EP0250811A2 - Process for manufacturing articles from at least partially amorphous alloys - Google Patents
Process for manufacturing articles from at least partially amorphous alloys Download PDFInfo
- Publication number
- EP0250811A2 EP0250811A2 EP87107060A EP87107060A EP0250811A2 EP 0250811 A2 EP0250811 A2 EP 0250811A2 EP 87107060 A EP87107060 A EP 87107060A EP 87107060 A EP87107060 A EP 87107060A EP 0250811 A2 EP0250811 A2 EP 0250811A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- metastable
- crystal modification
- metastable crystal
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/006—Amorphous articles
- B22F3/007—Amorphous articles by diffusion starting from non-amorphous articles prepared by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/10—Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
Definitions
- the invention relates to a method for producing an at least partially amorphous alloy piece.
- Amorphous (non-crystalline, glazed or glass-like) alloy pieces are produced according to the current state of the art (eg Basler Science, 4 Dec. 1985, p. 46) by extremely rapid quenching of a suitable metallic melt. Cooling rates of the order of 1000 ° C / ms are required so that glazing does not crystallize when quenching takes place. In order to achieve such high cooling rates, the melt is usually sprayed through nozzles onto a rapidly rotating cooling roller. This process is known under the name "melt spinning". The products of this and similar known processes are films or tapes with a thickness of a few tens of micrometers. Because of the fundamentally inverse relationship between thickness and cooling rate, the former cannot be increased, or at least not significantly, in the melt quenching process.
- the object of the present invention is to specify how large, hard and non-porous alloy pieces can be produced in a simple manner.
- the invention is based on the surprising finding that suitable alloys are put into a metastable crystal modification and spontaneously tempered (without any additional measures) and without ma microscopic diffusion (ie diffusion over many atomic diameters) can be glazed.
- a metastable crystal modification is understood to mean a crystal structure which, although permanently suitable under suitable conditions, does not correspond to the thermodynamic equilibrium.
- the method according to the invention enables the production of (completely) amorphous alloy pieces with thicknesses in the cm range. In this way, workpieces can be produced in practically usable dimensions instead of just thin foils as before.
- the reason for this is that the glazing is not achieved by rapid melt quenching, which is only possible with thin layers, but by (long) annealing as a solid-state reaction. Since the method according to the invention is based on the annealing of a homogeneous metastable crystal modification instead of an inhomogeneous laminate, the vitrification takes place without macroscopic diffusion, so that the resulting amorphous product is pore-free.
- the alloy or the part of the alloy to be glazed according to the invention must first be brought into the special state of a matastable crystal modification.
- a matastable crystal modification can consist of a mixed or compound crystal which is stable at high temperatures and which is supercooled at low temperatures and is therefore metastable.
- the metastable crystal modification can be produced by a quenching process, but the cooling rates required for this are typically many orders of magnitude smaller than those required in the known vitrification by melt quenching.
- a starting product for the process according to the invention one can use conventional metallurgical techniques, e.g. homogeneous alloy produced by melting or casting can be used.
- a binary alloy can be used, the composition being selected so that a metastable crystalline solution or compound of the selected composition exists in the binary alloy system, which has a higher free energy than the glass phase at temperatures below the glass temperature, but is still present Room temperature.
- Systems with stable high-temperature or high-pressure solutions or connections (of which there are dozens to hundreds) as well as systems with solutions or connections that are metastable at all temperatures, but can be produced by melt quenching, are suitable for this.
- Solution crystals with high lattice strain (stress energy), such as occur with combinations of elements with noticeably different atomic radii, are particularly favorable.
- Supercooled high-temperature phases can be produced by heating them above a characteristic transition temperature and then quenching them, for example in water.
- Other options for producing metastable crystal modifications are the use of high pressure or chemical deposition processes.
- An exemplary embodiment of the method according to the invention for producing amorphous Cr-Ti alloy pieces comprises three steps: in a first step, chemically pure Cr and Ti powders are weighed out in an atomic ratio of 40:60 and melted together. The crystal structure of the resulting alloy corresponds to the thermodynamic equilibrium (Cr2Ti + Alpha, see Fig. 1). Next, a few mm pieces of the alloy are heated in an arc or by a laser beam under protective gas at 1200 ° C for a few seconds and then quenched in water. This forms a high-temperature solution crystal (beta-Cr40Ti met) that is metastable at room temperature.
