EP0258296B1 - Device for generating ions in gas streams - Google Patents

Device for generating ions in gas streams Download PDF

Info

Publication number
EP0258296B1
EP0258296B1 EP87901026A EP87901026A EP0258296B1 EP 0258296 B1 EP0258296 B1 EP 0258296B1 EP 87901026 A EP87901026 A EP 87901026A EP 87901026 A EP87901026 A EP 87901026A EP 0258296 B1 EP0258296 B1 EP 0258296B1
Authority
EP
European Patent Office
Prior art keywords
electrode
high voltage
voltage
tip
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87901026A
Other languages
German (de)
French (fr)
Other versions
EP0258296A1 (en
Inventor
Hans-Henrich Stiehl
Thomas Sebald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sorbios GmbH
Original Assignee
Sorbios GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sorbios GmbH filed Critical Sorbios GmbH
Publication of EP0258296A1 publication Critical patent/EP0258296A1/en
Application granted granted Critical
Publication of EP0258296B1 publication Critical patent/EP0258296B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the invention relates to a device for generating ions in gas streams for reducing electrostatic charges which are present on sensitive products such as e.g. Microchips, foils, magnetic disks, laser storage disks and printed circuit boards can lead to destruction in the event of uncontrolled discharge or result in increased particle deposition.
  • sensitive products such as e.g. Microchips, foils, magnetic disks, laser storage disks and printed circuit boards can lead to destruction in the event of uncontrolled discharge or result in increased particle deposition.
  • microstructures are also generally understood to mean sensitive plastic films or surfaces in which the deposition of microparticles leads to a loss in quality.
  • the damage is caused by electrostatic charges.
  • Such productions are found e.g. in clean rooms, the air of which is highly pre-filtered and flows through the clean room in a low-turbulence, piston-like displacement flow.
  • the supply air of such clean rooms can be filtered to such an extent that almost no particles can get into the clean room via the air flow.
  • Particle pollution during production essentially arises from the production process itself or from the operating personnel.
  • the device according to the invention can also be operated at limited workplaces with a specially generated air flow.
  • the charges are generated by friction, influence or capacitive processes and are unavoidable when moving the product, especially on insulating surfaces. Charge densities can arise that lead to voltages of several thousand volts. On the one hand, these charged surfaces increasingly attract aerosols, in particular charged aerosols, by means of electrostatic forces.
  • microstructures can be destroyed either by an electrical breakdown or by high current densities.
  • Sensitive metal oxide semiconductor structures on silicon wafers can be destroyed by discharging voltages around 50 V.
  • a voltage of 6-7 kV is required to ignite a gas discharge on strongly curved surfaces.
  • the speed of the ions decreases within half to one meter to a value of less than one meter per second.
  • the usual air flow speed at workplaces is around 0.5 m per second.
  • Conventional ionizers work with voltages between 10 and 20 kV.
  • the time course of the voltage is either uniform (FIG. 1c) a sine voltage (FIG. 1a) from 50 to 60 Hz or a rectangular voltage course.
  • FR-A-2 135 162 describes a device for generating ions, in which elongated electrodes are arranged in parallel above and below one another and in each case one discharge electrode lies between two counter electrodes.
  • the discharge electrodes are supplied with a pulsed voltage which has a rectangular shape.
  • Shaped voltage supply like the rectangular voltage curve and the sinusoidal AC voltage, has the disadvantage that the polarity changeover takes place in periods which are short when the air flow velocity is considered.
  • ions that have already been metered into the air are transported back to the discharge electrode by rapidly changing the polarity and are ineffective for the ionization of the air.
  • efficiency of ion dosing deteriorates. Efficiency is understood here to mean the ratio of the number of ions that enter the airflow to the total number of ions generated at the discharge electrode.
  • the increased current load due to return transport is also not avoided in known systems by supplying two peak groups separately with DC voltage.
  • the potential difference between the peaks is approximately 20 kV, and the distance between the peaks should be chosen to be approximately 30 cm.
  • the average ion velocity remains so high that only a small proportion of ions from the peripheral zones of the electridic field are absorbed by the air flow. For this reason, the same disadvantages are to be expected as with ionizers operated with AC voltage.
  • planar ionizers such as can be installed, for example, over a large area under the ceiling of clean rooms, leads to locally discontinuous ion generation.
  • the invention has for its object to provide a device for generating ions in gas streams with an electrode arrangement exposed to the gas streams and a pulsed high voltage supply, which provides an alternating sequence of negative and positive pulses with steep flanks, which also have constant operating conditions over a longer period of time guaranteed with uniform ion distribution over the flow cross-section with good efficiency.
  • tip-shaped discharge electrodes and associated counter electrodes are provided in a fixed and defined association with one another provides a defined electrical field and the time profile of the high voltage applied to the tip-shaped discharge electrodes can be correlated with the gas velocity and the ion flight time between the discharge electrodes and counter electrodes, so that the efficiency is increased.
  • the duration of the pulses corresponds to the flight time of the ions, so that the entire space between the electrodes is filled with ions before switching off.
  • the pulse pauses between the pulses are adapted to the speed of the gas in such a way that the ions generated during the pulses are largely carried out by the gas flow from the space exposed to the force of the electric field when the high voltage is switched on.
  • tip-shaped discharge electrodes and counter electrodes Due to the geometrical arrangement of tip-shaped discharge electrodes and counter electrodes, a uniform ion diversification is produced over the flow cross section and the disruptive influence of other potentials in the room on the ion generation and distribution is prevented.
  • the alternation of positive and negative high voltage at the same tip-shaped discharge electrode avoids constant DC fields perpendicular to the direction of flow of the gas, which lead to separation of the positive and negative ions.
  • the device according to the invention can be used both in high-quality cleanrooms and outside of cleanrooms.
  • contamination of the tip-shaped discharge electrodes can occur due to the accumulation of particulate air pollutants, which lead to impairment of ion generation.
  • the electrode carriers can therefore be removed from their spring-locked plug seat with a rotation lock and reinserted.
  • the positive and negative high-voltage generators can be galvanically separated and the tip-shaped discharge electrodes can be supplied with positive and negative high-voltage via a single, single-core, shielded high-voltage cable.
  • the high-voltage relays By switching the high-voltage relays without load, their lifespans are increased considerably.
  • the high-voltage module By providing a high-voltage supply, which has a separate low-voltage control unit and a high-voltage module, the high-voltage module can be arranged in the vicinity of the electrode arrangement outside the gas flow, as a result of which no undesirable turbulence occurs in the gas flow.
  • the low-voltage control unit which controls the high-voltage module to regulate the positive and negative ion quantities, can be located in the immediate vicinity of the workplace. While the connection between the electrode arrangement and the high-voltage module is made via a shielded high-voltage cable, the high-voltage module is controlled by the low-voltage control unit with direct current, so that even long cable lengths can be used in the production area without the risk of disturbing sensitive electronic control and measuring devices due to radiated electromagnetic radiation.
  • Another advantage of the invention is that additional particle generation is significantly reduced. It was determined by measurements that, with a resolution of approximately 100 particles per m 3, no additional particle generation could be recorded by the device according to the invention.
  • ionizers according to the prior art produce ozone by the gas discharge in a concentration which can be harmful to the health of the employed personnel.
  • the measurements carried out during operation of the device according to the invention did not lead to an increase in the ozone concentration existing in the natural ambient air, since the current intensity in the discharges at the tip electrodes is extremely low with the aid of the voltage supply.
  • the size of the high voltage is an important criterion for operational safety, but also for the loading of the tips of the discharge electrodes. With known ionizers, it can assume values of 30 kV.
  • the maximum operating voltage can be limited to values below 15 kV in the present invention. Despite the low operating voltage, discharge times are achieved that meet the high requirements, for example in chip production.
  • the tip electrodes are directed towards the processing of sensitive products in order to achieve short discharge times. In this case, voltages above the sensitivity threshold of the products can be influenced.
  • These disadvantages are largely avoided in the device according to the invention by horizontally aligning the changing fields in the cross-sectional plane of the air flow parallel to the working plane and by the dense, defined arrangement of the counterelectrode.
  • the device according to the invention allows working in the immediate vicinity of the ionizer if a perforated metal sheet is attached to earth potential between the working level and the ionizer without reducing the effectiveness of the ionizer.
  • the electrode arrangement is arranged in the area of the air flow, for example in clean rooms in the ceiling area below the air outlets or the air filter.
  • 5a schematically shows a grid-shaped electrode arrangement which is suitable for mounting under a clean room filter ceiling.
  • the electrode arrangement 31 has cross members 1, 8 from metal semicircular profiles, which form a solid frame with tubular metal counter electrodes 4 lying on the ground. Electrode carriers 5, which carry needle-shaped or tip-shaped discharge electrodes 6, are fastened to the crossbeams 1, 8 via plug connections 3, 7.
  • the counter electrodes 4 and the electrode carrier 5 are arranged parallel to one another in one plane, the tip-shaped discharge electrodes likewise preferably lying in a plane perpendicular to the counter electrodes 4. 5a, only three tip-shaped discharge electrodes 6 are provided per electrode carrier 5. Of course, more discharge electrodes can also be provided.
  • the counter electrodes 4 or electrode carrier 5 have a diameter of about 3 to 15 mm and the distance is between 5 and 50 cm.
  • the tip-shaped discharge electrodes 6 are arranged at regular intervals of approximately 5 to 30 cm.
  • the high voltage is supplied to the discharge electrodes 6 via protective resistors in the crossbar 1 and the plug connectors 3, the electrode carriers 5 being electrically connected in parallel.
  • a terminal connection (not shown) for the electrical connection of the grounded shielding of the single-wire high-voltage cable 9 is also provided in or on the crossbar.
  • the connector 3 has an acrylic tube 33 with a shoulder, inside which the high-voltage line 10 is guided. The approach is inserted into the electrode carrier 5, a socket 11 connected to the high-voltage line and a pin 12 provided in the electrode carrier 5 forming the electrical connection.
  • the acrylic tube 33 provides a creepage distance between the high-voltage electrode carrier and the cross-beam 1 at ground potential.
  • the connector 7 also has an insulating acrylic rod 34, the end of which is inserted into the electrode carrier and is fixed by means of a dowel pin 14. A compression spring 13 is supported on the end of the acrylic rod 34.
  • the dowel pin 14 forms an anti-rotation device, so that the tip-shaped discharge electrodes cannot change their position with respect to the counter electrodes 4.
  • the connectors 3 and 7 together form a spring-locked plug seat, so that the electrode carrier can be removed and cleaned without major difficulties.
  • the tip-shaped discharge electrodes are driven with a high voltage according to FIG. 2 alternately with positive and negative pulses with steep edges.
  • the high voltage is first applied over a period of time t 1 , which is selected such that the space between the electrodes 4, 6 is filled with positive ions.
  • t 1 time
  • Fig. 5a metered flowing air flow. If the high voltage is switched off steeply after a time that corresponds to the ion flight time, the force of the electric field ceases and the ions can be removed from the area of greatest field strength between the electrodes 4, 5, 6 by the frictional force of the air flow.
  • the opposite pole, negative high voltage is applied to the same tip-shaped electrodes 6.
  • the negative high voltage also remains switched on only until a negative ion cloud fills the space between the electrodes 4, 5, 6 (t 3 ), in order then to be switched off on a steep side.
  • the distance a according to FIG. 5a between the electrode carriers 5 with the discharge electrodes 6 and the counter electrodes 4 determines the switch-on time t and t 3 of the high voltage via the ion mobility.
  • the switch-on times are, for example, between a few and a few 10 ms, in particular between 5 and 60 ms.
  • the switch-off times ie the interval between the pulses, are between 100 and 1000 ms. This results in duty cycles of 1: 5 to 1:20.
  • the majority of the ions generated at the tips of the discharge electrodes are introduced into the air flow. This reduces the current load at the tips by orders of magnitude, which is responsible for the disadvantageous particle generation in the air flow.
  • a low-erosion electrode material is used for the discharge electrodes, stainless steel and tungsten being used in the prior art. Tungsten showed a low abrasion behavior. Investigations of further materials showed that with niobium and its alloys as the electrode material, significantly better results can be achieved, so that this material is used in the discharge electrodes 6. Table 1 shows the results of a test carried out over 1000 hours with 20 times, non-tactile current loading of the tip-shaped discharge electrodes. Column 2 shows a volume removed which is 6 times lower than that of tungsten. Tantalum also showed better results than tungsten.
  • the high-voltage module 31 which is preferably arranged in the vicinity of the electrode arrangement for reducing the length of the high-voltage cable 9 but outside the air flow, is shown in more detail in FIG. 7a.
  • Two high-frequency oscillators 18 drive the primary winding of two high-voltage transformers 19 via low-voltage drivers (not shown), one transformer generating positive high voltage and the other negative high voltage, depending on the passage in the high-voltage diodes which are cast in each case.
  • Two high-voltage relays 20 switch the respective one High voltage on the shielded high-voltage cable 9, which supplies the discharge electrodes 6. So that the high-voltage relays 20 switch load-free, the oscillators 18 and the relays 20 are driven in accordance with the pulse diagram according to FIG. 7b. From this it can be seen that the high-voltage relays 20 are switched on or off when the oscillators 18, which are driven in pulsed fashion, are not switched on.
  • the low-voltage control unit 30 can be located in the immediate vicinity of the workplace or can be accommodated in a central control cabinet. It outputs two direct currents with independently adjustable direct voltage values to the high-voltage module, whereby the positive and negative high-voltage values can be determined independently of one another. To regulate the DC voltage values generated by the low-voltage control unit 30 and thus to regulate the balance of the ion polarity are not shown in a. Control circuit, the currents used to generate the positive and negative ions are measured separately in the high-voltage module 31 and supplied to the low-voltage control unit 30 as a control variable.
  • special counter electrodes 4 are provided in the electrode arrangement according to FIG. 5a. 5b and 5c, the counter electrodes are formed by system components surrounding the discharge electrodes 6.
  • a frame system 16 which is electrically connected to ground, is designed as a counter electrode.
  • a perforated plate 17 is provided as the counter electrode, which is on ground and which can serve as a screen or the like.
  • FIG. 3 Another embodiment is shown in FIG. 3.
  • ions are not metered into a gas or air flow present in the room, but rather a closed device is provided which has a device for generating a rectified flow over a large cross section.
  • This device has a blower 22 which supplies a pressure chamber 21 which is delimited on the outflow side by a uniformly air-permeable layer 23 designed as a baffle plate.
  • the baffle forms the counter electrode to the tip-shaped discharge electrodes 6, which are arranged below the baffle 23 and are attached to electrode carriers 5 according to FIG. 5a.
  • the rectified flow is stabilized in the surrounding space by a circumferential flow apron 24.

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

A device for generating ions in gas streams includes an electrode arrangement exposed to the gas streams and pulse wave shaped high voltage supply which delivers a succession of alternating negative and positive pulses with steep sides. The electrode arrangement comprises at least a point discharge electrode (6) and at least a counter-electrode (4) in a fixed and defined mutual arrangement. The timing of the high voltage signal is determined so that the duration of each impulse corresponds to the time of flight of the ions between the electrodes and the interval between the pulses is adapted to the speed of the gas streams.

Description

Die Erfindung betrifft eine Vorrichtung zur Erzeugung von Ionen in Gasströmen zum Abbau von elektrostatischen Aufladungen, welche an empfindlichen Produkten, wie z.B. Mikrochips, Folien, Magnetplatten, Laserspeicherplatten und Leiterplatten bei unkontrollierter Entladung zu Zerstörungen führen bzw. erhöhte Partikeldeposition nach sich ziehen.The invention relates to a device for generating ions in gas streams for reducing electrostatic charges which are present on sensitive products such as e.g. Microchips, foils, magnetic disks, laser storage disks and printed circuit boards can lead to destruction in the event of uncontrolled discharge or result in increased particle deposition.

Bei der Fertigung von hochintegrierten Halberleiterbauelementen, bei Laser- und Magnetspeicherplatten und bei anderen Produkten mit Mikrostrukturen im Auflösungsbereich von einem Mikrometer und weniger führen sowohl partikelkontaminationen als auch unkontrollierte, elektrische Enladungen zu erheblichen Qualitätsverlusten. Unter Mikrostrukturen werden hier auch empfindliche Kunststofffolien oder Oberflächen generell, bei denen die Deposition von Mikroteilchen zur Qualitätsverlusten führt, verstanden. Ursache für die Schäden sind elektrostatische Aufladungen. Derartige Fertigungen finden z.B. in Reinräumen statt, deren Luft hochgradig vorgefiltert ist und den Reinraum in einer turbulenzarmen, kolbenartigen Verdrängungsströmung durchfließt. Die Zuluft derartiger Reinräume kann so hochgradig gefiltert werden, daß nahezu keine Partikel über den Luftstrom in den Reinraum gelangen können. Die Partikelbelastungen bei der Fertigung entstehen im wesentlichen durch den Produktionsvorgang selbst oder durch das Bedienungspersonal. Das erfindungsgemäße Gerät kann aber auch an begrenzten Arbeitsplätzen mit einer speziell erzeugten Luftströmung betrieben werden.In the manufacture of highly integrated semiconductor components, in laser and magnetic storage disks and in other products with microstructures in the resolution range of one micrometer and less, both particle contamination and uncontrolled electrical discharges lead to considerable quality losses. Here, microstructures are also generally understood to mean sensitive plastic films or surfaces in which the deposition of microparticles leads to a loss in quality. The damage is caused by electrostatic charges. Such productions are found e.g. in clean rooms, the air of which is highly pre-filtered and flows through the clean room in a low-turbulence, piston-like displacement flow. The supply air of such clean rooms can be filtered to such an extent that almost no particles can get into the clean room via the air flow. Particle pollution during production essentially arises from the production process itself or from the operating personnel. However, the device according to the invention can also be operated at limited workplaces with a specially generated air flow.

Die Aufladungen werden erzeugt durch Reibung, Influenz oder kapazitive Vorgänge und sind bei der Bewegung des Produktes insbesondere an isolierenden Oberflächen unvermeidbar. Es können Ladungsdichten entstehen, die zu Spannungen von mehreren tausend Volt führen. Einerseits ziehen diese aufgeladenen Flächen mittels elektrostatischer Kräfte verstärkt Aerosole insbesondere geladene Aerosole an.The charges are generated by friction, influence or capacitive processes and are unavoidable when moving the product, especially on insulating surfaces. Charge densities can arise that lead to voltages of several thousand volts. On the one hand, these charged surfaces increasingly attract aerosols, in particular charged aerosols, by means of electrostatic forces.

Man findet auf mit 500 V aufgeladenen Flächen etwa eine 20fache Teilchenablagerung im Vergleich zu einer neutralen Fläche. Andererseits können derartige Flächenladungen unkontrolliert über die Mikrostrukturen entladen werden. Dabei können die Mikrostrukturen entweder durch einen elektrischen Durchschlag oder durch hohe Stromdichten zerstört werden. Empfindliche Metalloxidhalbleiterstrukturen auf Siliziumscheiben können bereits durch Entladungen von Spannungen um 50 V zerstört werden.One finds about 20-fold particle deposition on surfaces charged with 500 V compared to a neutral surface. On the other hand, such surface charges can be discharged in an uncontrolled manner via the microstructures. The microstructures can be destroyed either by an electrical breakdown or by high current densities. Sensitive metal oxide semiconductor structures on silicon wafers can be destroyed by discharging voltages around 50 V.

Die Aufladung von isolierenden Flächen am Produkt und die verstärkte Teilchendeposition können dadurch verhindert werden, daß der Luftstrom die Ionen positiven und negativen Vorzeichens enthält. Dadurch werden sowohl an luftgetragenen Teilchen als auch an den Produktoberflächen Ladungen ausgeglichen. Unkontrollierte Entladungen über die Mikrostrukturen können nicht stattfinden. Oberflächenladungen werden durch eine kontrollierte Entladung über Luftionen abgebaut. Bei elektrostatisch sensiblen Produkten ist eine gleichförmige Verteilung von positiven und negativen lonenbesonders wichtig.The charging of insulating surfaces on the product and the increased particle deposition can be prevented by the fact that the air flow contains the ions of positive and negative signs. As a result, charges are balanced both on airborne particles and on the product surfaces. Uncontrolled discharges through the microstructures cannot take place. Surface charges are broken down by controlled discharge via air ions. With electrostatically sensitive products, a uniform distribution of positive and negative ions is particularly important.

Es ist bekannt, zur Erzeugung von positiven und negativen Luftionen die Townsend-Gasentladung im inhomogenen elektrischen Feld von Nadelspitzen oder Drähten zu nutzen. Ein Gerät zur Erzeugung von Ionen an Spitzen ist in der US-PS 1 356 211 dargestellt, während in der DE-OS 28 09 054 eine Vorrichtung zur Erzeugung von Ionen an Drähten beschrieben ist. In der Nähe der Spitzen bzw. der Drahtoberfläche bildet sich eine Entladungszone mit einer Ausdehnung von etwa 0,5 mm aus, in der die Gasmoleküle ionisiert werden. Mit zunehmender Entfernung von der Entladungszone verlangsamt sich aufgrund des schwächer werdenden Feldes die Geschwindigkeit. Eine Bedingung dafür, daß die Ionen von der Luftströmung fortgetragen werden können, ist, daß ihre Geschwindigkeit im inhomogenen Feld auf einen Wert absinkt, der kleiner als die Luftgeschwindigkeit ist. Zur Zündung einer Gasentladung an stark gekrümmten Flächen ist eine Spannung von 6-7 kV notwendig. Beim Betrieb solcher lonisatoren mit einer Spannung von ca. 10 kV nimmt die Geschwindigkeit der Ionen innerhalb eines halben bis einen Meters auf Wert von unter einem Meter pro Sekunde ab. Die übliche Luftströmungsgeschwindigkeit an reinen Arbeitsplätzen liegt bei etwa 0,5 m pro Sekunde. Aus dem Vorangesagten wird klar, daß für die Verteilung der Ionen im Luftstrom ein enger Zusammenhang zwischen der Luftgeschwindigkeit einerseits und dem mit der Ladungselektrodengeometrie gekoppelten zeitlichen Lauf der Hochspannung andererseits besteht.It is known to use the Townsend gas discharge in the inhomogeneous electric field of needle tips or wires to generate positive and negative air ions. A device for generating ions at tips is shown in US Pat. No. 1,356,211, while in DE-OS 28 09 054 a device for generating ions at wires is described. A discharge zone with an expansion of approximately 0.5 mm forms in the vicinity of the tips or the wire surface, in which the gas molecules are ionized. With increasing distance from the discharge zone, the speed slows down due to the weakening field. A condition for the ions to be carried away by the air flow is that their velocity in the inhomogeneous field decreases to a value which is less than the air velocity. A voltage of 6-7 kV is required to ignite a gas discharge on strongly curved surfaces. When operating such ionizers with a voltage of approx. 10 kV, the speed of the ions decreases within half to one meter to a value of less than one meter per second. The usual air flow speed at workplaces is around 0.5 m per second. From the foregoing it is clear that for the distribution of the ions in the air flow there is a close connection between the air speed on the one hand and the temporal course of the high voltage coupled with the charge electrode geometry on the other hand.

Herkömmliche lonisatoren arbeiten mit Spannungen zwischen 10 und 20 kV. Der zeitlich Verlauf der Spannung ist entweder gleichförmig (Fig. 1c) eine Sinusspannung (Fig. 1a) von 50 bis 60 Hz oder ein rechteckförmiger Spannungsverlauf.Conventional ionizers work with voltages between 10 and 20 kV. The time course of the voltage is either uniform (FIG. 1c) a sine voltage (FIG. 1a) from 50 to 60 Hz or a rectangular voltage course.

Es ist bekannt, daß bei gleicher Feldgeometrie der Entladung und gleicher Spannung am negativen Emitter mehr Ionen erzeugt werden als am positiven. Da lonisatoren ihre Aufgabe zur Neutralisation von Oberflächenentladungen nur erfüllen können, wenn in den Luftstrom die gleiche Anzahl von positiven wie negativen Ionen eindosiert werden, ist die sinusförmige Wechselspannung zur Versorgung von Emittern nachteilig, wogegen bei rechteckigem Spannungsverlauf und Gleichspannungsversorgung durch Einstellung des entsprechenden Gleichspannungsniveaus Ionen mit ausgeglichener Polaritätsbalance erzeugt werden.It is known that with the same field geometry of the discharge and the same voltage, more ions are generated at the negative emitter than at the positive. Since ionizers can only fulfill their task of neutralizing surface discharges if the same number of positive and negative ions are metered into the air flow, the sinusoidal alternating voltage for supplying emitters is disadvantageous, whereas in the case of a rectangular voltage curve and direct voltage supply, ions can also be set by setting the corresponding direct voltage level balanced polarity balance are generated.

In der FR-A-2 135 162 ist eine Vorrichtung zur Erzeugung vo Ionen beschrieben, bei der parallel über- und untereinander langgestreckte Elektroden angeordnet sind und jeweils eine Entladungselektrode zwischen zwei Gegenelektroden liegt. Die Entladungselektroden werden mit einer impulsförmigen Spannung gespeist, die eine rechteckähnliche Form aufweist. Diese derart geformte Spannungsversorgung hat ebenso wie der rechteckige Spannungsverlauf und die sinusförmige Wechselspannung den Nachteil, daß die Umschaltung der Polarität in Zeiträumen abläuft, die bei Betrachtung der Strömungsgeschwindigkeit der Luft kurz sind. In diesem Fall werden bereits in die Luft eindosierte Ionen durch schnelle Änderung der Polarität zur Entladungselektrode zurücktransportiert und sind für die Ionisierung der Luft unwirksam. Darüber hinaus verschlechtert sich der Wirkungsgrad der lonendosierung. Unter Wirkungsgrad sei hier das Verhältnis der lonenanzahl, die in den Luftstrom eintritt, zu der Gesamtanzahl der an der Entladungselektrode erzeugten Ionen verstanden.FR-A-2 135 162 describes a device for generating ions, in which elongated electrodes are arranged in parallel above and below one another and in each case one discharge electrode lies between two counter electrodes. The discharge electrodes are supplied with a pulsed voltage which has a rectangular shape. This way Shaped voltage supply, like the rectangular voltage curve and the sinusoidal AC voltage, has the disadvantage that the polarity changeover takes place in periods which are short when the air flow velocity is considered. In this case, ions that have already been metered into the air are transported back to the discharge electrode by rapidly changing the polarity and are ineffective for the ionization of the air. In addition, the efficiency of ion dosing deteriorates. Efficiency is understood here to mean the ratio of the number of ions that enter the airflow to the total number of ions generated at the discharge electrode.

Diese Nachteil erhöhen die Strombelastung an Spitzenelektroden. Bei hoher Strombelastung der Spitzenelektroden kommt es zu verstärktem Materialabtrag und damit zu einer Erhöhung des Radius an den Spitzen und zu einer vermehrten Anlagerung von Partikeln an der Spitze. Dadurch vermindert sich mit dem Abnehmen des inhomogenen Feldes die lonenerzeugung. Somit sind zeitlich konstante Betriebsbedingungen in Frage gestellt. In der Praxis werden diese Nachteile durch Erhöhung der Betriebsspannung korrigiert, was eine Beschleunigung der beschriebenen Nachteile nach sich zieht.This disadvantage increases the current load on tip electrodes. With a high current load on the tip electrodes, there is increased material removal and thus an increase in the radius at the tips and an increased accumulation of particles at the tip. As the inhomogeneous field decreases, the generation of ions is reduced. Constant operating conditions are therefore called into question. In practice, these disadvantages are corrected by increasing the operating voltage, which leads to an acceleration of the disadvantages described.

Die erhöhte Strombelastung durch Rücktransport vermeidet man bei bekannten Systemen auch dadurch nicht, daß man je zwei Spitzengruppen getrennt mit Gleichspannung versorgt. In diesem Fall beträgt die Potentialdifferenz zwischen den Spitzen etwa 20 kV, entsprechend groß ist der Abstand der Spitzen mit etwa 30 cm zu wählen. In diesem Fall bleibt die mittlere lonengeschwindigkeit so groß, daß nur ein geringer lonenanteil aus den Randzonen des elektridschen Feldes vom Luftstrom aufgenommen wird. Aus diesem Grunde sind die gleichen Nachteile zu erwarten, wie bei wechselspannungsbetriebenen lonisatoren. Die Ausbildung von flächenhaften lonisatoren, wie sie beispielsweise großflächig unter der Decke von Reinräumen angebracht werden können, führt zu einer örtlich diskontinuierlichen lonenerzeugung. Im Grenzgebiet derartig versorgter lonisatoren kommt es zu Überschüssen einer lonenpolarität, die im Gegensatz zur eigentlichen Aufgabe der lonisatoren zu zusätzlichen Aufladungen führen können. Noch nachteiliger erweist sich die Erfahrung, daß die zwischen solchen in der Querschnittsebene der Luftströmung angebrachten, mit Gleichspannung versorgten Elektroden entstehenden konstanten zur Elektrodenebene parallelen Feldstärken auf der Abstromseite zur Entmischung von negativen und positiven Ionen führt: Bei dieser Entmischung können durch den Überschuß von Ionen einer Polarität Aufladungen von mehreren 100 V entstehen.The increased current load due to return transport is also not avoided in known systems by supplying two peak groups separately with DC voltage. In this case, the potential difference between the peaks is approximately 20 kV, and the distance between the peaks should be chosen to be approximately 30 cm. In this case, the average ion velocity remains so high that only a small proportion of ions from the peripheral zones of the electridic field are absorbed by the air flow. For this reason, the same disadvantages are to be expected as with ionizers operated with AC voltage. The formation of planar ionizers, such as can be installed, for example, over a large area under the ceiling of clean rooms, leads to locally discontinuous ion generation. In the border area of ionizers supplied in this way, there is excess ion polarity which, in contrast to the actual task of the ionizers, can lead to additional charges. Experience has proven even more disadvantageous that the constant field strengths parallel to the electrode plane, which arise between such electrodes which are supplied with direct voltage in the cross-sectional plane of the air flow and are supplied with DC voltage, lead to separation of negative and positive ions: With this separation, one can be caused by the excess of ions Polarity charges of several 100 V arise.

Durch Betriebserfahrungen mit lonisatoren in Reinräumen, beispielsweise der Klasse 10 nach US Federal Standard 209c mit besonders hohen Anforderungen, hat man bei den drei in Fig. 1 beschriebenen Betriebsarten der lonisatoren im Betrieb Nachteile festgestellt. Diese Nachteile beziehen sich u.a. auf das Abtragen der Spitzen, auf das Eintragen von metallischem Spitzenmaterial in die Reinraumluft und auf die Ablagerung von Verunreinigungen an den Spitzen, sowie elektrochemiche Umwandlungsprozesse gasförmiger Produkte in Festkörperpartikel. Nach neuesten Untersuchungen von B.Y. Liu et al, Tex. lnstr. Cor.: Characterization of Electronic lonizers for Clean Rooms; IES 1985, findet man in der Reinraumluft bis zu zusätzlich 1,5 x 106 Teilchen pro m3. Dagegen strebt man in hochwertigen Reinräumen Teilchenkonzentrationen um 300 Partikel pro m3 und weniger an.Operating experience with ionizers in clean rooms, for example class 10 according to US Federal Standard 209c with particularly high requirements, has shown disadvantages in operation in the three operating modes of the ionizers described in FIG. 1. These disadvantages relate to the removal of the tips, the introduction of metallic tip material into the clean room air and the deposition of impurities on the tips, as well as electrochemical conversion processes of gaseous products into solid particles. According to the latest studies by BY Liu et al, Tex. lnstr. Cor .: Characterization of Electronic lonizers for Clean Rooms; IES 1985, up to an additional 1.5 x 10 6 particles per m 3 can be found in the clean room air. In contrast, in high-quality cleanrooms, particle concentrations of around 300 particles per m 3 and less are aimed for.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Erzeugung von Ionen in Gasströmen mit einer den Gasströmen ausgesetzten Elektrodenanordnung und einer pulsförmigen Hochspannungsversorgung, die eine wechselnde Folge negativer und positiver Impulse mit steilen Flanken liefert, zu schaffen, die auch über einen längeren Zeitraum konstante Betriebsbedingungen mit gleichförmiger lonenverteilung über den Strömungsquerschnitt bei gutem Wirkungsgrad gewährleistet.The invention has for its object to provide a device for generating ions in gas streams with an electrode arrangement exposed to the gas streams and a pulsed high voltage supply, which provides an alternating sequence of negative and positive pulses with steep flanks, which also have constant operating conditions over a longer period of time guaranteed with uniform ion distribution over the flow cross-section with good efficiency.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Hauptanspruchs gelöst.This object is achieved according to the invention by the characterizing features of the main claim.

Dadurch, daß spitzenförmige Entladungselektroden und zugehörige Gegenelektroden in fester und definierter Zuordnung zueinander vorgesehen sind, wird ein definiertes elektrisches Feld zur Verfügung gestellt und der zeitliche Verlauf der an die spitzenförmigen Entladungselektroden angelegten Hochspannung ist mit der Gasgeschwindigkeit und der lonenflugzeit zwischen Entladungselektroden und Gegenelektroden korrelierbar, so daß der Wirkungsgrad erhöht wird. Die Dauer der Impulse entspricht der Flugzeit der lonen, so daß der gesamte Raum zwischen den Elektroden mit Ionen ausgefüllt ist, bevor die Abschaltung erfolgt. Die Impulspausen zwischen den Impulsen sind derart an die Geschwindigkeit des Gases angepaßt, daß die während der Impulse erzeugten Ionen durch den Gasstrom weitgehend aus dem der Kraftwirkung des elektrischen Feldes bei eingeschalteter Hochspannung ausgesetzten Raum herausgetragen werden. Durch die geometrische Anordnung von spitzenförmigen Entladungselektroden und Gegenelektroden wird über den Strömungsquerschnitt eine gleichförmige lonenvertilung hergestellt und es wird der störende Einfluß anderer, im Raum befindlicher Potentiale auf die Ionenerzeugung und Verteilung verhindert. Der Wechsel von positiver und negativer Hochspannung an derselben spitzenförmigen Entladungselektrode vermeidet konstante Gleichfelder senkrecht zur Strömungsrichtung des Gases, die zu einer Entmischung der positiven und negativen Ionen führen.The fact that tip-shaped discharge electrodes and associated counter electrodes are provided in a fixed and defined association with one another provides a defined electrical field and the time profile of the high voltage applied to the tip-shaped discharge electrodes can be correlated with the gas velocity and the ion flight time between the discharge electrodes and counter electrodes, so that the efficiency is increased. The duration of the pulses corresponds to the flight time of the ions, so that the entire space between the electrodes is filled with ions before switching off. The pulse pauses between the pulses are adapted to the speed of the gas in such a way that the ions generated during the pulses are largely carried out by the gas flow from the space exposed to the force of the electric field when the high voltage is switched on. Due to the geometrical arrangement of tip-shaped discharge electrodes and counter electrodes, a uniform ion diversification is produced over the flow cross section and the disruptive influence of other potentials in the room on the ion generation and distribution is prevented. The alternation of positive and negative high voltage at the same tip-shaped discharge electrode avoids constant DC fields perpendicular to the direction of flow of the gas, which lead to separation of the positive and negative ions.

Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen möglich.Advantageous further developments and improvements are possible through the measures specified in the subclaims.

Dadurch, daß als Material für die spitzenförmigen Entladungselektroden mit Niob ein erosionsarmes Elektrodenmaterial gewählt ist, wird das Abtragverhalten verbessert und die Neigung zum Sputtern vermindert.Characterized in that an erosion as the material for the tip-shaped discharge electrodes with niobium poor electrode material is selected, the removal behavior is improved and the tendency to sputter is reduced.

Die erfindungsgemäße Vorrichtung ist sowohl in hochwertigen Reinräumen als auch außerhalb von Reinräumen zu benutzen. In der nicht hochwertig gefilterten Luft außerhalb von Reinräumen können Verschmutzungen der spitzenförmigen Entladungselektroden durch Anlagerung von teilchenförmigen Luftverunreinigungen auftreten, die zur Beeinträchtigung der Ionenerzeugung führen. Daher können zu Reinigungszwecken die Elektrodenträger aus ihren federverriegeltem Stecksitz mit Drehsicherung mit einem Griff entfernt und wieder eingesetzt werden.The device according to the invention can be used both in high-quality cleanrooms and outside of cleanrooms. In the non-high quality filtered air outside of clean rooms, contamination of the tip-shaped discharge electrodes can occur due to the accumulation of particulate air pollutants, which lead to impairment of ion generation. For cleaning purposes, the electrode carriers can therefore be removed from their spring-locked plug seat with a rotation lock and reinserted.

Durch Vorsehen von Hochspannungsrelais können die positiven und negativen Hochspannungserzeuger galvanisch getrennt werden und die Versorgung der spitzenförmigen Entladungselektroden mit positiver und negativer Hochspannung kann über ein einziges, einadriges abgeschirmtes Hochspannungskabel erfolgen. Durch das lastfreie Schalten der Hochspannungsrelais werden ihre Lebenszeiten erheblich erhöht.By providing high-voltage relays, the positive and negative high-voltage generators can be galvanically separated and the tip-shaped discharge electrodes can be supplied with positive and negative high-voltage via a single, single-core, shielded high-voltage cable. By switching the high-voltage relays without load, their lifespans are increased considerably.

Durch Vorsehen einer Hochspannungsversorgung, die eine getrennte Niederspannungsstelleinheit und ein Hochspannungsmodul aufweist, kann das Hochspannungsmodul in der Nähe der Elektrodenanordnung außerhalb der Gasströmung angeordnet werden, wodurch keine unerwünschten Turbulenzen in der Gasströmung entstehen. Die Niederspannungsstelleinheit, die zur Regelung der positiven und negativen lonenmengen das Hochspannungsmodul ansteuert, kann sich in unmittelbarer Nähe des Arbeitsplatzes befinden. Während die Verbindung zwischen Elektrodenanordnung und Hochspannungsmodul über ein abgeschirmtes Hochspannungskabel erfolgt, wird das Hochspannungsmodul von der Niederspannungsstelleinheit mit Gleichstrom angesteuert, so daß auch große Kabellängen ohne die Gefahr der Störung empfindlicher elektronischer Steuer- und Meßgeräte im Fertigungsbereich durch abgestrahlte elektromagnetische Strahlung verwendet werden können.By providing a high-voltage supply, which has a separate low-voltage control unit and a high-voltage module, the high-voltage module can be arranged in the vicinity of the electrode arrangement outside the gas flow, as a result of which no undesirable turbulence occurs in the gas flow. The low-voltage control unit, which controls the high-voltage module to regulate the positive and negative ion quantities, can be located in the immediate vicinity of the workplace. While the connection between the electrode arrangement and the high-voltage module is made via a shielded high-voltage cable, the high-voltage module is controlled by the low-voltage control unit with direct current, so that even long cable lengths can be used in the production area without the risk of disturbing sensitive electronic control and measuring devices due to radiated electromagnetic radiation.

Ein weiterer Vorteil der Erfindung liegt darin, daß eine zusätzliche Teilchenerzeugung wesentlich verringert wird. Durch Messungen wurde festgestellt, daß bei einer Auflösung von ca. 100 Teilchen pro m3 keine zusätzliche Teilchenerzeugung durch die erfindungsgemäße Vorrichtung verzeichnet werden konnte.Another advantage of the invention is that additional particle generation is significantly reduced. It was determined by measurements that, with a resolution of approximately 100 particles per m 3, no additional particle generation could be recorded by the device according to the invention.

Es ist bekannt, daß lonisatoren nach dem Stand der Technik durch die Gasentladung Ozon in einer Konzentration erzeugen, die für das beschäftigte Personal gesundheitsschädlich sein kann. Die während des Betriebes der erfindungsgemäßen Vorrichtung durchgeführten Messungen führten zu keiner Erhöhung der in der natürlichen Umgebungsluft existierenden Ozonkonzentration, da die Stromstärke in den Entladungen an den Spitzenelektroden mit Hilfe der Spannungsversorgung extrem niedrig ist. Ein wesentliches Kriterium für die Betriebssicherheit, aber auch für die Belastung der Spitzen der Enladungselektroden, ist die Größe der Hochspannung. Sie kann bei bekannten lonisatoren Werte von 30 kV annehmen. Wegen des hohen Wirkungsgrades der lonendosierung und wegen der homogenen Verteilung der diskreten lonenquellen im Strömungsquerschnitt kann bei der vorliegenden Erfindung die maximale Betriebsspannung auf Werte unter 15 kV begrenzt werden. Trotz der geringen Betriebsspannung werden Entladezeiten erzielt, die den hohen Anforderungen zum Beispiel in der Chipfertigung genügen.It is known that ionizers according to the prior art produce ozone by the gas discharge in a concentration which can be harmful to the health of the employed personnel. The measurements carried out during operation of the device according to the invention did not lead to an increase in the ozone concentration existing in the natural ambient air, since the current intensity in the discharges at the tip electrodes is extremely low with the aid of the voltage supply. The size of the high voltage is an important criterion for operational safety, but also for the loading of the tips of the discharge electrodes. With known ionizers, it can assume values of 30 kV. Because of the high efficiency of the ion dosing and because of the homogeneous distribution of the discrete ion sources in the flow cross section, the maximum operating voltage can be limited to values below 15 kV in the present invention. Despite the low operating voltage, discharge times are achieved that meet the high requirements, for example in chip production.

Bei bekannten lonisatoren werden zum Erreichen kurzer Entladezeiten die Spitzenelektroden in den Bereich der Verarbeitung sensibler Produkte gerichtet. In diesem Fall können Spannungen oberhalb der Empfindlichkeitsschwelle der Produkte influenziert werden. Diese Nachteile werden bei der erfindungsgemäßen Vorrichtung durch horizontale Ausrichtung der wechselnden Felder in der Querschnittsebene der Luftströmung parallel zur Arbeitsebene sowie durch die dichte, definierte Anordnung der Gegenelektrode weitgehend vermieden. Die erfindungsgemäße Vorrichtung erlaubt das Arbeiten in unmittelbarer Nähe des lonisators, wenn zwischen Arbeitsebene und lonisator ein metallenes Lochblech auf Erdpotential angebracht ist, ohne die Wirksamkeit des lonisators zu vermindern.In known ionizers, the tip electrodes are directed towards the processing of sensitive products in order to achieve short discharge times. In this case, voltages above the sensitivity threshold of the products can be influenced. These disadvantages are largely avoided in the device according to the invention by horizontally aligning the changing fields in the cross-sectional plane of the air flow parallel to the working plane and by the dense, defined arrangement of the counterelectrode. The device according to the invention allows working in the immediate vicinity of the ionizer if a perforated metal sheet is attached to earth potential between the working level and the ionizer without reducing the effectiveness of the ionizer.

Die Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

  • Fig. 1 unterschiedliche zeitliche Verläufe von Hochspannungen zur Versorgung der Entladungselektroden,
  • Fig. 2 der zeitliche Verlauf der Hochspannung zur Versorgung der Entladungselektroden gemäß der erfindungsgemäßen Vorrichtung,
  • Fig. 3 einen Schnitt durch ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung,
  • Fig. 4 die schematische Darstellung der verschiedenen Bestandteile der erfindungsgemäßen Vorrichtung,
  • Fig. 5a eine perspektivische schematische Darstellung der Elektrodenanordnung eines weiteren Ausführungsbeispiels,
  • Fig. 5b und 5c schematische Schnittdarstellungen von weiteren Elektrodenanordnungen,
  • Fig. 6 einen Teilschnitt durch einen Elektrodenträger gemäß Fig. 5a,
  • Fig. 7a die schaltungsgemäße Ausgestaltung des Hochspannungsmoduls, und
  • Fig. 7b ein Impulsdiagramm für das Hochspannungsmodul nach Fig. 7a.
The invention is illustrated in the drawing and is explained in more detail in the description below. Show it:
  • 1 different time profiles of high voltages for supplying the discharge electrodes,
  • 2 shows the time course of the high voltage for supplying the discharge electrodes according to the device according to the invention,
  • 3 shows a section through a first exemplary embodiment of the device according to the invention,
  • 4 shows the schematic representation of the various components of the device according to the invention,
  • 5a shows a perspective schematic illustration of the electrode arrangement of a further exemplary embodiment,
  • 5b and 5c are schematic sectional representations of further electrode arrangements,
  • 6 shows a partial section through an electrode carrier according to FIG. 5a,
  • 7a shows the circuit configuration of the high-voltage module, and
  • Fig. 7b is a timing diagram for the high voltage module of Fig. 7a.

In Fig. 4 ist die erfindungsgemäße Vorrichtung dargestellt, die eine Niederspannungsstelleinheit 30, ein Hochspannungsmodul 31 und die Elektrodenanordnung 32 aufweist. Die Elektrodenanordnung wird im Bereich der Luftströmung beispielsweise bei Reinräumen im Deckenbereich unterhalb der Luftaustritte bzw. der Luftfilter angeordnet. Die Fig. 5a zeigt schematisch eine gitterförmige Elektrodenanordnung, die für die Montage unter einer Reinraumfilterdecke geeignet ist. Die Elektrodenanordnung 31 weist Quertraversen 1, 8 aus metallenen Halbrundprofilen auf, die mit rohrförmigen metallenen auf Masse liegenden Gegenelektroden 4 einen festen Rahmen bilden. An den Quertraversen 1, 8 sind über Steckverbindungen 3, 7 Elektrodenträger 5 befestigt, die nadel- oder spitzenförmige Entladungselektroden 6 tragen. Die Gegenelektroden 4 und die Elektrodenträger 5 sind parallel zueinander in einer Ebene angeordnet, wobei die spitzenförmigen Entladungselektroden ebenfalls in einer Ebene vorzugsweise senkrecht zu den Gegenelektroden 4 weisend liegen. In der Fig. 5a sind pro Elektrodenträger 5 nur drei spitzenförmige Entladungselektroden 6 vorgesehen. Selbstverständlich können auch mehr Entladungselektroden vorgesehen sein. Die Gegenelektroden 4 bzw. Elektrodenträger 5 haben einen Durchmesser von etwa 3 bis 15 mm und der Abstand liegt zwischen 5 und 50 cm. Die spitzenförmigen Entladungselektroden 6 sind in gleichmäßigen Abständen untereinander von etwa 5 bis 30 cm angeordnet.4 shows the device according to the invention, which has a low-voltage control unit 30, a high-voltage module 31 and the electrode arrangement 32. The electrode arrangement is arranged in the area of the air flow, for example in clean rooms in the ceiling area below the air outlets or the air filter. 5a schematically shows a grid-shaped electrode arrangement which is suitable for mounting under a clean room filter ceiling. The electrode arrangement 31 has cross members 1, 8 from metal semicircular profiles, which form a solid frame with tubular metal counter electrodes 4 lying on the ground. Electrode carriers 5, which carry needle-shaped or tip-shaped discharge electrodes 6, are fastened to the crossbeams 1, 8 via plug connections 3, 7. The counter electrodes 4 and the electrode carrier 5 are arranged parallel to one another in one plane, the tip-shaped discharge electrodes likewise preferably lying in a plane perpendicular to the counter electrodes 4. 5a, only three tip-shaped discharge electrodes 6 are provided per electrode carrier 5. Of course, more discharge electrodes can also be provided. The counter electrodes 4 or electrode carrier 5 have a diameter of about 3 to 15 mm and the distance is between 5 and 50 cm. The tip-shaped discharge electrodes 6 are arranged at regular intervals of approximately 5 to 30 cm.

Die Hochspannung wird über Schutzwiderstände in der Quertraverse 1 und die Steckverbinder 3 den Entladungselektroden 6 zugeführt, wobei die Elektrodenträger 5 elektrisch parallel geschaltet sind. In oder an der Quertraverse ist ebenfalls ein nicht dargestellter Klemmanschluß für die elektrische Verbindung der geerdeten Abschirmung des einadrigen Hochspannungskabels 9 vorgesehen.The high voltage is supplied to the discharge electrodes 6 via protective resistors in the crossbar 1 and the plug connectors 3, the electrode carriers 5 being electrically connected in parallel. A terminal connection (not shown) for the electrical connection of the grounded shielding of the single-wire high-voltage cable 9 is also provided in or on the crossbar.

In Fig. 6 ist der Schnitt durch einen Elektrodenträger und insbesondere der Steckverbinder 3, 7 dargestellt. Der Steckverbinder 3 weist ein Acrylrohr 33 mit einem Ansatz auf, in dessen Innerem die Hochspannungsleitung 10 geführt ist. Der Ansatz ist in den Elektrodenträger 5 eingesteckt, wobei eine mit der Hochspannungsleitung verbundene Buchse 11 und ein im Elektrodenträger 5 vorgesehener Stift 12 die elektrische Verbindung bildet. Das Acrylrohr 33 sorgt für eine Kriechstrecke zwischen dem auf Hochspannung liegenden Elektrodenträger und der auf Massepotential liegenden Quertraverse 1. Der Steckverbinder 7 weist ebenfalls einen isolierenden Acrylstab 34 auf, dessen Ende in den Elektrodenträger gesteckt ist und mittels eines Paßstiftes 14 festgelegt ist. Eine Druckfeder 13 stützt sich am Ende des Acrylstabes 34 ab. Der Paßstift 14 bildet eine Verdrehsicherung, so daß die spitzenförmigen Entladungselektroden ihre Lage in bezug auf die Gegenelektroden 4 nicht verändern können. Die Steckverbinder 3 und 7 bilden zusammen einen federverriegelten Stecksitz, so daß die Elektrodenträger ohne größere Schwierigkeiten entfernt und gereinigt werden können.In Fig. 6 the section through an electrode carrier and in particular the connector 3, 7 is shown. The connector 3 has an acrylic tube 33 with a shoulder, inside which the high-voltage line 10 is guided. The approach is inserted into the electrode carrier 5, a socket 11 connected to the high-voltage line and a pin 12 provided in the electrode carrier 5 forming the electrical connection. The acrylic tube 33 provides a creepage distance between the high-voltage electrode carrier and the cross-beam 1 at ground potential. The connector 7 also has an insulating acrylic rod 34, the end of which is inserted into the electrode carrier and is fixed by means of a dowel pin 14. A compression spring 13 is supported on the end of the acrylic rod 34. The dowel pin 14 forms an anti-rotation device, so that the tip-shaped discharge electrodes cannot change their position with respect to the counter electrodes 4. The connectors 3 and 7 together form a spring-locked plug seat, so that the electrode carrier can be removed and cleaned without major difficulties.

Die spitzenförmigen Entladungselektroden werden mit einer Hochspannung gemäß Fig. 2 abwechselnd mit positiven und negativen Impulsen mit steilen Flanken angesteuert. Beispielsweise wird zunächst die Hochspannung über einen Zeitraum t1 angelegt, der so gewählt ist, daß der Raum zwischen den Elektroden 4, 6 mit positiven Ionen angefüllt ist. In dieser Zeit werden wegen der hohen lonengeschwindigkeit aufgrund der hohen Feldstärken kaum Ionen in den senkrecht zu der gitterförmigen Elektrodenanordnung nach. Fig. 5a strömenden Luftstrom eindosiert. Wird jetzt nach einer Zeit, die der lonenflugzeit entspricht, die Hochspannung steilflankig abgeschaltet, setzt die Kraftwirkung des elektrischen Feldes aus und die Ionen können so durch die Reibungskraft des Luftstromes aus dem Raum der größten Feldstärke zwischen den Elektroden 4, 5, 6 herausgetragen werden. Dies geschieht in dem Zeitraum t2. Danach wird diegegenpolige, negative Hochspannung an die gleichen spitzenförmigen Elektroden 6 angelegt. Auch die negative Hochspannung bleibt nur so lange angeschaltet, bis eine negative lonenwolke den Raum zwischen den Elektroden 4, 5, 6 erfüllt (t3), um dann steilflankig abgeschaltet zu werden. Der Abstand a gemäß Fig. 5a zwischen den Elektrodenträgern 5 mit den Entladungselektroden 6 und den Gegenelektroden 4 bestimmt über die lonenbeweglichkeit die Anschaltzeit t, und t3 der Hochspannung. Die Anschaltzeiten liegen beispielsweise zwischen einigen und einigen 10 ms insbesondere zwischen 5 bis 60 ms. Bei Luftströmungen zwischen 0,1 und 1 m pro Sekunde liegen die Ausschaltzeiten, d.h. der Abstand der Impulse, zwischen 100 und 1000 ms. Daraus ergeben sich Tastverhältnisse von 1:5 bis 1:20. Durch dieses Zusammenspiel der festen Elektrodenanordnung und Ein- und Ausschalten der Hochspannung wird der überwiegende Teil der an den Spitzen der Entladungselektroden erzeugten Ionen in die Luftströmung eingetragen. Dadurch sinkt die Strombelastung an den Spitzen um Größenordnungen, für die nachteilige Partikelerzeugung im Luftstrom verantwortlich ist.The tip-shaped discharge electrodes are driven with a high voltage according to FIG. 2 alternately with positive and negative pulses with steep edges. For example, the high voltage is first applied over a period of time t 1 , which is selected such that the space between the electrodes 4, 6 is filled with positive ions. During this time, due to the high ion velocity due to the high field strengths, hardly any ions are left in the perpendicular to the grid-shaped electrode arrangement. Fig. 5a metered flowing air flow. If the high voltage is switched off steeply after a time that corresponds to the ion flight time, the force of the electric field ceases and the ions can be removed from the area of greatest field strength between the electrodes 4, 5, 6 by the frictional force of the air flow. This takes place in the period t 2 . Thereafter, the opposite pole, negative high voltage is applied to the same tip-shaped electrodes 6. The negative high voltage also remains switched on only until a negative ion cloud fills the space between the electrodes 4, 5, 6 (t 3 ), in order then to be switched off on a steep side. The distance a according to FIG. 5a between the electrode carriers 5 with the discharge electrodes 6 and the counter electrodes 4 determines the switch-on time t and t 3 of the high voltage via the ion mobility. The switch-on times are, for example, between a few and a few 10 ms, in particular between 5 and 60 ms. With air flows between 0.1 and 1 m per second, the switch-off times, ie the interval between the pulses, are between 100 and 1000 ms. This results in duty cycles of 1: 5 to 1:20. Through this interaction of the fixed electrode arrangement and switching the high voltage on and off, the majority of the ions generated at the tips of the discharge electrodes are introduced into the air flow. This reduces the current load at the tips by orders of magnitude, which is responsible for the disadvantageous particle generation in the air flow.

Für die Entladungselektroden wird ein erosionsarmes Elektrodenmaterial verwendet, wobei bisher im Stand der Technik Edelstahl und Wolfram zum Einsatz kamen. Dabei zeigte Wolfram ein geringes Abtragverhalten. Untersuchungen weiterer Materialien zeigten, daß mit Niob und seinen Legierungen als Elektrodenmaterial wesentlich bessere Ergebnisse zu erzielen sind, so daß dieses Material bei den Entladungselektroden 6 verwendet wird. Die Tabelle 1 zeigt die Ergebnisse eines über 1000 Stunden durchgeführten Versuches mit 20facher, nichtgetasteter Strombelastung der spitzenförmigen Entladungselektroden. Aus Spalte 2 ergibt sich ein um Faktor 6 gegenüber Wolfram geringes abgetragenes Volumen. Auch Tantal zeigte bessere Ergebnisse als Wolfram.A low-erosion electrode material is used for the discharge electrodes, stainless steel and tungsten being used in the prior art. Tungsten showed a low abrasion behavior. Investigations of further materials showed that with niobium and its alloys as the electrode material, significantly better results can be achieved, so that this material is used in the discharge electrodes 6. Table 1 shows the results of a test carried out over 1000 hours with 20 times, non-tactile current loading of the tip-shaped discharge electrodes. Column 2 shows a volume removed which is 6 times lower than that of tungsten. Tantalum also showed better results than tungsten.

Das Hochspannungsmodul 31, das vorzugsweise in der Nähe der Elektrodenanordnung zur Verringerung der Länge des Hochspannungskabels 9 aber außerhalb des Luftstromes angeordnet ist, ist näher in der Fig. 7a dargestellt. Zwei Hochfrequenzoszillatoren 18 steuern über nichtdargestellte Treiber mit Niederspannung die Primärwicklung zweier Hochspannungstransformatoren 19 an, wobei je nach Durchlassin der jeweils mitvergossenen Hochspannungsdioden der eine Transformator positive Hochspannung und der andere negative Hochspannung erzeugt. Zwei Hochspannungsrelais 20 schalten die jeweilige Hochspannung auf das abgeschirmte Hochspannungskabel 9, das die Entladungselektroden 6 versorgt. Damit die Hochspannungsrelais 20 lastfrei schalten, werden die Oszillatoren 18 und die Relais 20 entsprechend dem Impulsdiagramm nach Fig. 7b angesteuert. Daraus ist zu erkennen, daß die Hochspannungsrelais 20 ein- bzw. ausgeschaltet werden, wenn die aufeinander impulsförmig angesteuerten Oszillatoren 18 nicht eingeschaltet sind.The high-voltage module 31, which is preferably arranged in the vicinity of the electrode arrangement for reducing the length of the high-voltage cable 9 but outside the air flow, is shown in more detail in FIG. 7a. Two high-frequency oscillators 18 drive the primary winding of two high-voltage transformers 19 via low-voltage drivers (not shown), one transformer generating positive high voltage and the other negative high voltage, depending on the passage in the high-voltage diodes which are cast in each case. Two high-voltage relays 20 switch the respective one High voltage on the shielded high-voltage cable 9, which supplies the discharge electrodes 6. So that the high-voltage relays 20 switch load-free, the oscillators 18 and the relays 20 are driven in accordance with the pulse diagram according to FIG. 7b. From this it can be seen that the high-voltage relays 20 are switched on or off when the oscillators 18, which are driven in pulsed fashion, are not switched on.

Die Niederspannungsstelleinheit 30 kann sich in unmittelbarer Nähe des Arbeitsplatzes befinden oder in einem zentralen Schaltschrank untergebracht sein. Sie gibt zwei Gleichströme mit voneinander unabhängig einstellbaren Gleichspannungswerten an das Hochspannungsmodul ab, wodurch die positiven und negativen Hochspannungswerte unabhängig voneinander bestimmt werden können. Zur Regelung der von der Niederspannungsstelleinheit 30 erzeugten Gleichspannungswerte und somit zur Regelung der Balance der lonenpolarität werden in einem nichtdargestellten. Regelkreis die zur Erzeugung der positiven und negativen Ionen aufgewendeten Ströme in dem Hochspannungsmodul 31 getrennt gemessen und als Regelgröße der Niederspannungsstelleinheit 30 zugeführt.The low-voltage control unit 30 can be located in the immediate vicinity of the workplace or can be accommodated in a central control cabinet. It outputs two direct currents with independently adjustable direct voltage values to the high-voltage module, whereby the positive and negative high-voltage values can be determined independently of one another. To regulate the DC voltage values generated by the low-voltage control unit 30 and thus to regulate the balance of the ion polarity are not shown in a. Control circuit, the currents used to generate the positive and negative ions are measured separately in the high-voltage module 31 and supplied to the low-voltage control unit 30 as a control variable.

In der Elektrodenanordnung nach Fig. 5a sind spezielle Gegenelektroden 4 vorgesehen. In den Fig. 5b und 5c werden die Gegenelektroden von die Entladungselektroden 6 umgebenden Anlagen-bauteilen gebildet. Beispielsweise ist nach Fig. 5b ein Rahmensystem 16, das elektrisch mit Masse verbunden ist, als Gegenelektrode ausgebildet. In Fig. 5c ist als Gegenelektrode ein Lochblech 17 vorgesehen, das auf Masse liegt und das als Sichtblende oder dergleichen dienen kann.Special counter electrodes 4 are provided in the electrode arrangement according to FIG. 5a. 5b and 5c, the counter electrodes are formed by system components surrounding the discharge electrodes 6. For example, according to FIG. 5b, a frame system 16, which is electrically connected to ground, is designed as a counter electrode. In Fig. 5c, a perforated plate 17 is provided as the counter electrode, which is on ground and which can serve as a screen or the like.

Ein weiteres Ausführungsbeispiel ist in Fig. 3 dargestellt. Bei diesem Ausführungsbeispiel werden nicht in eine im Raum vorhandene Gas- bzw. Luftströmung Ionen eindosiert, sondern es ist eine geschlossene Vorrichtung vorgesehen, die eine Einrichtung zur Erzeugung einer gleichgerichteten Strömung über einen großen Querschnitt aufweist. Diese Einrichtung weist ein Gebläse 22 auf, das einen Druckraum 21 versorgt, der auf der Abströmseite durch eine als Leitblech ausgebildete gleichförmig luftdurchlässige Schicht 23 begrenzt ist. Das Leitblech bildet die Gegenelektrode zu den spitzenförmigen Entladungselektroden 6, die unterhalb des Leitblechs 23 angeordnet sind und gemäß Fig. 5a auf Elektrodenträgern 5 befestigt sind. Die gleichgerichtete Strömung wird durch eine umlaufende Strömungsschürze 24 im umgebenden Raum stabilisiert.Another embodiment is shown in FIG. 3. In this exemplary embodiment, ions are not metered into a gas or air flow present in the room, but rather a closed device is provided which has a device for generating a rectified flow over a large cross section. This device has a blower 22 which supplies a pressure chamber 21 which is delimited on the outflow side by a uniformly air-permeable layer 23 designed as a baffle plate. The baffle forms the counter electrode to the tip-shaped discharge electrodes 6, which are arranged below the baffle 23 and are attached to electrode carriers 5 according to FIG. 5a. The rectified flow is stabilized in the surrounding space by a circumferential flow apron 24.

Claims (14)

1. Apparatus for producing ions in gas currents with an electrode system exposed to the gas currents comprising at least one discharge electrode and at least one counterelectrode at earth potential, which are in a fixed and defined association with one another, and with a pulse-like high voltage supply, which supplies an alternating sequence of negative and positive pulses with steep edges, characterized in that the at least one discharge electrode (6) is constructed in tip-shaped manner and that the duration of the positive or negative pulses is roughly of the same length as the transit time of the ions between the at least one discharge electrode and the at least one counterelectrode and that between the pulses are provided pulse intervals, whose length is adapted to the speed of the gas current in such a way that the ions produced during the pulses are largely removed by the gas current from the area exposed to the force action of the electric field.
2. Apparatus according to claim 1, characterized in that the pulse duration is approximately 5 to 60 ms and that the distance between the pulses at a gas current speed of approximately 0.1 to 1 m/s is approximately 100 to 1000 ms.
3. Apparatus according to claims 1 or 2, characterized in that the electrode system (31) has rod- like, parallel, alternating counterelectrodes (4) and electrode supports (5) supporting tip-shaped discharge electrodes (6), the latter being arranged in one plane preferably at right angles to the counterelectrodes (4).
4. Apparatus according to claim 3, characterized in that the counterelectrodes (4) and electrode supports (5) are preferably circular and have a diameter of approximately 3 to 15 mm and a reciprocal spacing between 5 and 50 cm and that the tip-shaped discharge electrodes have an identical reciprocal spacing of approximately 5 to 30 cm.
5. Apparatus according to claims 3 or 4, characterized in that the electrode supports (3) supporting the tip-shaped discharge electrode (6) are detachably fixed in a plug-in seat (3, 7).
6. Apparatus according to claim 6, characterized in that the electrode supports (5) are lockable in the plug-in seat (3,7).
7. Apparatus according to claims 1 or 2, characterized in that the at least one counterelectrode (16, 17, 23) is a component of other equipment parts, such as frame structures or safety plates formed from perforated plates, which are at a clearly defined distance from the tip-shaped discharge electrode (6) and are at a clearly defined potential.
8. Apparatus according to one of the claims 1 to 7, characterized in that the high voltage supply comprises a low voltage control unit (30), which supplies two direct currents with adjustable d.c. voltage values, and a high voltage module (31) spatially separated from the low voltage control unit (30) and connected thereto, the high voltage module (31) being positionable in the vicinity of the electrode system (32).
9. Apparatus according to claim 8, characterized in that the high voltage module (31) is connected across a single-wire high voltage line (9) to the electrode system (32).
10. Apparatus according to claims 8 or 9, characterized in that the high voltage module (31) has, for producing the positive and negative high voltage, in each case a voltage converter with an oscillator (18), a transformer (19) and a rectifier (25) and in each case one high voltage relay (20).
11. Apparatus according to claim 10, characterized in that the high voltage relay is switched load-free in the pulse intervals of the driver of the associated oscillators (18) with the same cycle as said driver.
12. Apparatus according to claim 8, characterized in that for controlling the balance of the ion polarity the currents necessary for producing the positive and negative ions are measured and are used as a controlled value for setting the d.c. voltage values.
13. Apparatus according to one of the claims 1 to 12, characterized in that the tip-shaped discharge electrodes (6) are made from niobium or its alloys.
14. Apparatus according to claim 1, characterized in that the gas flow is passed across a pressure chamber (21), which is closed by a deflector or perforated plate (23), etc., and that the discharge electrodes are arranged on the outflow side of the plate (23), the latter forming the defined counterelectrode.
EP87901026A 1986-02-06 1987-02-05 Device for generating ions in gas streams Expired - Lifetime EP0258296B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863603947 DE3603947A1 (en) 1986-02-06 1986-02-06 SYSTEM FOR DOSING AIR-CARRIED IONS WITH HIGH ACCURACY AND IMPROVED EFFICIENCY FOR ELIMINATING ELECTROSTATIC AREA CHARGES
DE3603947 1986-02-06

Publications (2)

Publication Number Publication Date
EP0258296A1 EP0258296A1 (en) 1988-03-09
EP0258296B1 true EP0258296B1 (en) 1990-05-02

Family

ID=6293678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87901026A Expired - Lifetime EP0258296B1 (en) 1986-02-06 1987-02-05 Device for generating ions in gas streams

Country Status (6)

Country Link
US (1) US4878149A (en)
EP (1) EP0258296B1 (en)
JP (1) JP2702951B2 (en)
DE (2) DE3603947A1 (en)
RU (1) RU1830198C (en)
WO (1) WO1987004873A1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095400A (en) * 1988-12-06 1992-03-10 Saito Kohki Co., Ltd. Method and apparatus for eliminating static electricity
GB2229004B (en) * 1989-03-07 1993-09-29 Rolls Royce Plc Improvements in or relating to gas turbine engine tip clearance sensors
US5447763A (en) * 1990-08-17 1995-09-05 Ion Systems, Inc. Silicon ion emitter electrodes
JP2568006B2 (en) * 1990-08-23 1996-12-25 インターナショナル・ビジネス・マシーンズ・コーポレイション Method for discharging electric charge from an object by ionized air and apparatus therefor
DE4400517C2 (en) * 1994-01-07 1996-11-07 Sorbios Verfahrenstech Device for generating ozone
AUPM893094A0 (en) * 1994-10-20 1994-11-10 Shaw, Joshua Improvements in or in relating to negative air ion generators
US6069314A (en) * 1997-05-16 2000-05-30 Varela; Manuel Domingo Emitter of ions for a lightning rod with a parabolic reflector
US6924455B1 (en) 1997-06-26 2005-08-02 Applied Science & Technology, Inc. Integrated plasma chamber and inductively-coupled toroidal plasma source
US7569790B2 (en) 1997-06-26 2009-08-04 Mks Instruments, Inc. Method and apparatus for processing metal bearing gases
US8779322B2 (en) 1997-06-26 2014-07-15 Mks Instruments Inc. Method and apparatus for processing metal bearing gases
US7166816B1 (en) 1997-06-26 2007-01-23 Mks Instruments, Inc. Inductively-coupled torodial plasma source
US6388226B1 (en) 1997-06-26 2002-05-14 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
US6815633B1 (en) 1997-06-26 2004-11-09 Applied Science & Technology, Inc. Inductively-coupled toroidal plasma source
US6150628A (en) 1997-06-26 2000-11-21 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
DE19745316C2 (en) * 1997-10-14 2000-11-16 Thomas Sebald Device for generating high voltage for the ionization of gases
JP4219451B2 (en) * 1998-06-04 2009-02-04 株式会社キーエンス Static eliminator
US6252756B1 (en) 1998-09-18 2001-06-26 Illinois Tool Works Inc. Low voltage modular room ionization system
US6252233B1 (en) 1998-09-18 2001-06-26 Illinois Tool Works Inc. Instantaneous balance control scheme for ionizer
US6504308B1 (en) 1998-10-16 2003-01-07 Kronos Air Technologies, Inc. Electrostatic fluid accelerator
KR100653256B1 (en) 1998-12-22 2006-12-01 일리노이즈 툴 워크스 인코포레이티드 Self-balancing ionizer monitor, and method of detecting faults
JP4519333B2 (en) * 2001-01-19 2010-08-04 株式会社キーエンス Pulse AC type static eliminator
US7122070B1 (en) 2002-06-21 2006-10-17 Kronos Advanced Technologies, Inc. Method of and apparatus for electrostatic fluid acceleration control of a fluid flow
US6963479B2 (en) 2002-06-21 2005-11-08 Kronos Advanced Technologies, Inc. Method of and apparatus for electrostatic fluid acceleration control of a fluid flow
US6727657B2 (en) * 2002-07-03 2004-04-27 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and a method of controlling fluid flow
US6919698B2 (en) * 2003-01-28 2005-07-19 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and method of controlling a fluid flow
US6937455B2 (en) 2002-07-03 2005-08-30 Kronos Advanced Technologies, Inc. Spark management method and device
US7157704B2 (en) 2003-12-02 2007-01-02 Kronos Advanced Technologies, Inc. Corona discharge electrode and method of operating the same
US7150780B2 (en) 2004-01-08 2006-12-19 Kronos Advanced Technology, Inc. Electrostatic air cleaning device
US6826030B2 (en) * 2002-09-20 2004-11-30 Illinois Tool Works Inc. Method of offset voltage control for bipolar ionization systems
US7378651B2 (en) * 2002-09-25 2008-05-27 Thermo Finnigan Llc High field asymmetric waveform ion mobility spectrometer FAIMS
GB2406222B (en) * 2003-09-22 2007-03-21 Meech Static Eliminators Ltd Electrical ioniser
DE10348217A1 (en) * 2003-10-16 2005-05-25 Brandenburgische Technische Universität Cottbus Device and method for Aerosolauf- or aerosol transfer into a defined state of charge of a bipolar diffusion charging by means of an electrical discharge in the aerosol space
US7180722B2 (en) * 2004-06-24 2007-02-20 Illinois Tool Works, Inc. Alternating current monitor for an ionizer power supply
US7410532B2 (en) 2005-04-04 2008-08-12 Krichtafovitch Igor A Method of controlling a fluid flow
WO2007078135A1 (en) * 2005-12-30 2007-07-12 Halla Climate Control Corp. Vehicle air purifier with a negative and positive ion generator and air conditioning system using the same
US8773837B2 (en) 2007-03-17 2014-07-08 Illinois Tool Works Inc. Multi pulse linear ionizer
US8885317B2 (en) * 2011-02-08 2014-11-11 Illinois Tool Works Inc. Micropulse bipolar corona ionizer and method
US20090316325A1 (en) * 2008-06-18 2009-12-24 Mks Instruments Silicon emitters for ionizers with high frequency waveforms
US9380689B2 (en) 2008-06-18 2016-06-28 Illinois Tool Works Inc. Silicon based charge neutralization systems
WO2012162005A1 (en) * 2011-05-24 2012-11-29 Carrier Corporation Passively energized field wire for electrically enhanced air filtration system
US10005015B2 (en) 2011-05-24 2018-06-26 Carrier Corporation Electrostatic filter and method of installation
US9918374B2 (en) 2012-02-06 2018-03-13 Illinois Tool Works Inc. Control system of a balanced micro-pulsed ionizer blower
US9125284B2 (en) 2012-02-06 2015-09-01 Illinois Tool Works Inc. Automatically balanced micro-pulsed ionizing blower
USD743017S1 (en) 2012-02-06 2015-11-10 Illinois Tool Works Inc. Linear ionizing bar
US11569641B2 (en) 2020-11-16 2023-01-31 Nrd Llc Ionizer bar

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711743A (en) * 1971-04-14 1973-01-16 Research Corp Method and apparatus for generating ions and controlling electrostatic potentials
US3942072A (en) * 1974-10-18 1976-03-02 Burlington Industries, Inc. Method and system for maintaining an electrically neutral atmosphere
US4092543A (en) * 1976-09-13 1978-05-30 The Simco Company, Inc. Electrostatic neutralizer with balanced ion emission
GB2012493B (en) * 1977-09-05 1982-02-24 Masuda S Device for electrically charging particles
JPS59501564A (en) * 1982-08-10 1984-08-30 ダウテイ・エレクトロニク・コンポーネンツ・リミテツド electric circuit unit
US4542434A (en) * 1984-02-17 1985-09-17 Ion Systems, Inc. Method and apparatus for sequenced bipolar air ionization
DE3412563A1 (en) * 1984-04-04 1985-10-17 I R S Industrie Rationalisierungs Systeme GmbH, 6100 Darmstadt DEVICE FOR NEUTRALIZING CHARGED WORKPIECES
DE3501155A1 (en) * 1985-01-16 1986-07-17 Metallgesellschaft Ag, 6000 Frankfurt SPRAY AND DEPOSITION ELECTRODES FOR ELECTROFILTER

Also Published As

Publication number Publication date
JPS63502466A (en) 1988-09-14
WO1987004873A1 (en) 1987-08-13
RU1830198C (en) 1993-07-23
DE3762563D1 (en) 1990-06-07
US4878149A (en) 1989-10-31
EP0258296A1 (en) 1988-03-09
JP2702951B2 (en) 1998-01-26
DE3603947A1 (en) 1987-08-13

Similar Documents

Publication Publication Date Title
EP0258296B1 (en) Device for generating ions in gas streams
DE68916936T2 (en) Arrangement for removing static electricity from charged objects in clean rooms.
DE68916938T2 (en) Arrangement for removing static electricity from charged objects in clean rooms.
DE2810735C2 (en) Electric gas cleaning device
DE4031382C2 (en) Emission control device
DD257590A5 (en) ARRANGEMENT FOR GENERATING AN ELECTRIC CORONA DISCHARGE IN THE AIR
DE899017C (en) Device for electrostatic spray painting
DE2462539A1 (en) ELECTRIC DUST COLLECTING DEVICE
EP0238970B1 (en) Process and device for agglomerating electrically opposed solid or fluid particles suspended in a gas stream
DE2341541C2 (en) Electrostatic precipitator
DE3708508A1 (en) Device and process for decreasing pollutants in combustion exhaust gases
EP2637799B1 (en) Method for electrostatically coating objects and application device
DE102009033827B3 (en) Unloading device for contactless dismantling of electrostatic loads on isolating materials, comprises electrode, which is attached on positive and negative high voltage source
DE2600592C2 (en)
DE102006033945B4 (en) Controlling the high voltage of an electric air filter device
DE2809054C2 (en)
DE2151220B2 (en) Device for electrostatic charging and separation of mass particles
EP2298450B1 (en) Electrostatic precipitator and method for electrostatic precipitation from gases
EP0210949B1 (en) Apparatus for coating the weld seam of a can body with a powder
DE2144202A1 (en) PROCEDURE AND EQUIPMENT TO PREVENT THE FORMATION OF OVERLAP IN SYSTEMS WITH HIGH VOLTAGE FIELDS, IN PARTICULAR PAINT SPRAYING SYSTEMS AND POWDER SPRAYING SYSTEMS
DE2438881C2 (en) Electrostatic precipitator
DE1027113B (en) Method and device for the electrostatic atomization and deposition of coating material
DE4339611A1 (en) Device for removing dust from exhaust gases
DE3619179A1 (en) Method and device for neutralising electrically charged workpieces in a clean room
DE2926123A1 (en) DEVICE FOR GENERATING IONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR LI

17P Request for examination filed

Effective date: 19880209

17Q First examination report despatched

Effective date: 19890126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REF Corresponds to:

Ref document number: 3762563

Country of ref document: DE

Date of ref document: 19900607

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020129

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020424

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020425

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST