EP0252247B1 - Collapsible antenna reflector with a concave surface - Google Patents

Collapsible antenna reflector with a concave surface Download PDF

Info

Publication number
EP0252247B1
EP0252247B1 EP87106919A EP87106919A EP0252247B1 EP 0252247 B1 EP0252247 B1 EP 0252247B1 EP 87106919 A EP87106919 A EP 87106919A EP 87106919 A EP87106919 A EP 87106919A EP 0252247 B1 EP0252247 B1 EP 0252247B1
Authority
EP
European Patent Office
Prior art keywords
segments
antenna reflector
concave surface
central panel
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87106919A
Other languages
German (de)
French (fr)
Other versions
EP0252247A1 (en
Inventor
Manfred Ing.-Grad. Westphal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Publication of EP0252247A1 publication Critical patent/EP0252247A1/en
Application granted granted Critical
Publication of EP0252247B1 publication Critical patent/EP0252247B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors
    • H01Q15/162Collapsible reflectors composed of a plurality of rigid panels

Definitions

  • the invention relates to a foldable concavely curved antenna reflector according to the preamble of claim 1.
  • CFRP carbon fiber reinforced plastics
  • Such antenna reflectors are known, for example, from US Pat. No. 3,699,576 and US Pat. No. 3,715,760, in which the segments are pivotably arranged on a central panel at single-axis joints. In the former, the segments are partially supported on their rear surfaces by a small lattice work. In both embodiments, the individual segments are connected to one another by hinges, which supports the folding and unfolding of the individual segments.
  • JS Archer Advanced sunflower antenna concept development
  • a foldable rotationally symmetrical radiation reflector which is formed by a number of pivotable segments arranged around the axis of symmetry.
  • the segments are brought from the unfolded position to the folded state in the same way by rotating in the same direction around their respective assigned axes of rotation parallel to the axis of symmetry and at the same time pivoting upward towards the respective axis of rotation.
  • the transition from the folded to the unfolded state is achieved by the direct reversal of these simultaneously rotating and pivoting movements.
  • the disadvantage here is that the folding and unfolding of the segments is only possible by means of a complicated rotating and swiveling mechanism, which also adversely affects the accuracy of the deployed antenna. Furthermore, a stiffening strut of the folding segments to the fixed central body is very difficult to attach.
  • a network reflector in which a central housing has a mechanism for unfolding very narrow, flexible ribs.
  • the ribs are arranged around the circumference of the housing and are unwound from the housing when a worm drive is actuated by a motor, and are pulled and tensioned into the reflector position via wires which are connected to a spindle arranged under the ribs.
  • a sawtooth shape of the housing circumference is due to the tangential rib arrangement. Neither the ribs nor the sawtooth-shaped housing serve as a reflector, but an additional reflector network is required, which has to be stretched between the ribs but has a low contour accuracy.
  • a foldable antenna reflector in which the articulated connection of the outer ends of adjacent segments via an approximately in the middle of the outer end of one segment attacking connecting rod.
  • the joint connecting the segments to the central panel is a two-axis joint (similar to DE-OS 31 28 978), on which a drive serving to unfold the reflector acts in such a way that the segment is pivoted radially outward.
  • the necessary high positional accuracy of the segments can only be achieved with additional mechanical means.
  • guide rods on the head sides are necessary, which the Synchronize the rotary movement of the segments and additionally ensure the required contour accuracy when unfolded.
  • the mechanics used here require great accuracy and are very complex.
  • the object of the invention is to design an antenna reflector so that its segments can be unfolded from a compactly folded state by simple mechanics.
  • the segments should only be pivotable about an axis of rotation and can be opened synchronously by a central drive.
  • the segments When unfolded, the segments should be fixed with sufficient stability and accuracy, easy to adjust and evenly aligned when folded, and there should also be space between the segments for additional stiffeners.
  • the advantage of the invention is that the mechanism is reduced by the circular saw-shaped design of the central panel and the non-coupled segments, and the rotational and pivoting movement of the segments to one only is limited.
  • By simplifying the folding mechanism a very high level of contour accuracy is achieved in the unfolded state with good segment stiffening and a high packing density in the folded state.
  • With the decoupled arrangement of the segments they can be individually adjusted to the target contour.
  • the reduction in the components required for this results in considerable weight savings.
  • On the central panel which is in the form of a sawtooth or saw blade, two uniaxial joints are arranged on the obliquely inward edges, the axes of which are almost parallel to the edges and around which the segments connected by these joints to the central panel are folded.
  • edges and associated segments depends on the size of the antenna reflector and the available storage space in the carrier.
  • the direction of the edges and the joints arranged thereon and their pivot axes depend on the position of the segments in the folded state.
  • the base edges of the segments are chamfered according to the direction of the axes. This arrangement allows the bearing points of the uniaxial joints to be arranged far apart, as a result of which a high degree of rigidity and positional accuracy is achieved tangential to the central axis of the antenna reflector.
  • the joints can be made correspondingly small.
  • the segments can be provided with ribs or trusses on their rear surfaces in accordance with the storage space available there.
  • Large segments can be divided into sub-segments and connected to each other by a framework.
  • the deployment is advantageously controlled by a centrally arranged drive, the pivoting movement of the sub-segments being transmitted to the segments by linkages and joints (for example knee joints) with a reduction gear in front.
  • the individual sub-segments can be adjusted independently of one another by actuators. Several stops or residues known per se serve to fix them in the folded state. A central fixation by locking the folding linkage is of course possible.
  • FIG. 1 shows a satellite configuration with an antenna reflector 1 mounted on the top, which is folded on the left in the figure in order to find space within a launch vehicle. After starting and leaving the carrier tract, the antenna reflector 1 is unfolded (right figure) and the segments 7 are locked in their desired position.
  • the central panel 2 with its sawtooth or circular saw blade Clearly recognizable contour.
  • the central three-legged sub-reflector tower 17 carries the sub-reflector 18 necessary for feeding the antenna and fixes the folded segments 7 during the starting phase.
  • the pivot axis (s) 6 run almost parallel to the edges of the central panel 2 or to the foot edge of the folding segments 7.
  • the segments 7 are not perpendicular to the central panel 2 in the initial and transport phase, but assume a more or less inclined position (this depends on the shape of the central panel 2).
  • the segments 7 lie within a cylinder which corresponds approximately to the largest diameter of the central panel 2 and are arranged so that their contour curvature is rectified.
  • FIGS. 2a to 2d show individual opening phases of an antenna reflector 1 in an oblique view (above) and in a view from above (below).
  • Figure 2a shows the folded and Figure 2d the unfolded state of the antenna reflector.
  • FIG. 3 shows a section of an antenna reflector 1 in a partially folded (right) and open (left) state in a lateral (top) and bottom (bottom) view.
  • the segments 7 are designed to be self-supporting by means of a folding linkage 8 arranged and acting on their lower surfaces.
  • the segments 7 are unfolded by a central drive 9 arranged under the central panel 2, which acts on the folding linkage 8.
  • a locking device 10 also provided on the underside of the central panel 2.
  • the lock 10 is adjustable so that the desired contour can be adjusted.
  • readjustment and fine adjustment is possible by means of an actuator 11 arranged on the underside of each segment 7.
  • a toggle lever 12, on which the actuator 11 engages additionally permits fine adjustment due to a favorable transmission ratio. These adjustments can be made both earthbound and orbital.
  • the joints 5 and their pivot axis (s) 6 can be seen from the figure (below).
  • the drive 9 is provided with a suitable reduction gear, not shown in the figure.
  • the antenna reflector 1 described in FIG. 3 is reinforced by ribs 13 engaging the central panel 2 and the segments 7, which are pivoted about the pivot axis (s) 6 when unfolding.
  • the actuators 11 on the underside of each individual segment 7 are operatively connected to the ribs 13 via the folding linkage 8 and can move and adjust the segments 7 individually and independently of one another.
  • FIG. 5 shows an antenna reflector 1, similar to that described in FIGS. 3 and 4, with a central panel 2 stiffened by a framework 14, on the edges 4 of which segments 7 composed of sub-segments 15 and connected by means of the joints 5 are arranged.
  • the sub-segments 15 are stiffened by a framework 14.
  • Such a construction is particularly suitable for large antenna reflectors which have a very high contour accuracy.
  • FIG. 6 shows a segment 7 in a lateral view (below) and in a view from below (above), which is stiffened by a framework 14 arranged on the rear.
  • the segment 7 itself consists of three sub-segments 15, which are connected to the framework 14 independently of one another at at least four points. With this arrangement, thermal deformations of the Sub-segments 15 are largely decoupled, whereby the dimensional stability of the framework structure 14 is largely retained.
  • FIG. 7 shows a lock for locking the unfolded, framework-stiffened segments 7 (right figure).
  • the lock primarily consists of a toggle lever 12, the end position of which is held by a shaped spring 16 which extends when the segments 7 are unfolded.
  • segment 7 is in the folded position.