- the pieces are annealed at 600 ° C (below the glass transition temperature of approx. 650 ° C) in a vacuum for about 48 hours, during which they spontaneously and completely glaze.
- the glazing is expressed, among other things. due to an increase in electrical resistance, elasticity and hardness (the latter from approx. 6 to approx. 10 GPa Meyer-Ritz hardness).
- One advantage of the method is that the workpiece can not be mechanically processed in the hard glass state, but in the much softer beta state.
- the metastable crystal modification can also be produced directly from an alloy melt, e.g. B. a melt of Cr-Ti in an atomic ratio of 40:60 slowly with a cooling rate of 10 ° C / s to 1200 ° C. cooled and then rapidly quenched to a cooling rate of a few 100 ° C / s to 600 ° C, whereupon the tempering takes place at the final temperature of the quenching process of 600 ° C.
- an alloy melt e.g. B. a melt of Cr-Ti in an atomic ratio of 40:60 slowly with a cooling rate of 10 ° C / s to 1200 ° C. cooled and then rapidly quenched to a cooling rate of a few 100 ° C / s to 600 ° C, whereupon the tempering takes place at the final temperature of the quenching process of 600 ° C.
- pieces can also be produced from only partially amorphous and partially crystalline material.
- Pieces that are crystalline on the inside and have an amorphous surface layer can be produced by placing only the surface layer of an alloy piece in the metastable crystal modification and then tempering the whole piece. The process can be carried out in the same way as explained above, but with slower quenching (possibly without water). Only a surface layer of the alloy piece heated to 1200 ° C then cools down quickly enough that the metastable beta modification remains, while inside the workpiece the crystal structure (Cr2Ti + Alpha-Ti) corresponding to the thermodynamic equilibrium is formed. During the subsequent tempering, only the surface layer is glazed and the inside remains crystalline.
- the process according to the invention can also be carried out in the Cr-Ti system with a composition other than 40:60.
- a composition of Cr and Ti in an atomic ratio of 30:70 can be selected.
- the glazing process is slower (longer annealing required), but is reversible by heating the amorphous Cr-Ti alloy obtained by the described process to a temperature above the glass transition temperature of, for example, 800 ° C (and if necessary temper at this higher temperature) the metastable beta crystal can be produced again.
- FIG. 2 shows the free energy of the phases involved as a function of the composition at 600 and 800 ° C., arrows indicating different possible conversions.
- the method according to the invention can also be carried out with alloys other than Cr-Ti.
- alloys other than Cr-Ti can be binary, ternary or even more complex.
- binary and ternary systems which are suitable for the process according to the invention are cobalt-niobium, copper-titanium, iron-titanium, manganese-titanium, iob-nickel and iron-chromium-titanium.
- alloys are preferably used which contain at least one of the elements Si, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Pd, Ag, Hf, Ta, W, Pt or Au contain.
Landscapes
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Powder Metallurgy (AREA)
- Continuous Casting (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Soft Magnetic Materials (AREA)
- Laminated Bodies (AREA)
- Conductive Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Eine z.B. aus Chrom und Titan im Atom-Verhältnis 40:60 bestehende Legierung wird in eine metastabile Kristallmodifikation versetzt, indem die Legierung z.B. im Lichtbogen erhitzt und in Wasser abgeschreckt wird. Die metastabile Kristallmodifikation wird unterhalb der Glastemperatur so lange getempert, z.B. bei 600°C während 48 Stunden, bis sie vollständig verglast ist. Das erfindungsgemässe Verfahren ermöglicht die Herstellung grosser, amorpher, harter und porenfreier Legierungsstücke mit Dicken im cm-Bereich.A e.g. Alloy consisting of chromium and titanium in an atomic ratio of 40:60 is put into a metastable crystal modification by e.g. heated in an arc and quenched in water. The metastable crystal modification is annealed below the glass temperature, e.g. at 600 ° C for 48 hours until completely glazed. The method according to the invention enables the production of large, amorphous, hard and non-porous alloy pieces with thicknesses in the cm range.
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines wenigstens teilweise amorphen Legierungsstücks.The invention relates to a method for producing an at least partially amorphous alloy piece.
