhalten wird meist durch einen am Werkstück befestigten Beschleunigungsmesser festgestellt. Zur Entspannung wird das Werkstück anschließend einer Behandlung durch den Vibrator bei Drehzahlen unterworfen, bei denen das Werkstück im vorangegangenen Meßlauf Resonanzfrequenzen aufwies. Bei kompliziert aufgebauten Werkstücken existieren meist soviele Spitzen bzw. Maxima im Beschleunigungswerte/Drehzahl-Diagramm, daß man für die Auswahl der Drehzahlen des Vibrators für die Entspannungsbehandlung eine Auswahl treffen muß, wobei man üblicherweise nur diejenigen Drehzahlen mit deutlich ausgeprägten Spitzen herausgreift. Es tritt dabei nicht selten der Fall auf, daß einzelne der deutlich ausgeprägten Spitzen lediglich Oberwellenschwingungen einer Grundfrequenz darstellen, sodaß bei ihnen eine Entspannungsbehandlung nicht erforderlich ist, wenn. bereits bei der zugehörigen Grundfrequenz gearbeitet wurde. Darüberhinaus sind häufig gerade die für die Entspannung wesentlichen Frequenzen im noch nicht entspannten Werkstück so wenig deutlich ausgeprägt, daß sie im Beschleunigungwerte/Drehzahl-Diagramm bei der Suche nach stark ausgeprägten Spitzen nicht zur Auswahl kommen. Es ist zwar bekannt, daß die im mikroskopischen Bereich liegenden Eigenspannungen nicht unmittelbar durch die Arbeitsfrequenzen des Vibrators, sondern durch deren Oberwellen entspannt werden, jedoch verließ man sich bisher darauf, daß im Meßlauf bei Erregung einer solchen Qberwelle auch im Arbeitsbereich des Vibrators eine deutlich ausgeprägte Spitze auftritt. Häufig bleiben jedoch solche Spitzen wenig ausgeprägt und werden bei der Auswahl der stark ausgeprägten Spitzen nicht erfaßt, wodurch die tatsächliche Entspannung des Werkstücks meist weit unter der optimalen Entspannung zurückbleibt.The above method is described in detail in DE-U 70 05 792 or US Pat. No. 3,677,831. To relax workpieces, the speed of the vibrator is usually from 1200 to 6000 rpm or up to 12000 rpm, which Excitation frequencies of 20 - 100 Hz or 200 Hz corresponds, whereby over this working range those speeds or frequencies are determined in a measuring run at which the workpiece tends to vibrate strongly. The vibration behavior is usually determined by an accelerometer attached to the workpiece. For relaxation, the workpiece is then subjected to a treatment by the vibrator at speeds at which the workpiece had resonance frequencies in the previous measuring run. In the case of workpieces with a complicated structure, there are usually so many peaks or maxima in the acceleration / speed diagram that a selection must be made for the selection of the speeds of the vibrator for the relaxation treatment, usually only picking up those speeds with clearly pronounced peaks. It is not uncommon for some of the clearly defined peaks to represent only harmonic vibrations of a fundamental frequency, so that they do not require relaxation treatment if. has already been worked at the associated fundamental frequency. In addition, the frequencies that are essential for relaxation in the workpiece that has not yet been relaxed are often not so clearly pronounced that they cannot be selected in the acceleration / speed diagram when searching for pronounced peaks. Although it is known that the internal stresses lying in the microscopic range are not relieved directly by the working frequencies of the vibrator, but by their harmonics, it has hitherto been relied on that in the measuring run when such a harmonic is excited, a clearly pronounced one also in the working range of the vibrator Peak occurs. Often, however, such peaks remain less pronounced and are not included in the selection of the strongly pronounced peaks, as a result of which the actual relaxation of the workpiece usually remains far below the optimal relaxation.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Maschine der eingangs genannten Art anzugeben, bei dem der optimale Grad der Entspannung gezielter als mit bisherigen Verfahren annäherbar ist.The present invention has for its object to provide a method for operating a machine of the type mentioned, in which the optimal degree of relaxation is more targeted than with previous methods approachable.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 dadrurch gelöst, daß zu den einzelnen Drehzahlwerten des Vibrators in seinem Arbeitsbereich (z. B. 1.200 bis 6.000 U/min bzw. 20 bis 100 Hz) in einem definierten Oberwellenbereich (z. B. 100 bis 2.000 Hz) die jeweiligen Oberwellen derjenigen Schwingungen ermittelt werden, in denen im Arbeitsbereich Resonanzen oder dergleichen stabile Schwingungszustände auftreten, und daß zur Entspannung des Werkstücks diejenigen Drehzahlwerte des Vibrators in seinem Arbeitsbereich ausgewählt werden, die für eine Häufung von Oberwellen im definierten Oberwellenbereich ursächlich sind.This object is achieved by the characterizing features of claim 1 in that the individual speed values of the vibrator in its working range (e.g. 1,200 to 6,000 rpm or 20 to 100 Hz) in a defined harmonic range (e.g. 100 to 2,000 Hz), the respective harmonics of those vibrations are determined in which resonances or the like stable vibration states occur in the working area, and that those vibrational speed values of the vibrator are selected in its working area to relax the workpiece that are responsible for an accumulation of harmonics in the defined harmonic range are.

Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß die Verteilung der Oberwellen der sich in einem Werkstück aufgrund der Vibratorerregung ausbreitetenden Schwingungen eine wesentliche bessere Auskunft darüber liefert, bei welchen Erregerfrequenzen des Vibrators in seinem Arbeitsbereich entspannt werden soll, als die im Arbeitsbereich selbst auftretenden Spitzen. Werkstücke müssen nicht sehr komplex aufgebaut sein, um eine Vielzahl von stabilen Schwingungszuständen aufzuweisen, die weit außerhalb des Frequenzbereichs liegen, in denen der Vibrator betrieben wird. Durch die Analyse des Oberwellenbereichs für die einzelnen Vibratordrehzahlen, bei denen das Werkstück zu stabilen Schwingungen neigt, erhält man Auskunft darüber, welche Vibratordrehzahlen zu einer Häufung von Schwingungen im Oberwelenbereich führt und welche Arbeitsdrehzahlen des Vibrators für die Entspannung wesentlich sind. Als Nesentlich sind diejenigen Arbeitsschwingungen des Vibrators anzusehen, die zu einer möglichst lohen Anzahl von Erregungen im Oberwellenbeeich führen.The present invention is based on the finding that the distribution of the harmonics of the vibrations propagating in a workpiece due to the vibrator excitation provides significantly better information about the excitation frequencies at which the vibrator should be relaxed in its working area than the peaks occurring in the working area itself. Workpieces do not have to be very complex to have a large number of stable vibration states that are far outside the frequency range in which the vibrator is operated. By analyzing the harmonic range for the individual vibrator speeds at which the workpiece tends to vibrate steadily, one obtains information about which vibrator speeds lead to an accumulation of vibrations in the harmonic range and which working speeds of the vibrator are essential for relaxation. As N aterial those working vibrations are to be considered of the vibrator, which lead to a possible l ohen number of excitations in Oberwellenbeeich.

Zur Ermittlung der Häufung von Oberwellen im jefinierten Oberwellenbereich kann man zwei anterschiedliche Wege gehen. Gemäß Anspruch 2 werden im Arbeitsbereich des Vibrators die Resolanzen bzw. die ihnen ähnlichen sonstigen stabilen 3chwingungszustände festgestellt, und es werden zu den ermittelten Spitzen im Schwingungsverhal- :en die zugehörigen Oberwellen rechnerisch ermittelt. Es wird dann aus diesen rechnerisch ermittelten Oberwellenwerten festgestellt, welche der Werte aus dem Arbeitsbereich des Vibrators für eine Häufung von Oberwellen ursächlich sind.There are two different ways to determine the accumulation of harmonics in the defined harmonic range. According to claim 2, the resolances or the other stable vibrational states similar to them are ascertained in the working range of the vibrator, and the associated harmonics are calculated in relation to the peaks determined in the vibration behavior telt. It is then determined from these arithmetically determined harmonic values which of the values from the working range of the vibrator are the cause of an accumulation of harmonics.

In einer Alternative zu Anspruch 2 werden gemäß Anspruch 3 die Oberwellen meßtechnisch ermittelt. Hier kann man mit üblichen Methoden der Frequenzanalyse vorgehen, indem das Werkstück beispielsweise über den Vibrator mit kontinuierlich ansteigender Drehzahl oder auch in kleinen Drehzahlschritten erregt wird oder auch ein definierter Stoß auf das Werkstück ausgeübt wird, um die Oberwellenschwingungen zu ermitteln.In an alternative to claim 2, the harmonics are determined using measurement technology. Here one can proceed with the usual methods of frequency analysis, for example by exciting the workpiece with the vibrator at continuously increasing speed or in small speed steps or by applying a defined impact on the workpiece in order to determine the harmonic vibrations.

In der bevorzugten Weiterbildung des Verfahrens nach Anspruch 4 werden die Amplituden der gemessenen Oberwellen als zusätzliches Auswahlkriterium herausgezogen. Je höher die Amplitude umso mehr ist die zu dieser Oberwelle gehörende Arbeitsfrequenz zur Vibratorentspannung geeignet. In dem Verfahren nach Anspruch 4 wird deshalb die Häufung der Oberwellen mit der jeweiligen Amplitude korreliert, beispielsweise multipliziert, um dann aus dem so gewonnenen Diagramm die Auswahl zu treffen.In the preferred development of the method according to claim 4, the amplitudes of the measured harmonics are extracted as an additional selection criterion. The higher the amplitude, the more the working frequency belonging to this harmonic is suitable for vibrator relaxation. In the method according to claim 4, the accumulation of harmonics is therefore correlated with the respective amplitude, for example multiplied, in order then to make a selection from the diagram thus obtained.

Im Anspruch 5 ist eine bevorzugte Weiterbildung angegeben, die zu einer weiteren Optimierung der Auswahl der Drehzahlwerte des Vibrators für die Entspannung führt. Dieses Verfahren läßt sich sowohl bei der rechnerischen Ermittlung der Oberwellen (Anspruch 2), als auch bei ihrer meßtechnischen Ermittlung (Anspruch 3) anwenden. Das Verfahren nach Anspruch 5 eignet sich insbesondere für die Auswertung durch einen Rechner. Durch die Aufteilung des Oberwellenbereichs in einander benachbarte Fenster mit einer definierten Bandbreite von beispielsweise jeweils 7 Hz, erhält man eine unmittelbare Aussage darüber, in welchen Frequenzbereichen Oberwellen gehäuft auftreten. Da die statistische Verteilung der Oberwellen im Oberwellenbereich nicht gleichmaßig ist, sondern bei relativ niedrigen Werten ein Maximum aufweist, erhält man eine verbesserte Aussage über die Häufung von Oberwellen, wenn das dem Werkstück zugeordnete Ergebnis der Verteilung der Oberwellen mit der statistischen Verteilung verglichen wird, um festzustellen, in welchen Oberwellenbereichen tatsächlich gegenüber der statistischen Verteilung eine Häufung von Oberwellen auftritt.Claim 5 specifies a preferred development which leads to a further optimization of the selection of the speed values of the vibrator for relaxation. This method can be used both in the arithmetical determination of the harmonics (claim 2) and in their metrological determination (claim 3). The method according to claim 5 is particularly suitable for evaluation by a computer. By dividing the harmonic range into adjacent windows with a defined bandwidth of, for example, 7 Hz in each case, one obtains an immediate statement about the frequency ranges in which harmonics occur frequently. Since the statistical distribution of the harmonics in the harmonic range is not uniform, but rather has a maximum at relatively low values, an improved statement about the accumulation of harmonics is obtained if the result of the distribution of the harmonics assigned to the workpiece is compared with the statistical distribution determine in which harmonic ranges actually an accumulation of harmonics occurs compared to the statistical distribution.

Die Weiterbildung gemäß Anspruch 6 führt zu einer noch besseren Optimierung der Auswahl der Drehzahlwerte des Vibrators, da nicht nur eine Häufung von Oberwellen im Oberwellenbereich berücksichtigt wird, sondern darüberhinaus auch noch nach dem Kriterium ausgewählt wird, daß diejenigen Drehzahlwerte des Vibrators bevorzugt werden, die möglichst viele Oberwellenbereiche mit Häufungen von Oberwellen erregen.The development according to claim 6 leads to an even better optimization of the selection of the speed values of the vibrator, since not only an accumulation of harmonics in the harmonic range is taken into account, but also selected according to the criterion that those speed values of the vibrator are preferred that are as possible excite many harmonic areas with accumulations of harmonics.

In dem Verfahren nach Anspruch 7 werden die weiteren Drehzahlwerte zur Vibratorentspannung aus der Rangfolge der Drehzahlwerte ermittelt, die jeweils die höchste Zahl von ausgewählten Fensterbereichen mit Oberwellen versorgt haben.In the method according to claim 7, the further speed values for vibrator relaxation are determined from the order of the speed values, each of which has supplied the highest number of selected window areas with harmonics.

Im Gegensatz zu dem Auswahlkriterium nach Anspruch 7 wird bei dem Auswahlkriterium nach Anspruch 8 so vorgegangen, daß diejenigen Oberwellen, die aus bereits ausgewählten Drehzahlwerten des Vibrators resultieren, keine Berücksichtung mehr finden. Es wird also jeweils ein Drehzahlwert ausgewählt, und es werden dann die ausgewählten Fensterbereiche neu festgelegt. Da diejenigen Oberwellen, die zu der bereits ausgewählten Drehzahl gehören, keine Berücksichtigung mehr finden, fallen damit eventuell vorher ausgewählt gewesene Fensterbereiche weg, und es wird aus den verbleibenden bzw. neu ausgewählten Fensterbereichen jeweils die nächste Arbeitsdrehzahl des Vibrators ausgewählt.In contrast to the selection criterion according to claim 7, the selection criterion according to claim 8 is such that those harmonics which result from already selected speed values of the vibrator are no longer taken into account. A speed value is therefore selected in each case, and the selected window areas are then redefined. Since those harmonics that belong to the already selected speed are no longer taken into account, window areas that were previously selected are thus eliminated and the next working speed of the vibrator is selected from the remaining or newly selected window areas.

Anspruch 9 gibt unterschiedliche Möglichkeiten an, das Meßdiagramm festzulegen, von dem aus die Oberwellen bestimmt werden. In der Praxis hat man sich bisher üblicherweise des BeschleunigungwertelDrehzahl-Diagramms bedient. Bei Anregung des Werkstücks durch den Vibrator wird am Werkstück zur Erfassung des Schwingungsverhaltens mindestens ein Beschleunigungsmesser angebracht, der relativ gut angibt, auf welchem Frequenzen die bevorzugten Schwingungen des Werkstücks liegen. Statt eines solchen Beschleunigungswerte/Drehzahl-Diagramms, kann man sich auch eines Amplituden/Drehzahl-Diagramms bedienen oder eines Verzerrungsfaktor/Drehzahl-Diagramms. Das Verzerrungsfaktor/Drehzahl-Diagramm hat den Vorteil, daß es nicht wie das Beschleunigungswerte/Drehzahl-Diagramm mit steigenden Frequenzen einen quadratischen Anstieg aufweist, sondern, abgesehen von den darin enthaltenen Spitzen einen über der Drehzahl konstanten Verlauf hat.Claim 9 specifies different possibilities to determine the measurement diagram from which the harmonics are determined. In practice, the acceleration value / speed diagram has usually been used up to now. When the workpiece is excited by the vibrator, at least one accelerometer is attached to the workpiece to record the vibration behavior, which indicates relatively well at which frequencies the preferred vibrations of the workpiece lie. Instead of such an acceleration value / speed diagram, one can also use an amplitude / speed diagram or a distortion factor / speed diagram. The distortion factor / speed diagram has the advantage that it does not have a quadratic increase with increasing frequencies like the acceleration values / speed diagram, but, apart from the peaks contained therein, has a constant course over the speed.

Anhand von in der Zeichnung dargestellten Schemaskizzen wird die Erfindung im folgenden näher erläutert. Es zeigen:

  • Fig. 1 ein Beispiel eines Beschleunigungswerte/Drehzahl-Diagramms eines Werkstücks;
  • Fig. 2 ein vereinfachtes Schaubild eines Beschleunigungswerte/Drehzahl-Diagramms mit zugeordnetem Oberwellendiagramm, und
  • Fig. 3 eine stark vereinfachte Darstellung der Zuordnung der Oberwellen von zwei Fensterbereichen aus dem Oberwellenbereich zu den zu selektierenden Arbeitsdrehzahlen des Vibrators.
The invention is explained in more detail below with the aid of schematic diagrams shown in the drawing. Show it:
  • 1 shows an example of an acceleration value / speed diagram of a workpiece;
  • 2 shows a simplified diagram of an acceleration value / speed diagram with an associated harmonic diagram, and
  • Fig. 3 is a greatly simplified representation of the assignment of the harmonics of two window areas from the harmonic area to the working speeds of the vibrator to be selected.

In Fig. 1 ist ein typisches Beschleunigungswerte/Drehzahl-Diagramm eines Werkstücks über einem Drehzahlbereich von 1.200 bis 4.800 U/min dargestellt. Dieses Diagramm zeigt eine Vielzahl von Maxima bzw. Spitzen, bei denen erhöhte Beschleunigungswerte mit der zugehörigen Drehzahl dargestellt werden. Diese Spitzen müssen nicht notwendigerweise auf Resonanzschwingungen mit der Frequenz der Anregung durch den Vibrator zurückzuführen sein, wenn der Beschleunigungsmesser auch für höhere Frequenzen empfindlich ist. In diesem Fall mißt der Beschleunigungsmesser auch Beschleunigungen von Schwingungen mit Frequenzen außerhalb des Arbeitsbereichs. Es kann durchaus vorkommen, daß das Werkstück bei der Anregungsfrequenz von beispielsweise 40 Hz nur unwesentlich schwingt, der Beschleunigungsmesser aber trotzdem dort einen relativen hohen Wert anzeigt. Dies ist ein Zeichen dafür, daß das Werkstück dann bei den bei 40 Hz entstehenden Oberwellen stark schwingt.1 shows a typical acceleration / speed diagram of a workpiece over a speed range from 1,200 to 4,800 rpm. This diagram shows a large number of maxima or peaks at which increased acceleration values are shown with the associated speed. These peaks need not necessarily be due to resonant vibrations at the frequency of excitation by the vibrator if the accelerometer is sensitive to higher frequencies. In this case, the accelerometer also measures accelerations of vibrations with frequencies outside the working range. It may well happen that the workpiece vibrates only slightly at the excitation frequency of 40 Hz, for example, but the accelerometer nevertheless shows a relatively high value there. This is a sign that the workpiece then vibrates strongly with the harmonics generated at 40 Hz.

In Fig. 2a ist stark vereinfacht ein Fig. 1 entsprechendes Beschleunigungswerte/Drehzahl-Diagramm dargestellt. In dem hier beschriebenen bevorzugten Ausführungsbeispiel des erfindungsgemäßen Verfahren wird zunächst dieses Diagramm erstellt, indem das Werkstück durch den Vibrator mit zunehmenden Drehzahlen des Vibrators in Schwingungen versetzt und das Beschleunigungs-Antwort-Verhalten in Form dieses Diagramms festgehalten wird. In dem hier beschriebenen Ausführungsbeispiel wird der Vibrator beginnend mit einer Drehzahl von 1.200 U/min bis 6.000 U/min und einer Schrittweite von 20 bis 30 U/min betätigt und jeweils der zugehörige Beschleunigungswert festgehalten. In dem vereinfachten Schaubild nach Figur 2a werden dabei drei Spitzen bzw. Maxima bei 30 Hz, 70 Hz und 95 Hz festgestellt. Diesem Beschleunigungswerte/Drehzahl-Diagramm ist das in Figur 2b dargestellte Oberwellendiagramm zugeordnet, in dem ein Oberwellenbereich von 100 Hz bis 2.000 Hz definiert ist. Zu sämtlichen festgestellten Spitzen im Beschleunigungswerte/Drehzahl-Diagramm bzw. den zugehörigen Anregungsfrequenzen werden nun die Oberwellen errechnet, wobei zur Berechnung der Oberwellen die Anregungsfrequenz mit jeweils fortlaufenden ganzen Zahlen multipliziert wird. Für das hier angenommene Beispiel von Spitzen im Beschleunigungswerte/Drehzahl-Diagramm bei 30 Hz, 70 Hz und 95 Hz ergeben sich im definierten Oberwellendiagramm von 100 Hz bis 2.000 Hz folgende Oberwellen:

  • 30 Hz × 2 = 60 Hz (ungültig, da nicht im
  • 30 Hz × 3 = 90 Hz definierten Oberwellenbereich)
  • 30 Hz × 4 = 120 Hz
  • 30 Hz × 5 = 150 Hz
  • 30 Hz × 6 = 180 Hz
  • 30 Hz × 7 = 210 Hz
  • 30 Hz x 8 = 240 Hz
  • 30 Hz X 9 = 270 Hz
  • 30 Hz x 10 = 300 Hz
  • 30 Hz x 11 = 330 Hz
  • 30 Hz × 12 = 360 Hz
  • 30 Hz × 13 = 390 Hz
  • 30 Hz × 14 = 420 Hz
  • 30 Hz x 15 = 450 Hz
In FIG. 2a, an acceleration value / speed diagram corresponding to FIG. 1 is shown in a highly simplified manner. In the preferred exemplary embodiment of the method according to the invention described here, this diagram is first created by vibrating the workpiece with increasing vibrations of the vibrator and recording the acceleration-response behavior in the form of this diagram. In the exemplary embodiment described here, the vibrator is actuated starting at a speed of 1200 rpm to 6000 rpm and a step size of 20 to 30 rpm and the associated acceleration value is recorded in each case. In the simplified diagram according to FIG. 2a, three peaks or maxima are found at 30 Hz, 70 Hz and 95 Hz. The harmonic diagram shown in FIG. 2b is assigned to this acceleration value / speed diagram, in which a harmonic range from 100 Hz to 2,000 Hz is defined. The harmonics are now calculated for all peaks found in the acceleration values / speed diagram or the associated excitation frequencies, the excitation frequency being multiplied by consecutive integers to calculate the harmonics. For the example of peaks in the acceleration values / speed diagram at 30 Hz, 70 Hz and 95 Hz assumed here, the following harmonics result in the defined harmonic diagram from 100 Hz to 2,000 Hz:
  • 30 Hz × 2 = 60 Hz (invalid because not in
  • 30 Hz × 3 = 90 Hz defined harmonic range)
  • 30 Hz × 4 = 120 Hz
  • 30 Hz × 5 = 150 Hz
  • 30 Hz × 6 = 180 Hz
  • 30 Hz × 7 = 210 Hz
  • 30 Hz x 8 = 240 Hz
  • 30 Hz X 9 = 270 Hz
  • 30 Hz x 10 = 300 Hz
  • 30 Hz x 11 = 330 Hz
  • 30 Hz × 12 = 360 Hz
  • 30 Hz × 13 = 390 Hz
  • 30 Hz × 14 = 420 Hz
  • 30 Hz x 15 = 4 50 Hz

Es werden bevorzugt nur die ersten 15 bis 18 Harmonischen berücksichtigt, sodaß die für 30 Hz Anregungsfrequenz höchste zu berücksichtigende Oberwelle bei 450 Hz liegt. In Figur 2b sind zur vereinfachten Darstellung jeweils nur die 5., 10. und 15. Harmonische eingetragen.

  • 70 Hz × 2 = 140 Hz
  • 70 Hz × 3 = 210 Hz
  • 70 Hz x 4 = 280 Hz
  • 70 Hz X 5 = 350 Hz
  • 70 Hz x 6 = 420 Hz
  • 70 Hz X 7 = 490 Hz
  • 70 Hz × 8 = 560 Hz
  • 70 Hz × 9 = 630 Hz
  • 70 Hz × 10 = 700 Hz
  • 70 Hz × 11 = 770 Hz
  • 70 Hz × 12 = 840 Hz
  • 70 Hz × 13 = 910 Hz
  • 70 Hz × 14 = 980 Hz
  • 70 Hz × 15 = 1050 Hz 95 Hz × 2 = 190 Hz
  • 95 Hz × 3 = 285 Hz
  • 95 Hz × 4 = 380 Hz
  • 95 Hz x 5 = 475 Hz
  • 95 Hz × 6 = 570 Hz
  • 95 Hz × 7 = 665 Hz
  • 95 Hz × 8 = 760 Hz
  • 95 Hz × 9 = 855 Hz
  • 95 Hz × 10 = 950 Hz
  • 95 Hz × 11 = 1045 Hz
  • 95 Hz × 12 = 1140 Hz
  • 95 Hz × 13 = 1235 Hz
  • 95 Hz × 14 = 1330 Hz
  • 95 Hz × 15 = 1425 Hz
Only the first 15 to 18 harmonics are preferably taken into account, so that the highest harmonic to be taken into account for the 30 Hz excitation frequency is 450 Hz. In Figure 2b only the 5th, 10th and 15th harmonics are entered for the sake of simplicity.
  • 70 Hz × 2 = 140 Hz
  • 70 Hz × 3 = 210 Hz
  • 70 Hz x 4 = 280 Hz
  • 70 Hz X 5 = 350 Hz
  • 70 Hz x 6 = 420 Hz
  • 70 Hz X 7 = 490 Hz
  • 70 Hz × 8 = 560 Hz
  • 70 Hz × 9 = 630 Hz
  • 70 Hz × 10 = 700 Hz
  • 70 Hz × 11 = 770 Hz
  • 70 Hz × 12 = 840 Hz
  • 70 Hz × 13 = 910 Hz
  • 70 Hz × 14 = 980 Hz
  • 70 Hz × 15 = 1050 Hz 95 Hz × 2 = 190 Hz
  • 95 Hz × 3 = 285 Hz
  • 95 Hz × 4 = 380 Hz
  • 95 Hz x 5 = 475 H z
  • 95 Hz × 6 = 570 Hz
  • 95 Hz × 7 = 665 Hz
  • 95 Hz × 8 = 760 Hz
  • 95 Hz × 9 = 855 Hz
  • 95 Hz × 10 = 9 50 Hz
  • 95 Hz × 11 = 1045 Hz
  • 95 Hz × 12 = 1140 Hz
  • 95 Hz × 13 = 1235 Hz
  • 95 Hz × 14 = 1330 Hz
  • 95 Hz × 15 = 1425 Hz

Im Oberwellendiagramm sind im Bereich von 100 Hz bis 2.000 Hz einander benachbarte Fenster mit einer Frequenzbreite von 6 Hz definiert. Es sind also (2.000 - 100) : 6 = 317 Fenster festgelegt und es wird diejenige Anzahl von Oberwellen in jedem Fenster ermittelt, die aus den Drehzahlen des Beschleunigungswerte/Drehzahl-Diagramms, bei denen Spitzen auftreten, resultieren. Zum Beispiel fällt die 5. Oberwelle der 30 Hz-Vibratorschwingung von 150 Hz in das 9. Fenster, welches definiert ist von 148 Hz bis 154 Hz. Als Ergebnis dieses ersten Verfahrenschrittes erhält man in jedem Fensterbereich eine dem Werkstück eigene Anzahl von in den jeweiligen Fensterbereich gefallenen Oberwellen.In the harmonic diagram, adjacent windows with a frequency width of 6 Hz are defined in the range from 100 Hz to 2,000 Hz. So there are (2,000 - 100): 6 = 317 windows and the number of harmonics is determined in each window, which result from the speeds of the acceleration values / speed diagram at which peaks occur. For example, the 5th harmonic of the 30 Hz vibrator vibration of 150 Hz falls in the 9th window, which is defined from 148 Hz to 154 Hz. As a result of this first process step, the workpiece has its own number in each window area Window area of fallen harmonics.

Die Fensterbereiche werden nun geordnet nach der Anzahl von Oberwellen, die in sie gefallen sind. In einem noch relativ einfachen Verfahren wählt man nun aus einer sehr kleinen Zahl von Fenstern mit den höchsten Anzahlen von in sie gefallenen Oberwellen, die zugehörigen Basisfrequenzen aus dem Beschleunigungswerte/Drehzahl-Diagramm aus und benutzt diese Drehzahlen zur Vibrationsentspannung.The window areas are now sorted according to the number of harmonics that have fallen into them. In a still relatively simple process, you select the associated base frequencies from the acceleration values / speed diagram from a very small number of windows with the highest number of harmonics that have fallen into them, and use these speeds for vibration relaxation.

In Figur 2b ist mit 1 ein Kurvenzug bezeichnet, der die statistische Oberwellenverteilung wiedergibt. Unter der statistischen Oberwellenverteilung ist diejenige gemeint, die sich ergibt, wenn man dieselbe Oberwellenberechnung wie oben durchführt, jedoch nicht von den Frequenzen ausgeht, bei denen sich im Werkstück Spitzen ergeben, sondern eine konstante Schrittbreite von beispielsweise 1 Hz zugrunde liegt. Wie diese Kurve zeigt, ist die statistische Verteilung nicht konstant über den Oberwellenbereich, sondern weist ein Maximum auf. Man erhält eine Verbesserung des obigen Verfahrens, wenn man die Anzahl der Oberwellen in den einzelnen Fensterbereichen gegenüber dieser statistischen Verteilung normiert, bevor man die Fensterbereiche in ihrer Rangfolge ordnet.In FIG. 2b, 1 is a curve that represents the statistical harmonic distribution. The statistical harmonic distribution means the one that results when the same harmonic calculation is carried out as above, but does not start from the frequencies at which peaks occur in the workpiece, but is based on a constant step width of, for example, 1 Hz. As this curve shows, the statistical distribution is not constant over the harmonic range, but has a maximum. An improvement of the above method is obtained if the number of harmonics in the individual window areas is normalized in relation to this statistical distribution before the window areas are ranked.

Obwohl mit den obigen Verfahren bereits gegenüber den bekannten Verfahren wesentlich verbesserte Ergebnisse erzielt werden, kommt man zu einer noch gesteigerten Optimierung der Entspannung eines Werkstücks durch folgende Verfahrensergänzung. Es werden wie oben beschrieben wieder ausgehend von den Spitzen im Beschleunigungswerte/Drehzahl-Diagramm die Anzahlen der Oberwellen in den einzelnen Fensterbereichen festgestellt, wobei gegebenenfalls mit der statistischen Verteilung normiert wird. Anschließend wird wieder die Rangfolge der Fensterbereiche festgelegt, und es werden beispielsweise von den insgesamt 317 Fensterbereichen die ranghöchsten 100 ausgewählt. Von diesen ausgewählten 100 Fensterbereichen werden nun die Oberwellen, die diese Fensterbereiche zur Auswahl gebracht haben, einer weiteren Untersuchung unterzogen, indem für jeden dieser 100 Fensterbereiche diejenigen Anregungsfrequenzen aus dem Arbeitsbereich des Vibrators zu einer Familie zusammengefaßt werden, die in diesem Fensterbereich Oberwellen erzeugt haben. Eine solche Familie kann aus 2 bis beispielsweise 14 Familienmitgliedern bestehen. Man stellt nun im Arbeitsbereich des Vibrators die Familienmitglieder für alle 100 ausgewählten Fensterbereiche zusammen und bestimmt in einer Prioritätsliste die Reihenfolge der Familienmitglieder nach der Zahl ihrer "Verwandtschaftsgrade". In den Fig. 3a, 3b wird verdeutlicht, was mit dem "Verwandtschaftsgrad" gemeint ist. In Fig. 3b sind zwei Fensterbereiche a und b herausgegriffen, die zu den ausgewählten Fensterbereichen gehören. Mit der zum Fensterbereich a gehörenden Pfeilkette sind diejenigen Frequenzen aus dem Arbeitsbereich gekennzeichnet, die Oberwellen erzeugt haben, welche in den Fensterbereich a fielen, und das Entsprechende ist mit dem Fensterbereich b gemacht. Zur Familie Fama gehören die Frequenzen f2, f4, f5 und f7 und zur Familie Famb die Frequenzen f1, f3, f4 und f6. Wie man aus diesem Schaubild sieht, stellt die Frequenz f4 einen Sonderfall dar, da diese Frequenz f4 sowohl zur Familie Fama als auch zur Familie Famb gehört. Diese Familien werden wegen der gemeinsamen Zugehörigkeit dieser Frequenz f4 als verwandt bezeichnet. Die Frequenz f4 hat einen Verwandtschaftsgrad, während alle anderen in Fig. 3 gezeichneten Frequenzen jeweils keinen weiteren Verwandtschaftsgrad haben. Man kann sich leicht vorstellen, daß bei der Vielzahl der in einem Meßprotokoll gemäß Fig. 1 auftretenden Spitzen Familien mit sehr vielen Familienmitgliedern entstehen und dementsprechend auch hohe Verwandtschaftsgrade. In der oben angesprochenen Ordnung der Frequenzen aus dem Arbeitsbereich des Vibrators werden denjenigen Frequenzen die höchsten Prioritäten gegeben, die die größte Zahl von Verwandtschaftsgraden aufweisen. In dem vereinfachten Beispiel nach Fig. 3 würde die Frequenz f4 an rangerster Stelle stehen, während alle anderen (null Verwandschaftsgrade) gleichberechtigt darunterliegen. In der Praxis ergibt sich bei Durchführung dieses Auswahlkriteriums eine sehr differenzierte Liste mit einer Maximalzahl von häufig bis zu 10 Verwandtschaftsgraden. Es werden nun diejenigen Frequenzen des Arbeitsbereiches des Vibrators ausgewählt, die in dieser Liste die höchsten Verwandtschaftsgrade haben.Although significantly better results are achieved with the above methods compared to the known methods, the relaxation of a workpiece is further optimized by the following method supplement. As described above, the numbers of harmonics in the individual window areas are again determined on the basis of the peaks in the acceleration values / speed diagram, where appropriate normalizing with the statistical distribution. The ranking of the window areas is then determined again and, for example, the highest-ranking 100 of the 317 window areas are selected. Of these 100 selected window areas, the harmonics that made these window areas available for selection are then subjected to a further investigation, in that for each of these 100 window areas those excitation frequencies from the working area of the vibrator are combined into a family that have generated harmonics in this window area. Such a family can consist of 2 to 14 family members, for example. The family members are now put together for all 100 selected window areas in the vibrator's work area and the order of the family members is determined in a priority list according to the number of their "degrees of kinship". 3a, 3b illustrate what is meant by the "degree of kinship". 3b, two window areas a and b are selected which belong to the selected window areas. The arrow chain belonging to window area a identifies those frequencies from the working area which have generated harmonics which fell into window area a, and the corresponding is done with window area b. The family fam a includes the frequencies f2, f4, f5 and f7 and the family fam b the frequencies f1, f3, f4 and f6. As can be seen from this diagram, the frequency f4 represents a special case, since this frequency f4 belongs to both the Fam a family and the Fam b family. These families are called related because of the common membership of this frequency f4. The frequency f4 has a degree of relationship, while all other frequencies shown in FIG. 3 each have no further degree of relationship. It is easy to imagine that with the large number of peaks occurring in a measurement protocol according to FIG. 1, families with a large number of family members arise and, accordingly, also high degrees of kinship. In the above-mentioned order of frequencies from the working range of the vibrator, those frequencies which have the greatest number of degrees of relationship are given the highest priorities. In the simplified example according to FIG. 3, the frequency f4 would be in the most senior position, while all the others (zero degrees of kinship) would have an equal rank. In practice, this selection criterion results in a very differentiated list with a maximum number of often up to 10 degrees of relationship. The frequencies of the vibrator's working range are selected that have the highest degree of relationship in this list.

Bei dem beschriebenen zusätzlichen Auswahlkriterium über die "Familienbildung" wird von der Erkenntnis ausgegangen, daß diejenigen Frequenzen im Arbeitsbereich des Vibrators, die durch die Untersuchungen im Oberwellenbereich (Fensterbildung und Auswahl) zur Auswahl vorgeschlagen werden, die Wesenlicheren sind, die zudem auch noch eine möglichst hohe Anzahl von Verwandtschaftsgraden haben, da jeder Verwandtschaftsgrad bedeutet, daß mit Auswahl von nur einer Frequenz (im obigen Beispiel die Frequenz f4) ein zusätzlicher Oberwellenbereich (die beiden Fensterbereiche a und b) erfaßt wird.The described additional selection criterion on "family formation" is based on the knowledge that those frequencies in the working range of the vibrator that are suggested for selection by the investigations in the harmonic range (window formation and selection) are the more essential, which are also possible have a high number of degrees of kinship, since each degree of kinship means that with the selection of only one frequency (frequency f4 in the above example) an additional harmonic range (the two window areas a and b) is detected.

Bei dem oben beschriebenen Verfahren wurde bezüglich des der Entspannung zu unterwerfenden Werkstücks von einem Beschleunigungswerte/Drehzahl-Diagramm ausgegangen, in dem die Maxima ermittelt werden und davon rechnerisch dann die zugehörigen Oberwellen. Es besteht aber auch die Möglichkeit, die im Werkstück tatsächlich auftretenden Oberwellen meßtechnisch zu erfassen und diese meßtechnisch erfaßten Oberwellen dann dem beschriebenen Auswahlkriterium zu unterwerfen. Die meßtechnische Erfassung der Oberwellen kann mit bekannten Methoden der Fourieranalyse oder dergleichen durchgeführt werden. In der Praxis ist es meist ausreichend, für nur wenige Drehzahlen des Vibrators die Oberwellenverteilung festzustellen, da wegen der meist stark nichtlinearen Anregung durch den Vibrator nicht nur Harmonische von der Grundfrequenz entstehen, sondern die Anregung ohnehin in einem relativ breiten Frequenzspektrum erfolgt. Wenn man bei der Messung der Oberwellen das jeweilige Oberwellenspektrum für alle Drehzahlen des Vibrators feststellt, bei denen Spitzen auftreten, kann das obige Verfahren identisch durchgeführt werden und, weil man bei der Messung im Oberwellenbereich auch noch die Amplituden der Oberwellen erhält, können auch diese Amplituden noch in die Optimierung einbezogen werden, wobei man denjenigen Oberwellen natürlich den Vorzug gibt, die zu höheren Amplituden führen. In der Praxis kann man dabei so vorgehen, daß man ein erstes Oberwellendiagramm aufstellt, in dem die Dichte bzw. Häufigkeit der ermittelten Oberwellen pro Oberwellenbandbreite aufgetragen ist und ein zweites Oberwellendiagramm in dem die Amplitudenwerte aufgetragen sind. Durch Verknüpfung dieser beiden Diagramme, beispielweise Multiplikation der über übereinstimmenden Frequenzen liegenden Werte der beiden Digramme erhält man ein drittes Diagramm, das der weiteren Auswertung zugrundegelegt werden kann.In the method described above, an acceleration value / speed diagram was used for the workpiece to be subjected to the relaxation, in which the maxima are determined and the associated harmonics are then calculated. But there is also the possibility of the harmonics actually occurring in the workpiece to measure and then subject these measured harmonics to the selection criterion described. The measurement of the harmonics can be carried out using known Fourier analysis methods or the like. In practice, it is usually sufficient to determine the harmonic distribution for only a few speeds of the vibrator, because due to the mostly strongly non-linear excitation by the vibrator, not only do harmonics arise from the fundamental frequency, but the excitation takes place anyway in a relatively broad frequency spectrum. If you determine the respective harmonic spectrum for all speeds of the vibrator at which peaks occur when measuring the harmonics, the above procedure can be carried out identically and, because one also obtains the amplitudes of the harmonics when measuring in the harmonic range, these amplitudes can also be obtained still be included in the optimization, with preference given to those harmonics that lead to higher amplitudes. In practice, one can proceed by setting up a first harmonic diagram in which the density or frequency of the determined harmonics per harmonic bandwidth is plotted and a second harmonic diagram in which the amplitude values are plotted. By linking these two diagrams, for example multiplying the values of the two digrams above the corresponding frequencies, a third diagram is obtained which can be used as a basis for the further evaluation.

Stellt man allerdings bei der Frequenzanalyse gar kein Beschleunigungswerte/Drehzahl-Diagramm auf, kann natürlich die oben beschriebene Optimierung durch Feststellen des "Verwandtschaftsgrades" nicht durchgeführt werden. Es empfiehlt sich statt dessen hier das Kriterium der gemessenen Amplituden der Oberwellen einzubeziehen.However, if you do not set up an acceleration value / speed diagram at all in the frequency analysis, the optimization described above cannot of course be carried out by determining the "degree of relationship". Instead, it is advisable to include the criterion of the measured harmonic amplitudes here.

Statt des in der Praxis üblicherweise benutzten Beschleunigungswerte/Drehzahl-Diagramms kann man natürlich auch ein Amplituden/Drehzahl-Diagramm aufstellen, das auf der Abszisse statt der Beschleunigungswerte die tatsächlichen Amplitudenausschläge des Werkstücks berücksichtigt. Dieses Diagramm ist dem Beschleunigungswerte/Drehzahl-Diagramm recht ähnlich. Ein etwas. anderes Diagramm ist das Verzerrungsfaktor/Drehzahl-Diagramm. Der Verzerrungsfaktor kann durch folgende Formel definiert werden:

Figure imgb0001
Instead of the acceleration values / speed diagram usually used in practice, one can of course also set up an amplitude / speed diagram that takes the actual amplitude deflections of the workpiece into account on the abscissa instead of the acceleration values. This diagram is quite similar to the acceleration / speed diagram. A little. another diagram is the distortion factor / speed diagram. The distortion factor can be defined using the following formula:
Figure imgb0001

In dieser Formel bedeuten:

  • Xt1) = Schwingungsamplitude bei der Anregungsgrundfrequenz,
  • Xtk) = Schwingungsamplitude bei der k-ten Harmonischen zur Grundfrequenz,
  • L = Begrenzungszahl als ganze Zahl aus f(max)/F(j), wobei f(max) die oberste Grenze des definierten Oberwellenbereichs (im obigen Beispiel 2.000 Hz) ist, und
  • Fu) die jeweilige Grundfrequenz der Erregung.
In this formula:
  • X t1 ) = vibration amplitude at the basic excitation frequency,
  • X tk ) = vibration amplitude at the kth harmonic to the fundamental frequency,
  • L = limiting number as an integer from f (max) / F (j) , where f ( max ) is the uppermost limit of the defined harmonic range (in the example above 2,000 Hz), and
  • F u ) the respective basic frequency of the excitation.

Der Verzerrungsfaktor läßt sich über die Analyse des Frequenzspektrums gewinnen, aber auch mit einfachen meßtechnischen Mitteln. Die Frequenzspektrumsanalyse gibt im wesentlichen den Oberwellenanteil einer Schwingung im Verhältnis zum Grundanteil wieder, was ohne weiteres durch eine entsprechende Filteranordnung die für das obige Beispiel bei 100 Hz eine Begrenzung vorsieht, realisiert werden kann. Gegenüber dem Beschleunigungswerte/Drehzahl-Diagramm hat das Verzerrungsfa'ktor/Drehzahl-Diagramm den Vorteil, daß es keinen so starken Anstieg zu höheren Frequenzen aufweist (auch ohne Resonanzspitzen hat das Beschleunigungswerte/Drehzahl-Diagramm einen quadratischen Anstieg über der Drehzahl.The distortion factor can be obtained from the analysis of the frequency spectrum, but also with simple measuring means. The frequency spectrum analysis essentially reproduces the harmonic component of an oscillation in relation to the basic component, which can easily be achieved by a corresponding filter arrangement which provides a limitation at 100 Hz for the above example. Compared to the acceleration value / speed diagram, the distortion factor / speed diagram has the advantage that it does not have such a strong increase to higher frequencies (even without resonance peaks, the acceleration value / speed diagram has a quadratic increase over the speed.

Claims (9)

1. Verfahren zum Betreiben einer Maschine zum Entspannen von Werkstücken, bei dem das Werkstück Vibrationen ausgewählter Drehzahlwerte eines Vibrators unterworfen wird und bei dem die Auswahl der Drehzahlwerte des Vibrators aus einer Messung entnommen wird, welche das Schwingverhalten des Werkstücks bei Anregung durch den Vibrator in seinem Arbeitsbereich (z. B. 20 Hz bis 100 Hz) wiedergibt,
dadurch gekennzeichnet,
daß zu den einzelnen Drehzahlwerten des Vibrators in seinem Arbeitsbereich in einem definierten Oberwellenbereich (z. B. 100 Hz bis 2.000 Hz) die jeweiligen Oberwellen derjenigen Schwingungen ermittelt werden,in denen im Arbeitsbereich Resonanzen oder dergleichen stabile Schwingungszustände auftreten, und daß zur Entspannung des Werkstücks diejenigen Drehzahlwerte ausgewählt werden, die für eine Häufung von Oberwellen im definierten Oberwellenbereich ursächlich sind.
1.Method for operating a machine for relaxing workpieces, in which the workpiece is subjected to vibrations of selected speed values of a vibrator and in which the selection of the speed values of the vibrator is taken from a measurement which shows the vibration behavior of the workpiece when excited by the vibrator in its Reproduces the working range (e.g. 20 Hz to 100 Hz),
characterized,
that the individual harmonic values of the vibrations in which resonances or the like occur in stable vibrational states in the working range and that for relaxation of the workpiece are determined for the individual speed values of the vibrator in its working range in a defined harmonic range (e.g. 100 Hz to 2,000 Hz) those speed values are selected that are responsible for an accumulation of harmonics in the defined harmonic range.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Oberwellen zu den einzelnen im Arbeitsbereich des Vibrators liegenden Resonanzen (oder dergleichen stabilen Schwingungszuständen) rechnerisch ermittelt werden.
2. The method according to claim 1,
characterized,
that the harmonics for the individual resonances (or similar stable vibration states) in the working range of the vibrator are determined by calculation.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die bei einer Anregung im Arbeitsbereich entstehenden Oberwellen meßtechnisch ermittelt werden.
3. The method according to claim 1,
characterized,
that the harmonics generated in the working area during an excitation are determined by measurement.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
daß als zusätzliches Auswahlkriterium zur Häufung von Oberwellen im definierten Oberwellenbereich die Amplituden der Oberwellen herangezogen werden, indem im Oberwellendichtediagramm die Dichte der Oberwellen mit der jeweiligen Amplitude bewertet, beispielsweise multipliziert wird, und das so erhaltene Diagramm dann zur Auswahl der Arbeitsfrequenzen herangezogen wird.
4. The method according to claim 3,
characterized,
that the amplitudes of the harmonics are used as an additional selection criterion for the accumulation of harmonics in the defined harmonic range, in that the density of the harmonics is evaluated by the respective amplitude in the harmonic density diagram, for example multiplied, and the diagram thus obtained is then used to select the working frequencies.
5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß im Oberwellenbereich Fenster des Frequenzbereichs gebildet werden, in denen die dort hineinfallenden Oberwellen gezählt werden, und daß zur Ermittlung der Häufung von Oberwellen diejenigen Fensterbereiche ausgewählt werden, die die höchste Zahl von Oberwellen, gegebenenfalls unter vorheriger Normierung gegenüber der statistischen Verteilung, haben.
5. The method according to any one of claims 1 to 4,
characterized,
that windows of the frequency range are formed in the harmonic range, in which the harmonics falling into it are counted, and that to determine the accumulation of harmonics, those window ranges are selected which have the highest number of harmonics, possibly with previous normalization compared to the statistical distribution.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
daß zu den Oberwellen aus jedem ausgewählten Fensterbereich diejenigen Drehzahlen aus dem Arbeitsbereich des Vibrators festgehalten werden, die für diese Oberwellen ursächlich sind, und daß demjenigen Drehzahlwert des Vibrators der Vorzug gegeben wird, der in einer höheren Anzahl von ausgewählten Fensterbereichen Oberwellen erzeugt hat (Familienbildung).
6. The method according to claim 5,
characterized,
that for the harmonics from each selected window area those speeds from the working area of the vibrator are recorded which are the cause of these harmonics, and that preference is given to the speed value of the vibrator which has generated harmonics in a larger number of selected window areas (family formation) .
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet
daß als nächster Drehzahlwert derjenige ausgewählt wird, der in der Rangfolge in der jeweils höchsten Anzahl von ausgewählten Fensterbereichen Oberwellen erzeugt hat.
7. The method according to claim 6,
characterized
that the next speed value selected is the one that has generated harmonics in the order of the highest number of selected window areas.
8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
daß zur Auswahl der jeweils nächsten Drehzahl dasselbe Kriterium herangezogen wird, aber unter Ausschluß derjenigen Oberwellen, die bereits zur Auswahl des vorhergenden Drehzahlenwertes bestimmend waren.
8. The method according to claim 7,
characterized,
that the same criterion is used for the selection of the next speed in each case, but to the exclusion of those harmonics which were already determining for the selection of the previous speed value.
9. Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß zur Bestimmung der Resonanzen bzw. dergleichen stabilen Schwingungen bzw. Oberwellen, die am Werkstück auftretenden
Beschleunigungswerte, oder
Verzerrungsfaktoren
zugrunde gelegt werden.
9. The method according to any one of claims 1 to 8,
characterized,
that to determine the resonances or the like stable vibrations or harmonics that occur on the workpiece
Acceleration values, or
Distortion factors
be taken as a basis.
EP86113278A 1986-09-26 1986-09-26 Method for the operation of a machine for stress relief by vibration Expired - Lifetime EP0261273B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE8686113278T DE3676703D1 (en) 1986-09-26 1986-09-26 METHOD FOR OPERATING A MACHINE FOR RELAXING WORKPIECES BY VIBRATION.
AT86113278T ATE59319T1 (en) 1986-09-26 1986-09-26 METHOD OF OPERATING A MACHINE FOR RELEASING WORKPIECES BY VIBRATION.
EP86113278A EP0261273B1 (en) 1986-09-26 1986-09-26 Method for the operation of a machine for stress relief by vibration
US07/097,212 US4823599A (en) 1986-09-26 1987-09-15 Method of operating a machine for the stress relief of workpieces by vibration
JP62239082A JPS63303622A (en) 1986-09-26 1987-09-25 Method of operating machine removing stress of work member by vibration
ES8702750A ES2005350A6 (en) 1986-09-26 1987-09-25 Method for the operation of a machine for stress relief by vibration.
CA000547898A CA1311542C (en) 1986-09-26 1987-09-25 Method of operating a machine for the stress relief of workpieces by vibration
KR1019870010612A KR950013283B1 (en) 1986-09-26 1987-09-25 Method of operating a machine for the relaxing of workpieces by vibration
SU874203415A SU1620051A3 (en) 1986-09-26 1987-09-25 Method of working articles
CN87106584A CN1016706B (en) 1986-09-26 1987-09-26 Method of operating machine for relaxing of workpieces stress by vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86113278A EP0261273B1 (en) 1986-09-26 1986-09-26 Method for the operation of a machine for stress relief by vibration

Publications (2)

Publication Number Publication Date
EP0261273A1 true EP0261273A1 (en) 1988-03-30
EP0261273B1 EP0261273B1 (en) 1990-12-27

Family

ID=8195452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86113278A Expired - Lifetime EP0261273B1 (en) 1986-09-26 1986-09-26 Method for the operation of a machine for stress relief by vibration

Country Status (10)

Country Link
US (1) US4823599A (en)
EP (1) EP0261273B1 (en)
JP (1) JPS63303622A (en)
KR (1) KR950013283B1 (en)
CN (1) CN1016706B (en)
AT (1) ATE59319T1 (en)
CA (1) CA1311542C (en)
DE (1) DE3676703D1 (en)
ES (1) ES2005350A6 (en)
SU (1) SU1620051A3 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968359A (en) * 1989-08-14 1990-11-06 Bonal Technologies, Inc. Stress relief of metals
US5035142A (en) * 1989-12-19 1991-07-30 Dryga Alexandr I Method for vibratory treatment of workpieces and a device for carrying same into effect
US5242512A (en) * 1992-03-13 1993-09-07 Alloying Surfaces, Inc. Method and apparatus for relieving residual stresses
AU716375B2 (en) * 1995-07-14 2000-02-24 Brent Felix Jury Stress testing and relieving method and apparatus
ES2127026T3 (en) * 1997-07-24 1999-04-01 Vsr Martin Eng Gmbh OPERATING PROCEDURE OF A MACHINE FOR RELAXING THE PARTS TENSIONS.
US20060016858A1 (en) * 1998-09-03 2006-01-26 U.I.T., Llc Method of improving quality and reliability of welded rail joint properties by ultrasonic impact treatment
US6932876B1 (en) 1998-09-03 2005-08-23 U.I.T., L.L.C. Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces
US20050145306A1 (en) * 1998-09-03 2005-07-07 Uit, L.L.C. Company Welded joints with new properties and provision of such properties by ultrasonic impact treatment
US6338765B1 (en) 1998-09-03 2002-01-15 Uit, L.L.C. Ultrasonic impact methods for treatment of welded structures
US6916387B2 (en) * 2002-05-06 2005-07-12 Howmet Corporation Weld repair of superalloy castings
US8545645B2 (en) * 2003-12-02 2013-10-01 Franklin Leroy Stebbing Stress free steel and rapid production of same
US20050115646A1 (en) * 2003-12-02 2005-06-02 Accelerated Technologies Corporation Stress free steel and rapid production of same
JP2005192194A (en) * 2003-12-05 2005-07-14 Yazaki Corp Communication apparatus and communication system
US7301123B2 (en) 2004-04-29 2007-11-27 U.I.T., L.L.C. Method for modifying or producing materials and joints with specific properties by generating and applying adaptive impulses a normalizing energy thereof and pauses therebetween
CN1317545C (en) * 2004-05-25 2007-05-23 林易人 Parameter detecting method for vibrating-eliminated strain and vibrating welding process and use thereof
US7276824B2 (en) * 2005-08-19 2007-10-02 U.I.T., L.L.C. Oscillating system and tool for ultrasonic impact treatment
US20070068605A1 (en) * 2005-09-23 2007-03-29 U.I.T., Llc Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact
US20070244595A1 (en) * 2006-04-18 2007-10-18 U.I.T., Llc Method and means for ultrasonic impact machining of surfaces of machine components
US7764038B2 (en) * 2007-04-26 2010-07-27 Siemens Industry, Inc. Devices, systems, and methods for relieving stress
RU2447162C2 (en) * 2010-04-06 2012-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of ultrasonic processing of welded metal structures
US8700201B2 (en) * 2010-09-13 2014-04-15 Okuma Corporation Vibration suppressing device
RU2610194C1 (en) * 2015-08-26 2017-02-08 Акционерное общество "Центр технологии судостроения и судоремонта" (АО "ЦТСС") Way of stabilisation of shape and dimensions of hulls built in moulding stands
RU2610195C1 (en) * 2015-08-26 2017-02-08 Акционерное общество "Центр технологии судостроения и судоремонта" (АО "ЦТСС") Method of ship hulls shape and dimensions stabilization built by framework method
US10836585B2 (en) 2017-12-22 2020-11-17 Flexible Steel Lacing Company Apparatus and method for monitoring conveyor systems
CN110586695B (en) * 2019-07-31 2021-08-24 广东工业大学 Laser shock peening and shape correction method and device for engine bifurcated tail nozzle welding seam
US11429900B1 (en) * 2021-10-26 2022-08-30 Tractian Limited Systems and methods for automatic detection of error conditions in mechanical machines
KR102491758B1 (en) * 2022-10-31 2023-01-30 (주)신화마이스터 Sheet metal processing method for elevator parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7005792U (en) * 1969-02-19 1970-07-30 Thompson Leonard Edward DEVICE FOR RELAXATION OF WORKPIECES THROUGH VIBRATION.
US3677831A (en) * 1970-05-14 1972-07-18 Lodding Engineering Corp Stress relief in solid materials
GB2088269A (en) * 1980-12-03 1982-06-09 Martin Eng Co Vibrational stress relief
US4402222A (en) * 1982-01-26 1983-09-06 Snap-On Tools Corporation Bolt load determining apparatus
US4446733A (en) * 1981-08-17 1984-05-08 Design Professionals Financial Corporation Stress control in solid materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741820A (en) * 1970-12-07 1973-06-26 A Hebel Method for stress relieving metal
US4001053A (en) * 1972-04-21 1977-01-04 Eim Electric Co., Ltd. Method of removing residual stress of a work formed of metal or ceramic and a sealing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7005792U (en) * 1969-02-19 1970-07-30 Thompson Leonard Edward DEVICE FOR RELAXATION OF WORKPIECES THROUGH VIBRATION.
US3677831A (en) * 1970-05-14 1972-07-18 Lodding Engineering Corp Stress relief in solid materials
GB2088269A (en) * 1980-12-03 1982-06-09 Martin Eng Co Vibrational stress relief
US4446733A (en) * 1981-08-17 1984-05-08 Design Professionals Financial Corporation Stress control in solid materials
US4402222A (en) * 1982-01-26 1983-09-06 Snap-On Tools Corporation Bolt load determining apparatus

Also Published As

Publication number Publication date
EP0261273B1 (en) 1990-12-27
CN87106584A (en) 1988-05-18
DE3676703D1 (en) 1991-02-07
ATE59319T1 (en) 1991-01-15
US4823599A (en) 1989-04-25
CA1311542C (en) 1992-12-15
ES2005350A6 (en) 1989-03-01
CN1016706B (en) 1992-05-20
SU1620051A3 (en) 1991-01-07
JPS63303622A (en) 1988-12-12
KR880004106A (en) 1988-06-01
KR950013283B1 (en) 1995-11-02

Similar Documents

Publication Publication Date Title
EP0261273B1 (en) Method for the operation of a machine for stress relief by vibration
DE7005792U (en) DEVICE FOR RELAXATION OF WORKPIECES THROUGH VIBRATION.
DE2919108A1 (en) METHOD AND APPARATUS FOR PROCESSING AND MAKING VISIBLE A READ SIGNAL FROM AN ELECTROCARDIOGRAM RECORDING, WHERE THE READING SPEED IS GREATER THAN THE RECORDING SPEED
DE112020006911T5 (en) Data generation device, machine learning system and machining state estimation device
DE2912577A1 (en) METHOD FOR ELECTRONICALLY CLEANING YARNS AND EVALUATING YARN ERRORS
DE60117049T2 (en) MACHINE STATE MONITORING DEVICE WITH CONTROL DEVICE
DE69818380T2 (en) Method for monitoring a planetary gear provided with acceleration sensors in a means of transportation, in particular in a helicopter
EP0685580A1 (en) Method and device for determining causes of faults in yarns, rovings and slivers
EP0889140B1 (en) Method of operating a machine for the stress relieving of workpieces
CH654456A5 (en) METHOD FOR DETERMINING THE SPEED OF AN ASYNCHRONOUS MOTOR.
EP0439767B1 (en) Method for evaluating the quality of yarns and apparatus for implementing said method
AT410923B (en) METHOD AND DEVICE FOR DETECTING A DAMAGED ROLLING BEARING OF WHEELS OF A RAIL VEHICLE
DE69629099T2 (en) FAST AND EFFICIENT MEDIAN SEARCH PROCEDURE
DE2627209C3 (en) Device for registering the load cycles covered by rotating machines
DE102006025626A1 (en) Procedure for rolling bearing diagnosis
DE10134926A1 (en) Classifier generating device for automatically sorting objects characterized by electronic attributes, uses thin grid technique to form discrete sub-functional-spaces
EP2910937B1 (en) Method for identifying a crystallographic candidate phase of a crystal
EP3798361A1 (en) Monitoring device for a slip-form paver for monitoring the compression of concrete and method for monitoring the compression of concrete during operation of a slip-form paver
DE10115280C2 (en) Method for classifying components
DE2820097C3 (en) Method for determining the frequency of yarn defects
DE4238772C1 (en) Procedure for evaluating a set of linguistic rules
DE102020210939A1 (en) COMPRESSION OF MACHINE STATUS DATA
DE10252875A1 (en) Car component test procedure, transforms time dependent chassis component vibration to frequency domain to determine effect on other components
EP0368366A2 (en) Method for detecting a time-variable signal between a stationary initial state and a stationary final state
DE102019128291A1 (en) OPTIMIZATION OF SHAPE SENSE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880930

17Q First examination report despatched

Effective date: 19900207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: PROPRIA PROTEZIONE PROPR. IND.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 59319

Country of ref document: AT

Date of ref document: 19910115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3676703

Country of ref document: DE

Date of ref document: 19910207

ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920904

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920915

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19921026

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930926

Ref country code: AT

Effective date: 19930926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930930

BERE Be: lapsed

Owner name: VSR MARTIN ENGINEERING G.M.B.H.

Effective date: 19930930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EAL Se: european patent in force in sweden

Ref document number: 86113278.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951031

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960830

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960906

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960913

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961025

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86113278.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050926