Description

Die Erfindung betrifft einen faltbaren konkav gekrümmten Antennenreflektor gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a foldable concavely curved antenna reflector according to the preamble of claim 1.

Durch Verwendung von kohlefaserverstärkten Kunststoffen (CFK) für starre Antennenreflektoren konnte die Forderung der Raumfahrt nach konturgenauen und damit leistungsfähigeren Antennensystemen weitgehend erfüllt werden. Der Leistungsfähigkeit solcher Antennen sind jedoch durch Größe und Begrenzung des Nutzlastraumes im Träger Grenzen gesetzt. Diese sind nur durch Anwendung faltbarer Antennen überbrückbar. Hierbei werden solche Antennen im gefalteten Zustand vom Träger transportiert und im Orbit durch geeignete Mechanismen entfaltet. Dazu stehen für die Konstruktion des Antennenreflektors prinzipiell nur zwei Alternativen zur Verfügung, der für hohe Konturgenauigkeit ungeeignete Netzreflektor und der aus faltbaren starren Segmenten bestehende Reflektor für sehr hohe Genauigkeit. Hierzu sind verschiedene Konfigurationen bekannt, wovon jene den entscheidenden Nachteil haben, welche, bedingt durch die Faltkonstruktion, eine hohe Anzahl von Gelenken und Segmenten unterschiedlicher Form und Größe benötigen und einen komplizierten Entfaltmechanismus aufweisen und die Konturen der gefalteten Segmente gegeneinander gerichtet sind. Für Versteifungen (Rippen, Fachwerke u.a.) der Segmente, welche bei großen Reflektoren zur Erhaltung der Konturgenauigkeit erforderlich sind, bleibt im Träger mangels Stauraum kein Platz mehr.By using carbon fiber reinforced plastics (CFRP) for rigid antenna reflectors, the demand of space travel for contour-accurate and thus more powerful antenna systems could be largely met. The performance of such antennas is, however, limited by the size and limitation of the payload space in the carrier. These can only be bridged using foldable antennas. Such antennas are transported by the carrier in the folded state and deployed in orbit by suitable mechanisms. In principle, there are only two alternatives available for the construction of the antenna reflector, the one for high contour accuracy unsuitable mesh reflector and the reflector made of foldable rigid segments for very high accuracy. Various configurations are known for this, of which those have the decisive disadvantage which, owing to the folding construction, require a large number of joints and segments of different shape and size and have a complicated unfolding mechanism and the contours of the folded segments are directed towards one another. For stiffeners (ribs, trusses, etc.) of the segments, which are required for large reflectors to maintain the contour accuracy, there is no space left in the carrier due to a lack of storage space.

Derartige Antennenreflektoren sind z.B. aus der US-PS 3 699 576 und US-PS 3 715 760 bekannt, bei welchen die Segmente an einem Zentralpanel an Einachsgelenken schwenkbar angeordnet sind.
Bei ersterer sind die Segmente auf ihren Rückflächen zum Teil durch ein kleines Gitterwerk gestützt. In beiden Ausführungsformen sind die einzelnen Segmente durch Scharniere miteinander verbunden, wodurch das Falten und Entfalten der einzelnen Segmente unterstützt wird. Eine ähnliche Ausführungsform ist auch aus der NASA-Conference Publication 2118, Nov. 1979 bekannt und unter Advanced sunflower antenna concept development (J.S. Archer) beschrieben.
Such antenna reflectors are known, for example, from US Pat. No. 3,699,576 and US Pat. No. 3,715,760, in which the segments are pivotably arranged on a central panel at single-axis joints.
In the former, the segments are partially supported on their rear surfaces by a small lattice work. In both embodiments, the individual segments are connected to one another by hinges, which supports the folding and unfolding of the individual segments. A similar embodiment is also known from NASA Conference Publication 2118, Nov. 1979 and is described under Advanced sunflower antenna concept development (JS Archer).