Amorphe (nichtkristalline, verglaste oder glasartige) Legierungsstücke werden nach dem gegenwärtigen Stand der Technik (z.B. Basler Zeitung 4. Dez. 1985, S. 46) durch ausserordentlich rasches Abschrecken einer geeigneten, metallischen Schmelze erzeugt. Damit beim Abschrecken nicht Kristallisation, sondern Verglasung erfolgt, sind Abkühlraten in der Grössenordnung von 1000°C/ms erforderlich. Um derart hohe Abkühlraten zu erreichen, wird die Schmelze üblicherweise durch Düsen auf eine rasch rotierende Kühlwalze gespritzt. Dieses Verfahren ist bekannt unter dem Namen "melt spinning". Die Produkte dieses und ähnlicher bekannter Verfahren sind Folien oder Bänder mit einer Dicke von einigen 10 Mikrometern. Wegen des grundsätzlich inversen Zusammenhangs zwischen Dicke und Abkühlrate lässt sich erstere bei den Schmelzabschreckverfahren nicht oder zumindest nicht wesentlich vergrössern.Amorphous (non-crystalline, glazed or glass-like) alloy pieces are produced according to the current state of the art (eg Basler Zeitung, 4 Dec. 1985, p. 46) by extremely rapid quenching of a suitable metallic melt. Cooling rates of the order of 1000 ° C / ms are required so that glazing does not crystallize when quenching takes place. In order to achieve such high cooling rates, the melt is usually sprayed through nozzles onto a rapidly rotating cooling roller. This process is known under the name "melt spinning". The products of this and similar known processes are films or tapes with a thickness of a few tens of micrometers. Because of the fundamentally inverse relationship between thickness and cooling rate, the former cannot be increased, or at least not significantly, in the melt quenching process.
Als Alternativverfahren zur Herstellung amorpher Legierungsdrähte in mm-Stärke ist vorgeschlagen worden (L. Schultz in "Amorphous Metals and Nonequilibrium Processing", ed. by M. von Allmen, Editions de Physique, Les Ulis 1984), sehr dünne Folien aus reinem kristallinem Nickel (Ni) und aus reinem kristallinem Zirkon (Zr) abwechselnd als Laminat aufeinanderzuschichten, spiralförmig zu wickeln, dann wie bei der üblichen Drahtherstellung durch ein Ziehwerkzeug zu ziehen und anschliessend bei niedriger Temperatur zu tempern. Beim Kaltziehen und Tempern durchmischen sich die Elemente Ni und Zr, wobei Verglasung durch eine Festkörperreaktion eintritt. Das Verfahren ist jedoch kompliziert und nur für Mischungen unterschiedlich rasch diffundierender Elemente mit stark negativer Mischwärme anwendbar. Die durch Diffusion entstehende amorphe Legierung ist meist porös und daher mechanisch schwach. Dies gilt mindestens teilweise auch für ein verwandtes Verfahren, bei dem eine Mischung elementarer kristalliner Pulver durch intensives Mahlen und Kaltverformen in einer Kugelmühle zur Durchmischung und Verglasung gebracht wird.As an alternative method for producing amorphous alloy wires with a thickness of mm, it has been proposed (L. Schultz in "Amorphous Metals and Nonequilibrium Processing", ed. By M. von Allmen, Editions de Physique, Les Ulis 1984), very thin foils made of pure crystalline nickel (Ni) and from pure crystalline zircon (Zr) alternately layered on top of each other as a laminate, wound spirally, then pulled through a drawing tool like in the usual wire production and then tempered at low temperature. The elements Ni and Zr mix during cold drawing and tempering, with glazing occurring as a result of a solid-state reaction. However, the process is complicated and can only be used for mixtures of elements diffusing at different speeds with strongly negative mixed heat. The amorphous alloy created by diffusion is usually porous and therefore mechanically weak. This also applies at least in part to a related process in which a mixture of elementary crystalline powders is mixed and vitrified by intensive grinding and cold working in a ball mill.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, anzugeben, wie man in einfacher Weise grosse sowie harte und porenfreie Legierungsstücke erzeugen kann.The object of the present invention is to specify how large, hard and non-porous alloy pieces can be produced in a simple manner.
Die erfindungsgemässe Lösung dieser Aufgabe ist Gegenstand des Patentanspruchs 1. Bevorzugte Ausführungsarten sind in den Ansprüchen 2 bis 10 umschrieben.The achievement of this object according to the invention is the subject of claim 1. Preferred embodiments are described in
Die Erfindung beruht auf der überraschenden Erkenntnis, dass geeignete Legierungen in eine metastabile Kristallmodifikation versetzt und durch Tempern spontan (ohne irgendwelche zusätzliche Massnahmen) und ohne ma kroskopische Diffusion (d.h. Diffusion über viele Atomdurchmesser) verglast werden können. Unter einer metastabilen Kristallmodifikation versteht man eine zwar unter geeigneten Bedingungen beliebig langlebige, aber nicht dem thermodynamischen Gleichgewicht entsprechende Kristallstruktur.The invention is based on the surprising finding that suitable alloys are put into a metastable crystal modification and spontaneously tempered (without any additional measures) and without ma microscopic diffusion (ie diffusion over many atomic diameters) can be glazed. A metastable crystal modification is understood to mean a crystal structure which, although permanently suitable under suitable conditions, does not correspond to the thermodynamic equilibrium.
Das erfindungsgemässe Verfahren ermöglicht die Herstellung durchgehend (vollständig) amorpher Legierungsstücke mit Dicken im cm Bereich. Es lassen sich so Werkstücke in praktisch verwertbaren Dimensionen, anstatt wie bisher nur dünne Folien, erzeugen. Der Grund liegt darin, dass die Verglasung nicht durch das nur bei dünnen Schichten mögliche rasche Schmelzabschrecken, sondern durch (langes) Tempern als Festkörperreaktion erreicht wird. Da das erfindungsgemässe Verfahren auf dem Tempern einer homogenen metastabilen Kristallmodifikation anstatt eines inhomogenen Laminates beruht, erfolgt das Verglasen ohne makroskopische Diffusion, so dass das entstehende amorphe Produkt porenfrei ist.The method according to the invention enables the production of (completely) amorphous alloy pieces with thicknesses in the cm range. In this way, workpieces can be produced in practically usable dimensions instead of just thin foils as before. The reason for this is that the glazing is not achieved by rapid melt quenching, which is only possible with thin layers, but by (long) annealing as a solid-state reaction. Since the method according to the invention is based on the annealing of a homogeneous metastable crystal modification instead of an inhomogeneous laminate, the vitrification takes place without macroscopic diffusion, so that the resulting amorphous product is pore-free.
Um durch blosses Tempern eine Verglasung zu erreichen, muss die Legierung bzw. der zu verglasende Teil der Legierung gemäss der Erfindung zunächst in den speziellen Zustand einer matastabilen Kristallmodifikation gebracht werden. Diese kann aus einem bei hohen Temperaturen stabilen Misch- oder Verbindungskristall bestehen, welcher bei niedrigen Temperaturen unterkühlt und somit metastabil ist. Die Herstellung der metastabilen Kristallmodifikation kann durch einen Abschreckvorgang erfolgen, wobei die dafür erforderlichen Abkühlraten jedoch typischerweise viele Grössenordnungen kleiner sind, als diejenigen, die beim bekannten Verglasen durch Schmelzabschrecken erforderlich sind.In order to achieve glazing by mere annealing, the alloy or the part of the alloy to be glazed according to the invention must first be brought into the special state of a matastable crystal modification. This can consist of a mixed or compound crystal which is stable at high temperatures and which is supercooled at low temperatures and is therefore metastable. The metastable crystal modification can be produced by a quenching process, but the cooling rates required for this are typically many orders of magnitude smaller than those required in the known vitrification by melt quenching.
Als Ausgangsprodukt kann für das erfindungsgemässe Verfahren eine durch konventionelle metallurgische Techniken, z.B. durch Zusammenschmelzen oder Giessen hergestellte, homogene Legierung verwendet werden. Beispielsweise kann eine binäre Legierung verwendet werden, wobei die Zusammensetzung so zu wählen ist, dass im binären Legierungssystem eine metastabile kristalline Lösung oder Verbindung der gewählten Zusammensetzung existiert, welche bei Temperaturen unterhalb der Glastemperatur eine höhere Freie Energie aufweist als die Glasphase, sich aber trotzdem bei Raumtemperatur darstellen lässt. Dafür in Frage kommen Systeme mit stabilen Hochtemperatur- oder Hochdruck-Lösungen oder -verbindungen, (wovon es Dutzende bis Hunderte gibt), sowie Systeme mit Lösungen oder Verbindungen, die bei allen Temperaturen metastabil sind, sich jedoch durch Schmelzabschrecken herstellen lassen. Besonders günstig sind Lösungskristalle mit hoher Gitterverspannung (Spannungsenergie), wie sie bei Kombinationen von Elementen mit merklich unterschiedlichen Atomradien auftreten. Unterkühlte Hochtemperaturphasen lassen sich durch Aufheizen über eine charakteristische Uebergangstemperatur und anschliessendes Abschrecken, etwa in Wasser, herstellen. Andere Möglichkeiten der Herstellung metastabiler Kristallmodifikationen liegen in der Anwendung hohen Druckes oder chemischer Abscheideverfahren.As a starting product for the process according to the invention, one can use conventional metallurgical techniques, e.g. homogeneous alloy produced by melting or casting can be used. For example, a binary alloy can be used, the composition being selected so that a metastable crystalline solution or compound of the selected composition exists in the binary alloy system, which has a higher free energy than the glass phase at temperatures below the glass temperature, but is still present Room temperature. Systems with stable high-temperature or high-pressure solutions or connections (of which there are dozens to hundreds) as well as systems with solutions or connections that are metastable at all temperatures, but can be produced by melt quenching, are suitable for this. Solution crystals with high lattice strain (stress energy), such as occur with combinations of elements with noticeably different atomic radii, are particularly favorable. Supercooled high-temperature phases can be produced by heating them above a characteristic transition temperature and then quenching them, for example in water. Other options for producing metastable crystal modifications are the use of high pressure or chemical deposition processes.
Im folgenden werden Ausführungsbeispiele des erfindungsgemässen Verfahrens anhand der Zeichnungen erläutert. Es zeigen:
- Fig. 1 das Phasendiagramm des Systems Cr-Ti (Chrom-Titan), worin Cr₂Ti und Alpha bei Raumtemperatur stabile Phasen, und Beta ein (bei niedriger Temperatur metastabiler) Hochtemperatur - Lösungsristall ist,
- Fig. 2 die Freie Enthalpie (auch Gibbs'sche Freie Energie genannt) als Funktion der Zusammensetzung im System Cr-Ti bei 600 und 800°C, worin a die amorphe und ce die Gleichgewichtskonfiguration bezeichnen, und senkrechte Pfeile mögliche Umwandlungen andeuten.
- 1 is the phase diagram of the system Cr-Ti (chromium-titanium), in which Cr₂Ti and alpha phases stable at room temperature, and beta is a (at low temperature metastable) high-temperature solution crystal,
- Fig. 2 shows the free enthalpy (also called Gibbs free energy) as a function of the composition in the system Cr-Ti at 600 and 800 ° C, where a denotes the amorphous and c e the equilibrium configuration, and vertical arrows indicate possible conversions.
Ein Ausführungsbeispiel des erfindungsgemässen Verfahrens zur Herstellung amorpher Cr-Ti Legierungsstücke umfasst drei Schritte: In einem ersten Schritt werden chemisch reine Cr und Ti Pulver im Atom-Verhältnis 40:60 abgewogen und zusammengeschmolzen. Die Kristallstruktur der entstehenden Legierung entspricht dem thermodynamischen Gleichgewicht (Cr₂Ti + Alpha, vgl. Fig. 1). Als nächstes werden einige mm grosse Stücke der Legierung im Lichtbogen oder durch einen Laserstrahl unter Schutzgas für einige Sekunden auf 1200°C erhitzt und dann in Wasser abgeschreckt. Dabei bildet sich ein bei Raumtemperatur metastabiler Hochtemperatur- Lösungskristall (Beta-Cr₄₀Ti₆₀). Im letzten Schritt werden die Stücke bei 600°C (unterhalb der Glastemperatur von ca. 650°C) im Vakuum während etwa 48 Stunden getempert, wobei sie spontan und vollständig verglasen. Die Verglasung äussert sich u.a. durch ein Ansteigen des elektrischen Widerstandes, der Elastizität sowie der Härte, (letztere von ca. 6 auf ca. 10 GPa Meyer-Ritzhärte). Ein Vorteil des Verfahrens ist, dass eine mechanische Bearbeitung des Werkstücks nicht im harten Glaszustand, sondern bereits im wesentlich weicheren Beta-Zustand erfolgen kann.An exemplary embodiment of the method according to the invention for producing amorphous Cr-Ti alloy pieces comprises three steps: in a first step, chemically pure Cr and Ti powders are weighed out in an atomic ratio of 40:60 and melted together. The crystal structure of the resulting alloy corresponds to the thermodynamic equilibrium (Cr₂Ti + Alpha, see Fig. 1). Next, a few mm pieces of the alloy are heated in an arc or by a laser beam under protective gas at 1200 ° C for a few seconds and then quenched in water. This forms a high-temperature solution crystal (beta-Cr₄₀Ti met) that is metastable at room temperature. In the last step, the pieces are annealed at 600 ° C (below the glass transition temperature of approx. 650 ° C) in a vacuum for about 48 hours, during which they spontaneously and completely glaze. The glazing is expressed, among other things. due to an increase in electrical resistance, elasticity and hardness (the latter from approx. 6 to approx. 10 GPa Meyer-Ritz hardness). One advantage of the method is that the workpiece can not be mechanically processed in the hard glass state, but in the much softer beta state.
Die metastabile Kristallmodifikation kann auch direkt aus einer Legierungsschmelze hergestellt werden, indem z. B. eine Schmelze aus Cr-Ti im Atom-Verhältnis 40:60 langsam mit einer Abkühlrate von 10°C/s auf 1200°C ab gekühlt und dann rasch mit einer Abkühlrate von einigen 100°C/s auf 600°C abgeschreckt wird, worauf die Temperung bei der Endtemperatur des Abschreckvorgangs von 600°C erfolgt.The metastable crystal modification can also be produced directly from an alloy melt, e.g. B. a melt of Cr-Ti in an atomic ratio of 40:60 slowly with a cooling rate of 10 ° C / s to 1200 ° C. cooled and then rapidly quenched to a cooling rate of a few 100 ° C / s to 600 ° C, whereupon the tempering takes place at the final temperature of the quenching process of 600 ° C.
Um die vorteilhaften Eigenschaften sowohl der amorphen wie der kristallinen Beschaffenheit für bestimmte Anwendungen zu kombinieren, können auch Stücke aus nur teilweise amorphem und teilweise kristallinem Material hergestellt werden. Stücke, die im Innern kristallin sind und eine amorphe Oberflächenschicht haben, lassen sich dadurch herstellen, dass man nur die Oberflächenschicht eines Legierungsstücks in die metastabile Kristallmodifikation versetzt und das ganze Stück dann tempert. Das Verfahren kann dabei gleich wie oben erläutert, jedoch mit langsamerem Abschrecken (ggf. ohne Wasser) durchgeführt werden. Von dem auf 1200°C erhitzten Legierungsstück kühlt dann nur eine Oberflächenschicht rasch genug ab, dass die metastabile Beta-Modifikation bestehen bleibt, während sich im Innern des Werkstückes die dem thermodynamischen Gleichgewicht entsprechende Kristallstruktur (Cr₂Ti + Alpha-Ti) bildet. Beim anschliessenden Tempern wird demzufolge nur die Oberflächenschicht verglast und das Innere bleibt kristallin.In order to combine the advantageous properties of both the amorphous and the crystalline nature for certain applications, pieces can also be produced from only partially amorphous and partially crystalline material. Pieces that are crystalline on the inside and have an amorphous surface layer can be produced by placing only the surface layer of an alloy piece in the metastable crystal modification and then tempering the whole piece. The process can be carried out in the same way as explained above, but with slower quenching (possibly without water). Only a surface layer of the alloy piece heated to 1200 ° C then cools down quickly enough that the metastable beta modification remains, while inside the workpiece the crystal structure (Cr₂Ti + Alpha-Ti) corresponding to the thermodynamic equilibrium is formed. During the subsequent tempering, only the surface layer is glazed and the inside remains crystalline.
Das erfindungsgemässe Verfahren kann im Cr-Ti System auch mit anderer Zusammensetzung als 40:60 durchgeführt werden. Beispielsweise kann eine Zusammensetzung von Cr und Ti im Atomverhältnis 30:70 gewählt werden. Der Verglasungsvorgang ist dabei zwar langsamer (längeres Tempern erforderlich), dafür aber reversibel, indem sich durch Erhitzen der durch das beschriebene Verfahren erhaltenen amorphen Cr-Ti-Legierung auf eine über der Glastemperatur liegende Temperatur von z.B. 800°C (und ggf. tempern bei dieser höheren Temperatur) wieder der metastabile Beta-Kristall erzeugen lässt. Zur Veranschaulichung zeigt Figur 2 die Freie Energie der beteiligten Phasen als Funktion der Zusammensetzung bei 600 und 800°C, wobei Pfeile verschiedene mögliche Umwandlungen symbolisieren.The process according to the invention can also be carried out in the Cr-Ti system with a composition other than 40:60. For example, a composition of Cr and Ti in an atomic ratio of 30:70 can be selected. The glazing process is slower (longer annealing required), but is reversible by heating the amorphous Cr-Ti alloy obtained by the described process to a temperature above the glass transition temperature of, for example, 800 ° C (and if necessary temper at this higher temperature) the metastable beta crystal can be produced again. For illustration, FIG. 2 shows the free energy of the phases involved as a function of the composition at 600 and 800 ° C., arrows indicating different possible conversions.
Das erfindungsgemässe Verfahren kann auch mit anderen Legierungen als Cr-Ti durchgeführt werden. Diese können binär, ternär oder auch komplexer sein. Beispiele von binären und ternären Systemen, die sich für das erfindungsgemässe Verfahren eignen sind Kobalt-Niob, Kupfer-Titan, Eisen-Titan, Mangan-Titan, iob-Nickel sowie Eisen-Chrom-Titan. Allgemein werden vorzugsweise Legierungen verwendet, die mindestens eines der Elemente Si, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Pd, Ag, Hf, Ta, W, Pt oder Au enthalten.The method according to the invention can also be carried out with alloys other than Cr-Ti. These can be binary, ternary or even more complex. Examples of binary and ternary systems which are suitable for the process according to the invention are cobalt-niobium, copper-titanium, iron-titanium, manganese-titanium, iob-nickel and iron-chromium-titanium. In general, alloys are preferably used which contain at least one of the elements Si, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Pd, Ag, Hf, Ta, W, Pt or Au contain.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2177/86 | 1986-05-29 | ||
CH2177/86A CH665849A5 (en) | 1986-05-29 | 1986-05-29 | METHOD FOR PRODUCING AMORPHOUS ALLOYS. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0250811A2 true EP0250811A2 (en) | 1988-01-07 |
EP0250811A3 EP0250811A3 (en) | 1988-10-05 |
Family
ID=4227691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87107060A Withdrawn EP0250811A3 (en) | 1986-05-29 | 1987-05-15 | Process for manufacturing articles from at least partially amorphous alloys |
Country Status (4)
Country | Link |
---|---|
US (1) | US4797166A (en) |
EP (1) | EP0250811A3 (en) |
JP (1) | JPS62287052A (en) |
CH (1) | CH665849A5 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4216150A1 (en) * | 1991-05-15 | 1992-11-19 | Koji Hashimoto | Highly corrosion-resistant amorphous alloy contg. chromium@ and titanium@ and/or zirconium@ |
WO2000008217A1 (en) * | 1998-08-04 | 2000-02-17 | National University Of Singapore | Metastable aluminium-titanium materials |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3741119A1 (en) * | 1987-12-04 | 1989-06-15 | Krupp Gmbh | PRODUCTION OF SECONDARY POWDER PARTICLES WITH NANOCRISTALLINE STRUCTURE AND WITH SEALED SURFACES |
DE19614458C2 (en) * | 1996-04-12 | 1998-10-29 | Grundfos As | Pressure or differential pressure sensor and method for its production |
TW593704B (en) * | 2003-08-04 | 2004-06-21 | Jin Ju | Annealing-induced extensive solid-state amorphization in a metallic film |
US8161811B2 (en) | 2009-12-18 | 2012-04-24 | Honeywell International Inc. | Flow sensors having nanoscale coating for corrosion resistance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984002926A1 (en) * | 1983-01-31 | 1984-08-02 | California Inst Of Techn | Formation of amorphous materials |
EP0177110A1 (en) * | 1984-09-14 | 1986-04-09 | Osaka University | Process for accelerating amorphization of intermetallic compounds by a chemical reaction using lattice defects |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA988748A (en) * | 1973-05-11 | 1976-05-11 | Donald J. Cameron | High strenght corrosion-resistant zirconium aluminum alloys |
JPS6169931A (en) * | 1984-09-14 | 1986-04-10 | Univ Osaka | Method for making intermetallic compound amorphous by chemical reaction |
-
1986
- 1986-05-29 CH CH2177/86A patent/CH665849A5/en not_active IP Right Cessation
-
1987
- 1987-05-11 US US07/047,481 patent/US4797166A/en not_active Expired - Fee Related
- 1987-05-15 EP EP87107060A patent/EP0250811A3/en not_active Withdrawn
- 1987-05-20 JP JP62121466A patent/JPS62287052A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984002926A1 (en) * | 1983-01-31 | 1984-08-02 | California Inst Of Techn | Formation of amorphous materials |
EP0177110A1 (en) * | 1984-09-14 | 1986-04-09 | Osaka University | Process for accelerating amorphization of intermetallic compounds by a chemical reaction using lattice defects |
Non-Patent Citations (1)
Title |
---|
PROCEEDINGS AMORPHOUS METALS AND NON-EQUILIBRIUM PROCESSING, 5.-8. Juni 1984, Strasbourg, Editions de physique les ulis 1984, Seiten 135-140; L. SCHULTZ: "Preparation of thick amorphous metals by Jelly roll technique and rapid diffusion" * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4216150A1 (en) * | 1991-05-15 | 1992-11-19 | Koji Hashimoto | Highly corrosion-resistant amorphous alloy contg. chromium@ and titanium@ and/or zirconium@ |
FR2676461A1 (en) * | 1991-05-15 | 1992-11-20 | Hashimoto Koji | HIGHLY CORROSION RESISTANT AMORPHOUS ALLOYS. |
DE4216150C2 (en) * | 1991-05-15 | 1997-02-13 | Koji Hashimoto | Process for the production of a highly corrosion-resistant amorphous alloy |
WO2000008217A1 (en) * | 1998-08-04 | 2000-02-17 | National University Of Singapore | Metastable aluminium-titanium materials |
US6623571B1 (en) | 1998-08-04 | 2003-09-23 | National University Of Singapore | Metastable aluminum-titanium materials |
Also Published As
Publication number | Publication date |
---|---|
US4797166A (en) | 1989-01-10 |
CH665849A5 (en) | 1988-06-15 |
EP0250811A3 (en) | 1988-10-05 |
JPS62287052A (en) | 1987-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3621671C2 (en) | ||
DE69409938T2 (en) | Titanium alloy and process for its manufacture | |
DE3243283C2 (en) | ||
DE4241909A1 (en) | ||
DE69021848T2 (en) | Process for the production of superconductor raw materials. | |
EP0200079B1 (en) | Method of manufacturing a metallic article from an amorphous alloy | |
DE102014114830A1 (en) | A method of making a thermoelectric article for a thermoelectric conversion device | |
EP0236823B1 (en) | Metallic semi-finished product, process for its manufacture and uses of the semi-finished product | |
EP0284818A1 (en) | Method and device for layer bonding | |
EP0250811A2 (en) | Process for manufacturing articles from at least partially amorphous alloys | |
DE69024727T2 (en) | Grain refinement of the zirconium using silicon | |
EP0090887B1 (en) | Method of joining by diffusion high temperature materials | |
DE2422578A1 (en) | ZIRCONALIZATION, PROCESS FOR THEIR MANUFACTURING AND THEIR USE | |
DE69026658T2 (en) | Process for the production of titanium and titanium alloys with a fine coaxial microstructure | |
EP0659901B1 (en) | Cobalt based alloy target for magnetron sputtering apparatus | |
EP0545145A1 (en) | Manufacture of a porous copper-based material as a preform for a machining process | |
DE2925977C2 (en) | Process for the production of semi-hard aluminum sheets | |
DE68918870T2 (en) | HARD SOLDER ALLOY BASED ON NICKEL PALLADIUM. | |
DE4107144A1 (en) | Producing a highly ductile alpha-2 titanium alloy. | |
EP0735148B1 (en) | Process for making a structural component with brazed foils of ODS sintered iron alloys and component made by this process | |
DE3738923A1 (en) | METHOD FOR PRODUCING HARD-LETABLE SUPER ALLOYS | |
DE19609983A1 (en) | Process for the production of shaped superconductors | |
DE1115279C2 (en) | Process for the production of cube texture in the manufacture of objects from iron-silicon alloys | |
DE3535065C2 (en) | ||
EP3478865B1 (en) | Thermoelectric article, composite material for a thermoelectric conversion device, and method for producing a thermoelectric article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19881117 |
|
17Q | First examination report despatched |
Effective date: 19900730 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19911003 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VON ALLMEN, MARTIN Inventor name: BLATTER, ANDREAS |