EP0257544A2 - Receiving device for microwave signals - Google Patents

Receiving device for microwave signals Download PDF

Info

Publication number
EP0257544A2
EP0257544A2 EP87112028A EP87112028A EP0257544A2 EP 0257544 A2 EP0257544 A2 EP 0257544A2 EP 87112028 A EP87112028 A EP 87112028A EP 87112028 A EP87112028 A EP 87112028A EP 0257544 A2 EP0257544 A2 EP 0257544A2
Authority
EP
European Patent Office
Prior art keywords
signals
signal
antenna
voltage
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87112028A
Other languages
German (de)
French (fr)
Other versions
EP0257544B1 (en
EP0257544A3 (en
Inventor
Helmut Dr. Entschladen
Rainer Strietzel
Bernd Dipl.-Ing. Siedelhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASEA BROWN BOVERI AKTIENGESELLSCHAFT
Original Assignee
Licentia Patent Verwaltungs GmbH
BBC Brown Boveri AG Germany
BBC Brown Boveri France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH, BBC Brown Boveri AG Germany, BBC Brown Boveri France SA filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0257544A2 publication Critical patent/EP0257544A2/en
Publication of EP0257544A3 publication Critical patent/EP0257544A3/en
Application granted granted Critical
Publication of EP0257544B1 publication Critical patent/EP0257544B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas

Definitions

  • the invention relates to a receiving device for microwave signals with a receiving antenna and a detector circuit.
  • Microwave signals are usually transmitted wirelessly using special antennas and evaluated, demodulated, mixed, amplified, etc. by electronic receivers.
  • the transmit and receive antennas are designed as horn, parabolic antennas or in planar microwave stripline technology.
  • microwave stripline technology has become more and more popular because it enables miniaturized microwave circuits to let.
  • Such a strip line consists of a conductive base area, a dielectric carrier material (substrate plate) arranged above it and a metallized conductor track located thereon.
  • the lines known from high-frequency technology with 50 ⁇ characteristic impedance can also be realized on ceramic substrates.
  • microwave strip lines compared to coaxial or hollow lines, which are largely due to ohmic losses, partly to dielectric losses and, in the case of unshielded circuits, to radiation losses, are largely compensated for by the shorter line sections.
  • the behavior of idling strip lines to emit electromagnetic waves can be used to manufacture planar antennas. Most commonly used are microwave stripline resonators of length ⁇ / 2.
  • a receiving device constructed in an integrated form is supplied with energy from outside by strong microwave radiation via planar antennas in stripline technology
  • a receiving device should therefore be created which only has two signals which are closely adjacent in frequency with one antenna receives and processes with very different amplitudes and different types of polarization.
  • the use of only one antenna for the signals which differ in frequency, amplitude and polarization results in a simple, space-saving and inexpensive construction in the receiving device according to the invention.
  • the entire arrangement can be integrated even more easily, so that all system functions can be accommodated on one module (substrate plate) (see FIG. 1).
  • a division of the transmission into horizontally and vertically linearly polarized waves and the separate decoupling of the two received signals (energy signal and data signal) results in a doubling of the reception channels.
  • the power signal is a hundred times larger than the data signal - and the close frequency neighborhood of the transmitted signals, the decoupling is very good and the reception quality is high. Further advantages are evident from the description below.
  • the receiving device according to the invention is illuminated by two signals of almost the same frequency (spacing a few MHz).
  • the amplitudes of the two signals are very different (c. 20 dB).
  • the polarization planes of the emitted signals are shifted from one another by 90 °.
  • An unmodulated strong RF carrier P U of large amplitude is radiated linearly polarized vertically (or horizontally), while an amplitude-modulated information signal P M of small amplitude is radiated horizontally (or vertically) linearly polarized.
  • the operating range of the transmitted signals is approximately 6 GHz.
  • the receiving device consists of an antenna 1 constructed in stripline technology, which receives both the vertically (horizontally) linearly polarized energy signal P U and the horizontally (vertically) linearly polarized data signal P M.
  • the antenna provided for the energy signal P U and the data signal P M is a strip line on a dielectric substrate (usually aluminum oxide ceramic or poly tetrafluoroethylene).
  • the high-frequency signals from the antennas must be decoupled and processed.
  • the RF signals are derived separately via suitable connections on the stripline antenna 1.
  • the receiving energy signal P U is fed to the center connection A of the series connection of two diodes D1 and D2.
  • This diode circuit is used for rectification and, in conjunction with capacitors (not shown), for voltage doubling and is intended to enable a high output voltage U B at terminals B and C of the series circuit.
  • a rectifier circuit with only one diode is of course also possible.
  • An unmodulated DC voltage is thus applied to terminals B and C, which can be used, for example, to supply power to active components.
  • the data signal P M received by the antenna 1 and offset by 90 ° lies a few MHz next to the energy signal P U , is weaker by a factor of 100 than the energy signal P U and is amplitude-modulated.
  • the received signal is rectified at diode D3 and is available at terminal D as a modulated DC voltage U M.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Because of the geometry of a stripline antenna, this antenna can receive horizontally and vertically polarised signals (PM, PU). The received vertically polarised energy signals (PU) and the horizontally polarised data signals (PM) are demodulated separately and further processed. The energy signals are available as an operating voltage (UB) after a combined detector and voltage doubling circuit (D1,D2). The data signals are further processed as a modulated DC voltage after demodulation (D3). …<IMAGE>…

Description

Die Erfindung bezieht sich auf eine Empfangseinrichtung für Mikrowellensignale mit einer Empfangsantenne und einer Detektorschaltung.The invention relates to a receiving device for microwave signals with a receiving antenna and a detector circuit.

Die Ubertragung von Informationen im Mikrowellenbereich (oberhalb 1 GHz) läßt eine neuartige Technik zu, die sich in den letzten Jahren zunehmend ausgeweitet hat. Eine Einführung in die integrierte Mikrowellentechnik ist aus der Zeitschrift "Elektronik-Anzeiger" Jahrg. 1977 mit den Heften 4, 5, 6, 8, 9 bekannt.The transmission of information in the microwave range (above 1 GHz) allows a new type of technology that has been increasingly expanded in recent years. An introduction to integrated microwave technology is known from the magazine "Elektronik-Anzeiger" year 1977 with issues 4, 5, 6, 8, 9.

Mikrowellensignale werden üblicherweise drahtlos unter Verwendung von speziellen Antennen übertragen und durch elektronische Empfänger ausgewertet, demoduliert, ge­mischt, verstärkt usw. Die Sende- und Empfangsantennen werden dabei als Horn-, Parabolantenne oder in planarer Mikrowellen-Streifenleitungstechnik ausgeführt. Dabei hat sich in den letzten Jahren die Mikrowellen-Streifen­leitungstechnik immer mehr durchgesetzt, weil sich damit miniaturisierte Mikrowellenschaltungen realisieren lassen. Eine derartige Streifenleitung besteht aus einer leitenden Grundfläche, einem darüber angeordneten di­elektrischen Trägermaterial (Substratplättchen) und einer darauf befindlichen metallisierten Leiterbahn. Durch geeignete Dimensionierung der Streifenleitungen lassen sich auch auf Keramiksubstrat die von der Hoch­frequenztechnik bekannten Leitungen mit 50 Ω Wellenwiderstand realisieren. Die gegenüber Koaxial- oder Hohlleitungen größeren Verluste von Mikrowellenstreifenleitungen, die zum großen Teil auf ohmschen Verlusten, zum kleineren Teil auf dielektri­schen Verlusten und bei nicht abgeschirmten Schaltungen auf Abstrahlungsverlusten beruhen, werden durch die kürzeren Leitungsstrecken weitgehend kompensiert. Das Verhalten leerlaufender Streifenleitungen, elektromagne­tische Wellen abzustrahlen, läßt sich zur Herstellung planarer Antennen ausnutzen. Am häufigsten dienen dazu Mikrowellenstreifenleitungs-Resonatoren der Länge λ/₂.Microwave signals are usually transmitted wirelessly using special antennas and evaluated, demodulated, mixed, amplified, etc. by electronic receivers. The transmit and receive antennas are designed as horn, parabolic antennas or in planar microwave stripline technology. In the past few years, microwave stripline technology has become more and more popular because it enables miniaturized microwave circuits to let. Such a strip line consists of a conductive base area, a dielectric carrier material (substrate plate) arranged above it and a metallized conductor track located thereon. By suitable dimensioning of the strip lines, the lines known from high-frequency technology with 50 Ω characteristic impedance can also be realized on ceramic substrates. The greater losses of microwave strip lines compared to coaxial or hollow lines, which are largely due to ohmic losses, partly to dielectric losses and, in the case of unshielded circuits, to radiation losses, are largely compensated for by the shorter line sections. The behavior of idling strip lines to emit electromagnetic waves can be used to manufacture planar antennas. Most commonly used are microwave stripline resonators of length λ / ₂.

Für die Ubertragung verschiedener Mikrowellensignale mit unterschiedlicher Frequenz, Polarisation und Modulation ist es erforderlich, mehrere getrennte Empfangsantennen vorzusehen. Dies wird besonders dann erforderlich, wenn beispielsweise ein starkes, unmoduliertes HF-Signal und ein schwaches Informationssignal übertragen werden sol­len. Zusätzlich entstehen bei der obligatorischen Gleichrichter/Detektor-Demodulationsschaltung Schwierig­keiten. Denn wegen der hohen Aussteuerung der Empfangs­diode durch das starke unmodulierte HF-Signal ver­schlechtert sich die Empfindlichkeit der Eingangsschal­tung für ein schwaches, moduliertes Signal, so daß eine Pegelerhöhung für dieses eigentliche Nutzsignal erfor­derlich wäre.For the transmission of different microwave signals with different frequency, polarization and modulation, it is necessary to provide several separate receiving antennas. This is particularly necessary if, for example, a strong, unmodulated RF signal and a weak information signal are to be transmitted. In addition, difficulties arise with the mandatory rectifier / detector demodulation circuit. Because due to the high modulation of the receiving diode by the strong unmodulated RF signal, the sensitivity of the input circuit for a weak, modulated signal deteriorates, so that an increase in level for this actual useful signal would be necessary.

Ausgehend von der DE-PS 25 08 201, in der eine in inte­grierter Form aufgebaute Empfangseinrichtung über plana­re Antennen in Streifenleitungstechnik von außen durch starke Mikrowellenstrahlung mit Energie versorgt wird, soll deshalb eine Empfangseinrichtung geschaffen werden, die nur mit einer Antenne zwei frequenzmäßig eng benach­barte Signale mit stark unterschiedlicher Amplitude und verschiedenartiger Polarisation empfängt und verarbei­tet.Starting from DE-PS 25 08 201, in which a receiving device constructed in an integrated form is supplied with energy from outside by strong microwave radiation via planar antennas in stripline technology, a receiving device should therefore be created which only has two signals which are closely adjacent in frequency with one antenna receives and processes with very different amplitudes and different types of polarization.

Erfindungsgemäß wird dies durch die Merkmale des Patent­anspruchs erzielt.According to the invention, this is achieved by the features of the patent claim.

Durch die Verwendung nur einer Antenne für die in Fre­quenz, Amplitude und Polarisation unterschiedlichen Si­gnale ergibt sich ein einfacher, platzsparender und bil­liger Aufbau bei der erfindungsgemäßen Empfangseinrich­tung. Die gesamte Anordnung läßt sich dadurch noch ein­facher integrieren, so daß alle Systemfunktionen auf einem Modul (Substratplatte) untergebracht werden können (siehe Fig. 1). Durch eine Aufteilung der Ubertragung in horizontal und vertikal linear polarisierte Wellen und die getrennte Auskopplung der beiden empfangenen Signale (Energiesignal und Datensignal) ergibt sich eine Verdop­pelung der Empfangskanäle. Trotz der hohen Leistungsun­terschiede - das Energiesignal ist von der Leistung her hundertmal größer als das Datensignal - und der engen Frequenznachbarschaft der übertragenden Signale ergibt sich eine sehr gut Entkopplung und damit eine hohe Emp­fangsqualität. Weitere Vorteile sind aus der nachfolgen­den Beschreibung ersichtlich.The use of only one antenna for the signals which differ in frequency, amplitude and polarization results in a simple, space-saving and inexpensive construction in the receiving device according to the invention. The entire arrangement can be integrated even more easily, so that all system functions can be accommodated on one module (substrate plate) (see FIG. 1). A division of the transmission into horizontally and vertically linearly polarized waves and the separate decoupling of the two received signals (energy signal and data signal) results in a doubling of the reception channels. Despite the high power differences - the power signal is a hundred times larger than the data signal - and the close frequency neighborhood of the transmitted signals, the decoupling is very good and the reception quality is high. Further advantages are evident from the description below.

Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der Zeichnung näher erläutert.An embodiment of the invention is explained below with reference to the drawing.

Es zeigen:

  • Fig. 1 eine in Streifenleitungstechnik ausgeführte Empfangsschaltung und
  • Fig. 2 das zu Fig. 1 gehörende elektrische Schalt­bild.
Show it:
  • Fig. 1 is a stripline technology receiving circuit and
  • Fig. 2 shows the electrical circuit diagram belonging to Fig. 1.

Die erfindungsgemäße Empfangseinrichtung wird von zwei nahezu gleichfrequenten (Abstand einige MHz) Signalen angestrahlt.The receiving device according to the invention is illuminated by two signals of almost the same frequency (spacing a few MHz).

Die Amplituden der beiden Signale sind dagegen sehr un­terschiedlich (c. 20 dB). Die Polarisationsebenen der abgestrahlten Signale sind um 90° gegeneinander verscho­ben.In contrast, the amplitudes of the two signals are very different (c. 20 dB). The polarization planes of the emitted signals are shifted from one another by 90 °.

Ein unmodulierter starker HF-Träger PU großer Amplitude wird vertikal (oder horizontal) linear polarisiert abge­strahlt, während ein amplitudenmoduliertes Informations­signal PM geringer Amplitude horizontal (oder vertikal) linear polarisiert abgestrahlt wird. Der Arbeitsbereich der übertragenen Signale liegt bei ungefähr 6 GHz.An unmodulated strong RF carrier P U of large amplitude is radiated linearly polarized vertically (or horizontally), while an amplitude-modulated information signal P M of small amplitude is radiated horizontally (or vertically) linearly polarized. The operating range of the transmitted signals is approximately 6 GHz.

Die Empfangseinrichtung besteht aus einer in Streifen­leitungstechnik aufgebauten Antenne 1, die sowohl das vertikal (horizontal) linear polarisierte Energiesignal PU als auch das horizontal (vertikal) linear polarisier­te Datensignal PM empfängt. Dabei sind die Abmessungen der Antennenstruktur so gewählt, daß die Länge in x- Richtung der halben Leitungswellenlänge des Signals PU entspricht (lx =

Figure imgb0001
=
Figure imgb0002
), während die Länge in y-­Richtung (ly) genau
Figure imgb0003
=
Figure imgb0004
beträgt (c = effektive Ausbreitungsgeschwindigkeit im Substratmaterial).The receiving device consists of an antenna 1 constructed in stripline technology, which receives both the vertically (horizontally) linearly polarized energy signal P U and the horizontally (vertically) linearly polarized data signal P M. The dimensions of the antenna structure are chosen so that the length in the x direction corresponds to half the line wavelength of the signal P U (l x =
Figure imgb0001
=
Figure imgb0002
), while the length in the y direction (ly) is exact
Figure imgb0003
=
Figure imgb0004
is (c = effective propagation speed in the substrate material).

Die für das Energiesignal PU und das Datensignal PM vor­gesehene Antenne ist als Streifenleitung auf ein dielek­trisches Substrat (meist Aluminiumoxidkeramik oder Poly­ tetrafluorethylen) aufgetragen. Die hochfrequenzmäßigen Signale von der Antenn müssen ausgekoppelt und weiter­verarbeitet werden. Dazu werden über geeignete Anschlüs­se auf der Streifenleitungsantenne 1 die HF-Signale ge­trennt abgeleitet. Das empfangende Energiesignal PU wird dabei auf den Mittelanschluß A der Reihenschaltung von zwei Dioden D1 und D2 geführt. Diese Diodenschaltung dient zur Gleichrichtung und in Verbindung mit nicht dargestellten Kapazitäten zur Spannungsverdopplung und soll eine hohe Ausgangsspannung UB an den Klemmen B und C der Reihenschaltung ermöglichen. Eine Gleichrichter­schaltung mit nur einer Diode ist selbstverständlich ebenfalls möglich. An den Klemmen B und C liegt somit eine unmodulierte Gleichspannung, die beispielsweise zur Spannungsversorgung für aktive Bauteile verwendet werden kann.The antenna provided for the energy signal P U and the data signal P M is a strip line on a dielectric substrate (usually aluminum oxide ceramic or poly tetrafluoroethylene). The high-frequency signals from the antennas must be decoupled and processed. For this purpose, the RF signals are derived separately via suitable connections on the stripline antenna 1. The receiving energy signal P U is fed to the center connection A of the series connection of two diodes D1 and D2. This diode circuit is used for rectification and, in conjunction with capacitors (not shown), for voltage doubling and is intended to enable a high output voltage U B at terminals B and C of the series circuit. A rectifier circuit with only one diode is of course also possible. An unmodulated DC voltage is thus applied to terminals B and C, which can be used, for example, to supply power to active components.

Das von der Antenne 1 empfangene, um 90° versetzte Da­tensignal PM liegt einige MHz neben dem Energiesignal PU, ist um den Faktor 100 schwächer als das Energiesig­nal PU und ist amplitudenmoduliert. Das empfangene Sig­nal wird an der Diode D3 gleichgerichtet und steht an der Klemme D als modulierte Gleichspannung UM zur Verfü­gung.The data signal P M received by the antenna 1 and offset by 90 ° lies a few MHz next to the energy signal P U , is weaker by a factor of 100 than the energy signal P U and is amplitude-modulated. The received signal is rectified at diode D3 and is available at terminal D as a modulated DC voltage U M.

Claims (1)

1. Empfangseinrichtung für Mikrowellensignale mit einer Empfangsantenne und einer Detektorschaltung, da­durch gekennzeichnet,daß
nur eine einzige Antenne (1) für den Empfang eines ver­tikal polarisierten Energiesignals (PU) und eines hori­zontal polarisierten Datensignals (PM) vorgesehen ist, daß für das Energiesignal (PU) und das Datensignal (PM) getrennte Detektorschaltungen vorhanden sind, und daß die Detektorschaltung für das Energiesignal (PU) eine Spannungsverdopplerschaltung (D1, D2) zur Erzeugung einer Betriebsspannung (UB) und die Detektorschaltung für das Datensignal (PM) eine Diode (D3) mit einem Ar­beitswiderstand (R) zur Bildung einer modulierten Gleichspannung (UM) aufweisen.
1. Receiving device for microwave signals with a receiving antenna and a detector circuit, characterized in that
only a single antenna (1) for receiving a vertically polarized energy signal (P U ) and a horizontally polarized data signal (P M ) is provided, that separate detector circuits are provided for the energy signal (P U ) and the data signal (P M ), and that the detector circuit for the energy signal (P U ) a voltage doubler circuit (D1, D2) for generating an operating voltage (U B ) and the detector circuit for the data signal (P M ) a diode (D3) with a load resistor (R) to form a have modulated DC voltage (U M ).
EP87112028A 1986-08-22 1987-08-19 Receiving device for microwave signals Expired - Lifetime EP0257544B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3628583 1986-08-22
DE3628583A DE3628583C2 (en) 1986-08-22 1986-08-22 Receiving device for microwave signals

Publications (3)

Publication Number Publication Date
EP0257544A2 true EP0257544A2 (en) 1988-03-02
EP0257544A3 EP0257544A3 (en) 1988-12-07
EP0257544B1 EP0257544B1 (en) 1993-06-09

Family

ID=6307976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112028A Expired - Lifetime EP0257544B1 (en) 1986-08-22 1987-08-19 Receiving device for microwave signals

Country Status (4)

Country Link
US (1) US4918749A (en)
EP (1) EP0257544B1 (en)
JP (1) JP2812680B2 (en)
DE (2) DE3628583C2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893126A (en) * 1987-09-23 1990-01-09 U.S. Philips Corporation Integrated millimeter-wave transceiver
EP0376074A2 (en) * 1988-12-28 1990-07-04 Her Majesty In Right Of Canada, As Represented By The Minister Of Communications Dual polarization microstrip array antenna
FR2646739A1 (en) * 1989-04-03 1990-11-09 Yamatake Honeywell Co Ltd MICROWAVE ELECTRIC POWER RECTIFIER
GB2242316A (en) * 1990-03-22 1991-09-25 Funai Electric Engineering Com Patch type microstrip antenna for receiving vertically and/or horizontally polarized waves
GB2220525B (en) * 1988-07-08 1991-10-30 Marconi Co Ltd Waveguide coupling arrangement
EP0682382A2 (en) * 1994-05-09 1995-11-15 Disys Corporation Microwave integrated tuned detector
DE19851058A1 (en) * 1998-11-05 2000-05-18 Trw Automotive Electron & Comp Transmitting and / or receiving device, in particular for a motor vehicle
EP1970994A1 (en) * 2007-03-12 2008-09-17 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A direct current energy supplying antenna structure
WO2010099266A1 (en) 2009-02-26 2010-09-02 Harris Corporation Wireless communications including an antenna for wireless power transmission and data communication and associated methods
CN103474778A (en) * 2013-09-13 2013-12-25 电子科技大学 Dual-frequency receiving antenna and dual-frequency rectifying antenna
RU2519389C1 (en) * 2012-11-12 2014-06-10 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Small-sized resonator for wireless power transmission and its integration with antenna for data transmission

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142698A (en) * 1988-06-08 1992-08-25 Nec Corporation Microwave integrated apparatus including antenna pattern for satellite broadcasting receiver
JP2612190B2 (en) * 1988-08-31 1997-05-21 山武ハネウエル株式会社 Full-duplex communication device consisting of answering device and interrogation device
JP2568429B2 (en) * 1988-08-31 1997-01-08 山武ハネウエル株式会社 Wireless transponder
JPH07104409B2 (en) * 1988-08-31 1995-11-13 山武ハネウエル株式会社 Wireless receiver
JPH0683551B2 (en) * 1989-06-02 1994-10-19 山武ハネウエル株式会社 Wireless receiver
US5127102A (en) * 1991-01-15 1992-06-30 Raytheon Company Radio frequency mixer circuits
US5398035A (en) * 1992-11-30 1995-03-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
US5530637A (en) * 1993-03-11 1996-06-25 Matsushita Electric Industrial Co., Ltd. Electric power receiving circuit and responder for automatic vehicle identification system including the same
US5394159A (en) * 1993-11-02 1995-02-28 At&T Corp. Microstrip patch antenna with embedded detector
JP3063513B2 (en) * 1994-02-10 2000-07-12 松下電器産業株式会社 Microwave detection feed circuit
US5943016A (en) * 1995-12-07 1999-08-24 Atlantic Aerospace Electronics, Corp. Tunable microstrip patch antenna and feed network therefor
US5777581A (en) * 1995-12-07 1998-07-07 Atlantic Aerospace Electronics Corporation Tunable microstrip patch antennas
GB9705870D0 (en) * 1997-03-21 1997-05-07 Philips Electronics Nv Charging of secondary cells using transmitted microwave energy
JP3413081B2 (en) * 1997-10-17 2003-06-03 株式会社東芝 Detection circuit
EP1734461A2 (en) 1999-07-12 2006-12-20 Matsushita Electric Industrial Co., Ltd. Mobile body discrimination apparatus for rapidly acquiring respective data sets transmitted through modulation of reflected radio waves by transponders which are within a communication region of an interrogator apparatus
US7180402B2 (en) * 2000-06-06 2007-02-20 Battelle Memorial Institute K1-53 Phase modulation in RF tag
US7002517B2 (en) * 2003-06-20 2006-02-21 Anritsu Company Fixed-frequency beam-steerable leaky-wave microstrip antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29911E (en) * 1973-04-17 1979-02-13 Ball Corporation Microstrip antenna structures and arrays

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2508201C2 (en) * 1975-02-26 1983-02-10 Brown, Boveri & Cie Ag, 6800 Mannheim Device for contactless entry and exit control of transport containers
JPS5456522U (en) * 1977-09-28 1979-04-19
JPS5679504A (en) * 1979-12-03 1981-06-30 Nec Corp Frequency converter
FR2519809A1 (en) * 1982-01-08 1983-07-18 Meyer Sylvain MULTIFUNCTIONAL HYPERFREQUENCY CIRCUIT AND BIDIRECTIONAL TRANSMISSION DEVICES USING SUCH CIRCUIT
JPS611102A (en) * 1984-01-13 1986-01-07 Japan Radio Co Ltd Microstrip antenna circuit switching polarized wave
ATE38728T1 (en) * 1984-01-19 1988-12-15 Clesse Mandet Sa PRESSURE RELIEF VALVE.
US4679249A (en) * 1984-02-15 1987-07-07 Matsushita Electric Industrial Co., Ltd. Waveguide-to-microstrip line coupling arrangement and a frequency converter having the coupling arrangement
AU572077B2 (en) * 1985-02-01 1988-04-28 Nec Corporation Stripline diode mixer
DE3507865A1 (en) * 1985-03-06 1986-09-11 Philips Patentverwaltung Gmbh, 2000 Hamburg CIRCUIT ARRANGEMENT FOR A TUNER FOR SWITCHING SEVERAL FREQUENCY RANGES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29911E (en) * 1973-04-17 1979-02-13 Ball Corporation Microstrip antenna structures and arrays

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IEEE AP-S INTERNATIONAL SYMPOSIUM 1981 SYMPOSIUM DIGEST, Los Angeles, Mai 1981, Band 1, Seiten 363-365, IEEE, New York, US; Y. SAZANAMI et al.: "Broadbanding of microstrip antennas by orthogonal polarizations" *
IEEE AP-S INTERNATIONAL SYMPOSIUM 1985 SYMPOSIUM DIGEST, Vancouver, 17.-21. Juni 1985, Band 1, Seiten 409-411, IEEE, New York, US; Y.T. LO et al.: "Multifunctional microstrip antennas" *
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Band 23, Nr. 1, Januar 1975, Seiten 90-93, New York, US; J.Q. HOWELL: "Microstrip antennas" *
N.T.I.S. TECH NOTES, Februar 1984, A-K, Springfield, Virginia, US; "Printed circuit converts RF energy to dc power" *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893126A (en) * 1987-09-23 1990-01-09 U.S. Philips Corporation Integrated millimeter-wave transceiver
GB2220525B (en) * 1988-07-08 1991-10-30 Marconi Co Ltd Waveguide coupling arrangement
EP0376074A2 (en) * 1988-12-28 1990-07-04 Her Majesty In Right Of Canada, As Represented By The Minister Of Communications Dual polarization microstrip array antenna
EP0376074A3 (en) * 1988-12-28 1990-12-27 Her Majesty In Right Of Canada, As Represented By The Minister Of Communications Dual polarization microstrip array antenna
FR2646739A1 (en) * 1989-04-03 1990-11-09 Yamatake Honeywell Co Ltd MICROWAVE ELECTRIC POWER RECTIFIER
GB2242316A (en) * 1990-03-22 1991-09-25 Funai Electric Engineering Com Patch type microstrip antenna for receiving vertically and/or horizontally polarized waves
GB2242316B (en) * 1990-03-22 1994-08-24 Funai Electric Engineering Com Patch type microstrip antenna for receiving vertically and/or horizontally polarized waves
EP0682382A3 (en) * 1994-05-09 1995-12-20 Disys Corporation Microwave integrated tuned detector
EP0682382A2 (en) * 1994-05-09 1995-11-15 Disys Corporation Microwave integrated tuned detector
DE19851058A1 (en) * 1998-11-05 2000-05-18 Trw Automotive Electron & Comp Transmitting and / or receiving device, in particular for a motor vehicle
EP1970994A1 (en) * 2007-03-12 2008-09-17 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A direct current energy supplying antenna structure
WO2008111836A1 (en) * 2007-03-12 2008-09-18 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno A direct current energy supplying antenna structure
WO2010099266A1 (en) 2009-02-26 2010-09-02 Harris Corporation Wireless communications including an antenna for wireless power transmission and data communication and associated methods
US8144066B2 (en) 2009-02-26 2012-03-27 Harris Corporation Wireless communications including an antenna for wireless power transmission and data communication and associated methods
RU2519389C1 (en) * 2012-11-12 2014-06-10 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Small-sized resonator for wireless power transmission and its integration with antenna for data transmission
CN103474778A (en) * 2013-09-13 2013-12-25 电子科技大学 Dual-frequency receiving antenna and dual-frequency rectifying antenna
CN103474778B (en) * 2013-09-13 2015-09-09 电子科技大学 A kind of bifrequency reception antenna and bifrequency RECTIFYING ANTENNA

Also Published As

Publication number Publication date
JPS6354023A (en) 1988-03-08
DE3786124D1 (en) 1993-07-15
EP0257544B1 (en) 1993-06-09
DE3628583A1 (en) 1988-03-10
DE3628583C2 (en) 1993-12-09
EP0257544A3 (en) 1988-12-07
JP2812680B2 (en) 1998-10-22
US4918749A (en) 1990-04-17

Similar Documents

Publication Publication Date Title
EP0257544A2 (en) Receiving device for microwave signals
DE19813767C2 (en) Microwave transmitter / receiver module
DE4017625C2 (en) Microwave responder
DE4401615C2 (en) Radio frequency device
DE10124142B4 (en) Planar antenna and wireless communication equipment equipped therewith
US4429418A (en) Frequency agile satellite receiver
EP0204886B1 (en) Antenna for a radio transmitting and receiving apparatus
CN107918111A (en) High frequency millimeter swash frequency-scan radar receiving and transmitting front end module
US4384367A (en) MDS Receiver
US4651344A (en) VHF-UHF mixer having a balun
Kuroki et al. Nonradiative dielectric waveguide circuit components using beam‐lead diodes
DE19731085A1 (en) Device for transmitting and receiving radar waves, in particular for a distance sensor
EP0299786B1 (en) A microwave converter
DE10156073A1 (en) Foil battery for portable data carriers with antenna function
US3071729A (en) Microwave mixer for mutually orthogonal waveguide modes
CN111638504B (en) Continuous wave radar front end
DE60107366T2 (en) Mixer using a diode
KUROKI et al. NRD guide digital transceivers for millimeter wave LAN system
CN1254930C (en) Low nose block frequency changer having multiple local oscillator
DE4410542A1 (en) Mobile radio telephone for motor vehicle with separate aerials on body
DE3927665A1 (en) FOOT-FEED ROD ANTENNA
JPH0451520Y2 (en)
EP0694984B1 (en) Antenna arrangement with an asymmetric ground distribution particularly for wireless telecommunications systems
DE2745566A1 (en) Microstrip circuit for wave guide - has beam-lead diode across slot in conductor and has input coupling slot in ground plane on opposite substrate side
DE29822825U1 (en) Antenna structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AKTIENGESELLSCHAFT

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LICENTIA PATENT-VERWALTUNGS-GMBH

17P Request for examination filed

Effective date: 19890406

17Q First examination report despatched

Effective date: 19911218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3786124

Country of ref document: DE

Date of ref document: 19930715

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSACIATI S.R

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;BAUMER ELECTRIC AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020816

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020822

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020829

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020923

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

BERE Be: lapsed

Owner name: *BAUMER ELECTRIC A.G.

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050819