Abgesehen vom relativ großen konstruktiven Aufwand und dem dadurch verursachten hohen Gewicht ist hierbei von besonderem Nachteil die aufgrund der zahlreichen Gelenke unzureichende aber erforderliche hohe Konturgenauigkeit.Apart from the relatively large design effort and the resulting high weight, the high contour accuracy which is insufficient due to the numerous joints is a particular disadvantage.

Aus der DE-OS 31 28 978 ist ein faltbarer rotationssymmetrischer Strahlungsreflektor bekannt, der von einer Anzahl schwenkbarer um die Symmetrieachse angeordneter Segmente gebildet ist. Die Segmente werden hierbei aus der entfalteten Stellung alle auf die gleiche Weise durch gleichsinnige Drehung um ihnen jeweils zugeordnete, zur Symmetrieachse parallele Drehachsen sowie gleichzeitig zur jeweiligen Drehachse hin gerichtetes Hochschwenken in den gefalteten Zustand gebracht. Die Überführung aus den gefalteten in den entfalteten Zustand wird durch die direkte Umkehrung dieser gleichzeitig ablaufenden Dreh- und Schwenkbewegungen erreicht. Hier ist von Nachteil, daß das Falten und Entfalten der Segmente nur mittels einer komplizierten Dreh- und Schwenkmechanik möglich ist, was auch zusätzlich die Genauigkeit der entfalteten Antenne nachteilig beeinflußt. Ferner ist eine aussteifende Verstrebung der Faltsegmente zum feststehenden Zentralkörper nur sehr schwierig anzubringen.From DE-OS 31 28 978 a foldable rotationally symmetrical radiation reflector is known, which is formed by a number of pivotable segments arranged around the axis of symmetry. The segments are brought from the unfolded position to the folded state in the same way by rotating in the same direction around their respective assigned axes of rotation parallel to the axis of symmetry and at the same time pivoting upward towards the respective axis of rotation. The transition from the folded to the unfolded state is achieved by the direct reversal of these simultaneously rotating and pivoting movements. The disadvantage here is that the folding and unfolding of the segments is only possible by means of a complicated rotating and swiveling mechanism, which also adversely affects the accuracy of the deployed antenna. Furthermore, a stiffening strut of the folding segments to the fixed central body is very difficult to attach.

Ferner ist aus einem Vorschlag "SCI (83) 1, Seiten 7 bis 16 und 63 bis 66 für den FIRST-Satelliten eine weitere Faltantennenkonstruktion bekannt, bei welcher die Segmente am Umfang des Zentralsegments angeordnet und mittels jeweils zweier Gelenke damit verbunden sind. Das Falten und Entfalten der Segmente erfolgt einachsig nur durch radiales Schwenken der Segmente ohne zusätzliche Drehung derselben. Dadurch kann der Aufwand an Schwenkmechanik reduziert und die Formgenauigkeit erhöht werden, jedoch ist hierbei sehr nachteilig die uneffektive Ausnutzung des vorhandenen Stauraumes im gefalteten Zustand und die schlechte Unterbringungsmöglichkeit einer zusätzlichen Segmentversteifung. Hinzu kommt, daß, bedingt durch die Segmentposition im gefalteten Zustand, die jeweiligen Gelenke und Segmente unterschiedliche Abmessungen haben.Furthermore, from a proposal "SCI (83) 1, pages 7 to 16 and 63 to 66 for the FIRST satellite a further folding antenna construction known in which the segments are arranged on the circumference of the central segment and are connected to it by means of two joints. The folding and unfolding of the segments takes place uniaxially only by pivoting the segments radially without additional rotation of the segments. As a result, the effort involved in swivel mechanics can be reduced and the shape accuracy increased, however, the ineffective use of the available storage space in the folded state and the poor accommodation of an additional segment stiffening are very disadvantageous. In addition, due to the segment position in the folded state, the respective joints and segments have different dimensions.

Gleichfalls ist aus der US-A- 35 41 569 ein Netzreflektor bekannt, bei dem ein Zentralgehäuse einen Mechanismus zum Entfalten sehr schmaler, flexibler Rippen aufweist. Die Rippen sind dabei um den Gehäuseumfang angeordnet und werden bei Betätigung eines Schneckentriebes durch einen Motor von dem Gehäuse abgewickelt, wobei sie über Drähte, die mit einer unter den Rippen angeordneten Spindel verbunden sind, in die Reflektorstellung gezogen und verspannt werden. Eine sägezahnförmige Gestalt des Gehäuseumfangs ist durch die tangentiale Rippenanordnung bedingt. Weder die Rippen noch das sägezahnförmige Gehäuse dienen als Reflektor, sondern ein zusätzliches Reflektornetz ist erforderlich, das zwischen den Rippen aufgespannt werden muß, aber eine geringe Konturgenauigkeit besitzt.Likewise, from US-A-35 41 569 a network reflector is known in which a central housing has a mechanism for unfolding very narrow, flexible ribs. The ribs are arranged around the circumference of the housing and are unwound from the housing when a worm drive is actuated by a motor, and are pulled and tensioned into the reflector position via wires which are connected to a spindle arranged under the ribs. A sawtooth shape of the housing circumference is due to the tangential rib arrangement. Neither the ribs nor the sawtooth-shaped housing serve as a reflector, but an additional reflector network is required, which has to be stretched between the ribs but has a low contour accuracy.

Schließlich ist noch aus der DE-A- 31 28 926 ein faltbarer Antennenreflektor bekannt, bei dem die gelenkige Verbindung der äußeren Enden benachbarter Segmente über einen etwa in der Mitte des äußeren Endes des einen Segments angreifenden Verbindungsstab erfolgt. Das die Segmente mit dem Zentralpanel verbindende Gelenk ist ein Zweiachsgelenk (ähnlich DE-OS 31 28 978), auf das ein zum Entfalten des Reflektors dienender Antrieb derart einwirkt, daß das Segment radial nach außen geschwenkt wird. Auch hier ist von Nachteil, daß die notwendig hohe Positionsgenauigkeit der Segmente nur mit zusätzlichen mechanischen Mitteln erreichbar ist. Außerdem sind Führungsstangen an den Kopfseiten notwendig, die die Drehbewegung der Segmente synchronisieren und im entfalteten Zustand zusätzlich für die erforderliche Konturgenauigkeit sorgen. Die dabei verwendete Mechanik erfordert eine große Genauigkeit und ist sehr aufwendig.Finally, from DE-A-31 28 926 a foldable antenna reflector is known, in which the articulated connection of the outer ends of adjacent segments via an approximately in the middle of the outer end of one segment attacking connecting rod. The joint connecting the segments to the central panel is a two-axis joint (similar to DE-OS 31 28 978), on which a drive serving to unfold the reflector acts in such a way that the segment is pivoted radially outward. It is also disadvantageous here that the necessary high positional accuracy of the segments can only be achieved with additional mechanical means. In addition, guide rods on the head sides are necessary, which the Synchronize the rotary movement of the segments and additionally ensure the required contour accuracy when unfolded. The mechanics used here require great accuracy and are very complex.

Aufgabe der Erfindung ist es, einen Antennenreflektor so auszubilden, daß seine Segmente aus einem kompakt gefalteten Zustand durch einfache Mechanik entfaltbar sind. Dabei sollen die Segmente nur um eine Drehachse schwenkbar und durch einen zentralen Antrieb synchron aufklappbar sein. Im entfalteten Zustand sollen die Segmente mit ausreichender Stabilität und Genauigkeit fixiert, einfach zu justieren und im gefalteten Zustand gleichmäßig ausgerichtet angeordnet sein, sowie zwischen den Segmenten noch Platz für zusätzliche Versteifungen finden.The object of the invention is to design an antenna reflector so that its segments can be unfolded from a compactly folded state by simple mechanics. The segments should only be pivotable about an axis of rotation and can be opened synchronously by a central drive. When unfolded, the segments should be fixed with sufficient stability and accuracy, easy to adjust and evenly aligned when folded, and there should also be space between the segments for additional stiffeners.

Zur Lösung der gestellten Aufgabe sind erfindungsgemäß die kennzeichnenden Merkmale von Anspruch 1 vorgesehen. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.To achieve the object, the characterizing features of claim 1 are provided according to the invention. Advantageous further developments result from the subclaims.

Der Vorteil der Erfindung besteht darin, daß durch die kreissägenförmige Ausgestaltung des Zentralpanels und der nicht miteinander gekoppelten Segmente der Mechanismus reduziert und die Dreh- und Schwenkbewegung der Segmente auf eine einzige beschränkt wird. Durch die Vereinfachung des Faltmechanismus wird zugleich eine sehr hohe Konturgenauigkeit im entfalteten Zustand bei guter Segmentversteifung und eine hohe Packungsdichte im gefalteten Zustand erzielt. Mit der entkoppelten Anordnung der Segmente sind diese auf die Sollkontur individuell einstellbar.
Außerdem ergibt sich durch die Reduzierung der hierzu benötigten Bauteile eine beachtliche Gewichtseinsparung. Am Zentralpanel, welches sägezahn- oder sägeblattförmig ausgebildet ist, sind an den schräg nach innen gerichteten Kanten je zwei einachsige Gelenke angeordnet, deren Achsen zu den Kanten nahezu parallel verlaufen und um welche die durch diese Gelenke mit dem Zentralpanel verbundenen Segmente gefaltet werden. Die Anzahl der benötigen Kanten und zugehörigen Segmente richtet sich nach der Größe des Antennenreflektors und dem zur Verfügung stehenden Stauraum im Träger. Die Richtung der Kanten und der daran angeordneten Gelenke und deren Schwenkachsen richtet sich nach der Position der Segmente im gefalteten Zustand. Entsprechend der Richtung der Achsen sind die Fußkanten der Segmente abgeschrägt. Durch diese Anordnung können die Lagerpunkte der einachsigen Gelenke weit auseinander angeordnet werden, wodurch eine hohe Steifigkeit und Positionsgenauigkeit tangential zur Zentralachse des Antennenreflektors erreicht wird. Die Gelenke können entsprechend klein ausgeführt sein. Trotz einer dichten Faltpackung können die Segmente auf ihren Rückflächen entsprechend des dort vorhandenen Stauraumes mit Rippen oder Fachwerken versehen werden.
Große Segmente können in Teilsegmente unterteilt und durch ein Fachwerk miteinander verbunden werden. Die Steuerung der Entfaltung erfolgt hierbei günstigerweise durch einen zentral angeordneten Antrieb, wobei die Schwenkbewegung der Teilsegmente durch Gestänge und Gelenke (z.B. Kniegelenke) unter Vorschaltung eines Untersetzungsgetriebes auf die Segmente übertragen wird. Die einzelnen Teilsegmente sind durch Stellglieder voneinander unabhängig justierbar.
Zu ihrer Fixierung im gefalteten Zustand dienen mehrere an sich bekannte Anschläge oder Resten. Eine zentrale Fixierung durch Arretierung der Faltgestänge ist selbstverständlich möglich.
The advantage of the invention is that the mechanism is reduced by the circular saw-shaped design of the central panel and the non-coupled segments, and the rotational and pivoting movement of the segments to one only is limited. By simplifying the folding mechanism, a very high level of contour accuracy is achieved in the unfolded state with good segment stiffening and a high packing density in the folded state. With the decoupled arrangement of the segments, they can be individually adjusted to the target contour.
In addition, the reduction in the components required for this results in considerable weight savings. On the central panel, which is in the form of a sawtooth or saw blade, two uniaxial joints are arranged on the obliquely inward edges, the axes of which are almost parallel to the edges and around which the segments connected by these joints to the central panel are folded. The number of edges and associated segments required depends on the size of the antenna reflector and the available storage space in the carrier. The direction of the edges and the joints arranged thereon and their pivot axes depend on the position of the segments in the folded state. The base edges of the segments are chamfered according to the direction of the axes. This arrangement allows the bearing points of the uniaxial joints to be arranged far apart, as a result of which a high degree of rigidity and positional accuracy is achieved tangential to the central axis of the antenna reflector. The joints can be made correspondingly small. In spite of a tight folding pack, the segments can be provided with ribs or trusses on their rear surfaces in accordance with the storage space available there.
Large segments can be divided into sub-segments and connected to each other by a framework. The deployment is advantageously controlled by a centrally arranged drive, the pivoting movement of the sub-segments being transmitted to the segments by linkages and joints (for example knee joints) with a reduction gear in front. The individual sub-segments can be adjusted independently of one another by actuators.
Several stops or residues known per se serve to fix them in the folded state. A central fixation by locking the folding linkage is of course possible.

Ausführungsbeispiele sind folgend beschrieben und durch Skizzen erläutert.Exemplary embodiments are described below and explained by sketches.

Es zeigen:

Figur 1
einen Antennenreflektor mit Subreflektor und Subreflektorturm in gefalteter und entfalteter Konfiguration auf einer unterhalb des Reflektors befindlichen Satellitenstruktur,
Figuren 2a bis 2d
einen Antennenreflektor in verschiede nen Öffnungsphasen in Schrägsicht und in der Ansicht von oben, stark schematisiert,
Figur 3
einen Ausschnitt eines Antennenreflektors mit selbsttragenden Segmenten in teilweise gefaltetem und geöffnetem Zustand in seitlicher und in der Ansicht von oben,
Figur 4
einen Antennenreflektor gemäß Figur 3 mit durch Rippen versteiftem Zentralpanel und Segmenten,
Figur 5
einen Antennenreflektor gemäß Figuren 3 und 4 mit einem Fachwerk versteiften Zentralpanel und aus Teilsegmenten zusammengesetzten Segmenten,
Figur 6
ein aus drei Teilsegmenten bestehendes und mit einem Fachwerk versteiftes Segment,
Figur 7
eine Verriegelung zur Arretierung eines durch ein Fachwerk versteiftes Segment im entfaltetem Zustand.
Show it:
Figure 1
an antenna reflector with a sub-reflector and a sub-reflector tower in a folded and unfolded configuration on a satellite structure located below the reflector,
Figures 2a to 2d
an antenna reflector in various opening phases in oblique view and in the view from above, highly schematic,
Figure 3
a section of an antenna reflector with self-supporting segments in the partially folded and opened state in the side and in the view from above,
Figure 4
3 shows an antenna reflector according to FIG. 3 with a central panel and segments stiffened by ribs,
Figure 5
3 shows an antenna reflector according to FIGS. 3 and 4 with a truss stiffened central panel and segments composed of sub-segments,
Figure 6
a segment consisting of three sub-segments and stiffened with a framework,
Figure 7
a lock for locking a segment stiffened by a framework in the unfolded state.

In Figur 1 ist eine Satellitenkonfiguration dargestellt mit einem auf der Oberseite montierten Antennenreflektor 1, der in der Figur links gefaltet ist, um innerhalb einer Trägerrakete Platz zu finden. Nach dem Start und dem Verlassen der Trägerrakekte wird der Antennenreflektor 1 entfaltet (Figur rechts) und die Segmente 7 in ihrer Sollstellung verriegelt. Hier ist das Zentralpanel 2 mit seiner sägezahn- oder kreissägeblattförmigen Kontur deutlich zu erkennen. Der zentrale dreibeinige Subreflektorturm 17 trägt den für die Speisung der Antenne notwendigen Subreflektor 18 und fixiert die gefalteten Segmente 7 während der Startphase. An den schräg zur Achse 3 des Antennenreflektors 1 verlaufenden Kanten 4 des Zentralpanels 2 sind je zwei einachsige Gelenke 5 angeordnet, deren Achse(n) die Schwenkachse(n) 6 bilden, um welche die einzelnen Segmente 7 beim Faltvorgang geschwenkt werden. Die Schwenkachse(n) 6 verlaufen zu den Kanten des Zentralpanels 2 bzw. zur Fußkante der Faltsegmente 7 nahezu parallel.
Die Segmente 7 stehen in der Ausgangs- und Transportphase zum Zentralpanel 2 nicht senkrecht, sondern nehmen zu diesem eine mehr oder weniger geneigte Stellung ein (sie ist abhängig von der Gestalt des Zentralpanels 2). Die Segmente 7 liegen innerhalb eines Zylinders, der etwa dem größten Durchmesser des Zentralpanels 2 entspricht und sind so angeordnet, daß ihre Konturkrümmung gleichgerichtet ist.
FIG. 1 shows a satellite configuration with an antenna reflector 1 mounted on the top, which is folded on the left in the figure in order to find space within a launch vehicle. After starting and leaving the carrier tract, the antenna reflector 1 is unfolded (right figure) and the segments 7 are locked in their desired position. Here is the central panel 2 with its sawtooth or circular saw blade Clearly recognizable contour. The central three-legged sub-reflector tower 17 carries the sub-reflector 18 necessary for feeding the antenna and fixes the folded segments 7 during the starting phase. At the edges 4 of the central panel 2, which run obliquely to the axis 3 of the antenna reflector 1, two uniaxial joints 5 are arranged, the axis (s) of which form the pivot axis (s) 6, about which the individual segments 7 are pivoted during the folding process. The pivot axis (s) 6 run almost parallel to the edges of the central panel 2 or to the foot edge of the folding segments 7.
The segments 7 are not perpendicular to the central panel 2 in the initial and transport phase, but assume a more or less inclined position (this depends on the shape of the central panel 2). The segments 7 lie within a cylinder which corresponds approximately to the largest diameter of the central panel 2 and are arranged so that their contour curvature is rectified.

Aus den Figuren 2a bis 2d sind einzelne Öffnungsphasen eines Antennenreflektors 1 in Schrägsicht (oben) und in der Ansicht von oben (unten) ersichtlich. Hierbei zeigt Figur 2a den gefalteten und Figur 2d den entfalteten Zustand des Antennenreflektors.FIGS. 2a to 2d show individual opening phases of an antenna reflector 1 in an oblique view (above) and in a view from above (below). Figure 2a shows the folded and Figure 2d the unfolded state of the antenna reflector.

In Figur 3 ist ein Ausschnitt eines Antennenreflektors 1 in teilweise gefaltetem (rechts) und geöffnetem (links) Zustand in seitlicher (oben) und in der Ansicht von unten (unten) dargestellt. Hierbei sind die Segmente 7 selbsttragend durch ein auf ihren Unterflächen angeordnetes und wirkendes Faltgestänge 8 ausgebildet. Das Entfalten der Segmente 7 erfolgt durch einen unter dem Zentralpanel 2 angeordneten zentralen Antrieb 9, der auf das Faltgestänge 8 wirkt. Ist die Endstellung erreicht, so werden die Segmente 7 und das Faltgestänge 8 in dieser Position durch eine gleichfalls an der Unterseite des Zentralpanels 2 vorgesehene Verriegelung 10 gesichert. Die Verriegelung 10 ist justierbar, so daß eine Justierung der gewünschten Kontur möglich ist. Außerdem ist durch ein an der Unterseite eines jeden Segments 7 angeordnetes Stellglied 11 eine Nach- und Feinjustierung möglich. Durch einen Kniehebel 12, an welchem das Stellglied 11 angreift, ist zusätzlich eine, durch ein günstiges Übersetzungsverhältnis bedingte Feinjustierung möglich.
Diese Justierungen können sowohl erdgebunden als auch orbital vorgenommen werden.
Aus der Figur (unten) sind die Gelenke 5 und ihre Schwenkachse(n) 6 ersichtlich. Zur Bewältigung der durch das Faltgestänge 8 während des Faltvorganges auftretenden Drehmomente ist der Antrieb 9 mit einem geeigneten, in der Figur nicht näher gezeigten Untersetzungsgetriebe versehen.
FIG. 3 shows a section of an antenna reflector 1 in a partially folded (right) and open (left) state in a lateral (top) and bottom (bottom) view. Here, the segments 7 are designed to be self-supporting by means of a folding linkage 8 arranged and acting on their lower surfaces. The segments 7 are unfolded by a central drive 9 arranged under the central panel 2, which acts on the folding linkage 8. Once the end position has been reached, the segments 7 and the folding linkage 8 are secured in this position by a locking device 10 also provided on the underside of the central panel 2. The lock 10 is adjustable so that the desired contour can be adjusted. In addition, readjustment and fine adjustment is possible by means of an actuator 11 arranged on the underside of each segment 7. A toggle lever 12, on which the actuator 11 engages, additionally permits fine adjustment due to a favorable transmission ratio.
These adjustments can be made both earthbound and orbital.
The joints 5 and their pivot axis (s) 6 can be seen from the figure (below). In order to cope with the torques occurring through the folding linkage 8 during the folding process, the drive 9 is provided with a suitable reduction gear, not shown in the figure.

In Figur 4 ist der in Figur 3 beschriebene Antennenreflektor 1 durch am Zentralpanel 2 und an den Segmenten 7 angreifende Rippen 13 verstärkt, die um die Schwenkachse(n) 6 beim Entfalten geschwenkt werden. Die Stellglieder 11 an der Unterseite eines jeden einzelnen Segments 7 stehen über das Faltgestänge 8 mit den Rippen 13 in Wirkverbindung und können die Segmente 7 einzeln und unabhängig voneinander bewegen und justieren.In FIG. 4, the antenna reflector 1 described in FIG. 3 is reinforced by ribs 13 engaging the central panel 2 and the segments 7, which are pivoted about the pivot axis (s) 6 when unfolding. The actuators 11 on the underside of each individual segment 7 are operatively connected to the ribs 13 via the folding linkage 8 and can move and adjust the segments 7 individually and independently of one another.

Die Figur 5 zeigt einen Antennenreflektor 1, ähnlich wie in Figur 3 und 4 beschrieben, mit einem durch ein Fachwerk 14 versteiften Zentralpanel 2, an dessen Kanten 4 und mittels der Gelenke 5 damit verbundene aus Teilsegmenten 15 zusammengesetzte Segmente 7 angeordnet sind. Die Teilsegmente 15 sind hierbei durch ein Fachwerk 14 versteift.
Eine derartige Konstruktion eignet sich besonders für große Antennenreflektoren, die eine sehr hohe Konturgenauigkeit aufweisen.
FIG. 5 shows an antenna reflector 1, similar to that described in FIGS. 3 and 4, with a central panel 2 stiffened by a framework 14, on the edges 4 of which segments 7 composed of sub-segments 15 and connected by means of the joints 5 are arranged. The sub-segments 15 are stiffened by a framework 14.
Such a construction is particularly suitable for large antenna reflectors which have a very high contour accuracy.

Figur 6 zeigt ein Segment 7 in seitlicher (unten) und in der Ansicht von unten (oben), welches durch ein rückseitig angeordnetes Fachwerk 14 versteift ist. Das Segment 7 selbst besteht aus drei Teilsegmenten 15, die voneinander unabhängig an wenigstens vier Punkten mit dem Fachwerk 14 verbunden sind. Durch diese Anordnung können Thermalverformungen der Teilsegmente 15 weitgehend entkoppelt werden, wodurch die Formstabilität der Fachwerkstruktur 14 weitgehend erhalten bleibt.FIG. 6 shows a segment 7 in a lateral view (below) and in a view from below (above), which is stiffened by a framework 14 arranged on the rear. The segment 7 itself consists of three sub-segments 15, which are connected to the framework 14 independently of one another at at least four points. With this arrangement, thermal deformations of the Sub-segments 15 are largely decoupled, whereby the dimensional stability of the framework structure 14 is largely retained.

Figur 7 zeigt eine Verriegelung zur Arretierung der entfalteten, fachwerkversteiften Segmente 7 (Figur rechts). Primär besteht die Verriegelung aus einem Kniehebel 12, dessen Endstellung durch eine sich beim Entfalten der Segmente 7 streckende Formfeder 16 gehalten wird. An der Formfeder 16 befindet sich ein Stellglied 11, welches über die gestreckte Formfeder 16 den Kniehebel 12 derart angreift, daß, bedingt durch ein günstiges Übersetzungsverhältnis, am Kniehebel 12 die Segmente 7 mit hoher Genauigkeit justiert werden können. In Figur links ist das Segment 7 in Faltstellung.FIG. 7 shows a lock for locking the unfolded, framework-stiffened segments 7 (right figure). The lock primarily consists of a toggle lever 12, the end position of which is held by a shaped spring 16 which extends when the segments 7 are unfolded. On the form spring 16 there is an actuator 11 which engages the toggle lever 12 via the elongated form spring 16 in such a way that, due to a favorable transmission ratio, the segments 7 on the toggle lever 12 can be adjusted with high accuracy. In the figure on the left, segment 7 is in the folded position.

Claims (6)

  1. Collapsible antenna reflector (1) with a concave surface consisting of a plurality of rigid, uniform segments (7) with a central panel (2), to which the segments (7) are each connected by means of a uniaxial link (5), characterized in that the central panel (2) has a circular saw-tooth-like contour corresponding to the number and connection width of the segments (7); the link (5) and a further link (5), with axes (6) aligned approximately parallel to the edges (4), are disposed on the obliquely inwardly directed edges (4) of the saw-tooth-like contour; and the segments (7) are connected to the central panel (2) by means of the links (5) so as to pivot about the axes (6).
  2. Collapsible antenna reflector with a concave surface according to claim 1, characterized in that the segments (7) in the collapsed state have a parallel contour curvature, are aligned with respect to the axis (3) of the antenna reflector (1), and are inclined with respect to the central panel (2).
  3. Collapsible antenna reflector with a concave surface according to claim 1 or 2, characterised in that a central section (9) is provided disposed below the central panel (2) in order to unfold the segments (7).
  4. Collapsible antenna reflector with a concave surface according to one of claims 1 to 3, characterised in that folding rods (8), by means of which the segments (7) are unfolded, are disposed on the outer surfaces of the segments (7).
  5. Collapsible antenna reflector with a concave surface according to one of claims 1 to 4, characterised in that, after unfolding, the segments (7) are secured by means of a locking device (10) disposed on the folding rods (8).
  6. Collapsible antenna reflector with a concave surface according to one of claims 1 to 5, characterised in that adjusting members (11) are provided for the individual adjustment of the segments (7).
EP87106919A 1986-06-27 1987-05-13 Collapsible antenna reflector with a concave surface Expired - Lifetime EP0252247B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863621578 DE3621578A1 (en) 1986-06-27 1986-06-27 FOLDABLE CONCAVE CURVED ANTENNA REFLECTOR
DE3621578 1986-06-27

Publications (2)

Publication Number Publication Date
EP0252247A1 EP0252247A1 (en) 1988-01-13
EP0252247B1 true EP0252247B1 (en) 1991-09-25

Family

ID=6303836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87106919A Expired - Lifetime EP0252247B1 (en) 1986-06-27 1987-05-13 Collapsible antenna reflector with a concave surface

Country Status (4)

Country Link
US (1) US4899167A (en)
EP (1) EP0252247B1 (en)
JP (1) JPS637004A (en)
DE (1) DE3621578A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237337A (en) * 1991-01-18 1993-08-17 Solar Kinetics, Inc. Method and apparatus for manufacturing and erecting concave metallic membrane type reflectors
ES2039164B1 (en) * 1992-01-30 1997-01-01 Sener Ing & Sist HIGH PRECISION ADJUSTMENT MECHANISM FOR THE CORRECT POSITIONING OF DEFORMABLE STRUCTURES.
US5257034A (en) * 1992-07-29 1993-10-26 Space Systems/Loral, Inc. Collapsible apparatus for forming a paraboloid surface
GB2272331B (en) * 1992-10-31 1996-06-12 Irhad Ali Mirza Collapsible satellite dish antenna
US5446474A (en) * 1994-01-19 1995-08-29 Lockheed Missiles & Space Company, Inc. Redeployable furlable rib reflector
US5421376A (en) * 1994-01-21 1995-06-06 Lockheed Missiles & Space Co., Inc. Metallized mesh fabric panel construction for RF reflector
US5488383A (en) * 1994-01-21 1996-01-30 Lockheed Missiles & Space Co., Inc. Method for accurizing mesh fabric reflector panels of a deployable reflector
DE19500324C1 (en) * 1995-01-07 1996-05-23 Ant Nachrichtentech Antenna reflector for use in measuring liquid level in vessel
DE19703346C2 (en) * 1996-05-20 1999-04-01 Endress Hauser Gmbh Co Parabolic antenna for focusing transmit pulses when measuring the fill level in closed containers
US5864320A (en) * 1996-08-06 1999-01-26 Space Systems/Loral, Inc. Synchronous rotation dual-axis mechanical hinge assemblies
FR2780820B1 (en) * 1998-07-02 2000-09-08 Aerospatiale ELASTICALLY DEFORMABLE ANTENNA REFLECTOR FOR A SPACE MACHINE AND A SPACE MACHINE COMPRISING SUCH A REFLECTOR
US6340956B1 (en) 1999-11-12 2002-01-22 Leland H. Bowen Collapsible impulse radiating antenna
US6625288B1 (en) * 2000-03-31 2003-09-23 Intel Corporation Collapsing paraboloid dish and method
ES2261564T3 (en) * 2002-07-31 2006-11-16 Eads Astrium Gmbh REFLECTOR OF DISPLAYABLE ANTENNA.
US7557995B1 (en) 2006-07-11 2009-07-07 Itt Manufacturing Enterprises, Inc. Deployable telescope shade
US7755564B2 (en) * 2007-10-31 2010-07-13 Communications & Power Industries, Inc. Deployable phasing system for emulating reflective surfaces
GB2492108A (en) * 2011-06-24 2012-12-26 Satellite Holdings Llc An automatically deployed collapsible satellite dish and method of use
US9331394B2 (en) 2011-09-21 2016-05-03 Harris Corporation Reflector systems having stowable rigid panels
FR3015130B1 (en) * 2013-12-17 2016-01-22 Astrium Sas SEGMENTED STRUCTURE, ESPECIALLY FOR A SATELLITE ANTENNA REFLECTOR, PROVIDED WITH AT LEAST ONE PARALLELOGRAM DEPLOYMENT DEVICE
CN104916919B (en) * 2014-12-25 2017-12-22 黄天生 Electric control satellite reception ancient cooking vessel
CN104466340A (en) * 2014-12-25 2015-03-25 郑文艺 Foldable antenna
CN204720536U (en) * 2014-12-25 2015-10-21 黄天生 Electric control satellite reception ancient cooking vessel
CN104953229B (en) * 2014-12-25 2018-06-08 黄天生 A kind of telescopic satellite reception ancient cooking vessel
CN104916897B (en) * 2014-12-25 2018-09-11 黄天生 A kind of telescopic satellite reception ancient cooking vessel
CN104925563B (en) * 2015-05-20 2016-10-19 西安电子科技大学 The cutting method of a kind of spiral deployable antenna reflecting surface and expanding unit thereof
US10153559B1 (en) * 2016-06-23 2018-12-11 Harris Corporation Modular center fed reflector antenna system
IL255390B (en) * 2017-11-01 2022-07-01 Elta Systems Ltd Depolyable antenna refelector
US10516216B2 (en) * 2018-01-12 2019-12-24 Eagle Technology, Llc Deployable reflector antenna system
US10727605B2 (en) 2018-09-05 2020-07-28 Eagle Technology, Llc High operational frequency fixed mesh antenna reflector
US10811759B2 (en) 2018-11-13 2020-10-20 Eagle Technology, Llc Mesh antenna reflector with deployable perimeter
US11139549B2 (en) 2019-01-16 2021-10-05 Eagle Technology, Llc Compact storable extendible member reflector
US10797400B1 (en) 2019-03-14 2020-10-06 Eagle Technology, Llc High compaction ratio reflector antenna with offset optics
US11011821B2 (en) 2019-07-10 2021-05-18 Eagle Technology, Llc Deployable conical space antenna and associated methods
CN111197948A (en) * 2020-01-06 2020-05-26 浏阳市梦想烟花制作燃放有限公司 Signal transmitting device for firework setting-off ignition system
AU2022234278A1 (en) * 2021-03-08 2023-09-07 Datapath, Inc. Transportable satellite antenna terminal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064534A (en) * 1960-04-13 1962-11-20 United Aircraft Corp Reflector for space vehicle
US3541569A (en) * 1968-03-08 1970-11-17 Trw Inc Expandable parabolic reflector
US3699576A (en) * 1970-07-07 1972-10-17 Fairchild Industries Collapsible reflector
US3715760A (en) * 1971-04-07 1973-02-06 Trw Inc Rigid collapsible dish structure
US4315265A (en) * 1980-06-11 1982-02-09 Trw Inc. Rigid collapsible dish structure
DE3128926C2 (en) * 1981-07-22 1985-05-02 Dornier System Gmbh, 7990 Friedrichshafen Foldable concave curved antenna reflector made of rigid segments
DE8121533U1 (en) * 1981-07-22 1982-02-11 Messerschmitt-Bölkow-Blohm GmbH, 8000 München FOLDABLE AND UNFOLDABLE RADIATION REFLECTOR
DE3128978A1 (en) * 1981-07-22 1983-02-10 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Foldable, rotationally symmetrical radiation reflector
GB2121609B (en) * 1982-04-28 1985-06-05 British Aerospace Foldable reflector
US4780726A (en) * 1984-12-03 1988-10-25 Trw Inc. Depolyable reflector

Also Published As

Publication number Publication date
DE3621578C2 (en) 1988-12-01
JPS637004A (en) 1988-01-12
DE3621578A1 (en) 1988-01-07
EP0252247A1 (en) 1988-01-13
US4899167A (en) 1990-02-06

Similar Documents

Publication Publication Date Title
EP0252247B1 (en) Collapsible antenna reflector with a concave surface
DE2110626C3 (en) Expandable solar cell carrier for spacecraft
DE60302370T2 (en) frame structure
EP0144672B1 (en) Collapsible antenna net reflector
DE69817272T2 (en) Platforms for space vehicles
DE60302986T2 (en) Articulated solar cell panel layout and spacecraft
DE60027794T2 (en) Remote adjustable, deployable mains reflector
DE3832546C2 (en) Module for a foldable scaffold and foldable scaffold using the modules
DE3907063C2 (en)
DE60120135T2 (en) FOLDABLE ANTENNA
DE3333951C2 (en)
DE19818240C2 (en) Reflector and reflector element for antennas for use in space, and method for unfolding a reflector
DE3222475A1 (en) EXTENDABLE MASTER STRUCTURE
DE10025212A1 (en) Solar energy concentrator with tracking parabolic reflector, has lower edge adjacent to support plane and pivotal axis
EP0070428B1 (en) Device for connecting and guiding the separate folding elements of a foldable antenna reflector
DE3621430A1 (en) LARGE, DEVELOPABLE SOLAR CELL ARRANGEMENT
DE60016302T2 (en) Compact stowage system for segmented parabolic reflectors
EP0253986A1 (en) Device to adjust the flaps of an aircraft wing
DE3532851A1 (en) Unfoldable and re-foldable antenna reflector
DE3223839A1 (en) FOLDABLE SCREEN ASSEMBLY
DE3423526A1 (en) FOLDABLE AND REFOLDABLE ANTENNA REFLECTOR
DE2809158C3 (en) Transportable device for assembly and dismantling, if required, of devices that can be aligned around two intersecting axes
DE2941170C2 (en) Flat structure that can be unfolded and collapsed by means of forced coupling
EP0347492B1 (en) Foldable wheel chair
DE2341533C2 (en) Laying out device for a bridge element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB NL

17P Request for examination filed

Effective date: 19880516

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORNIER GMBH

17Q First examination report despatched

Effective date: 19891117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950407

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950418

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950531

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST