EP0250746B1 - Passive infrared motion detector - Google Patents
Passive infrared motion detector Download PDFInfo
- Publication number
- EP0250746B1 EP0250746B1 EP87105733A EP87105733A EP0250746B1 EP 0250746 B1 EP0250746 B1 EP 0250746B1 EP 87105733 A EP87105733 A EP 87105733A EP 87105733 A EP87105733 A EP 87105733A EP 0250746 B1 EP0250746 B1 EP 0250746B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- passive infrared
- predetermined
- movement indicator
- zones
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 26
- 238000012544 monitoring process Methods 0.000 claims abstract description 9
- 238000011156 evaluation Methods 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 15
- 230000001960 triggered effect Effects 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 2
- 230000000149 penetrating effect Effects 0.000 abstract description 2
- 230000035515 penetration Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 description 18
- 230000015654 memory Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000011895 specific detection Methods 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/19—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
- G08B13/191—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means
Definitions
- the invention relates to a passive infrared motion detector as specified in the preamble of the main claim.
- PIR P assiver I nfra R ot
- IR radiation infrared radiation
- a PIR motion detector Even the smallest changes in radiation flow, ie changes over time in the temperature difference between the ambient temperature and the respective surface temperature of the object, can be detected.
- the well-known PIR motion detectors are designed to detect and evaluate dynamic changes. So that a message signal is generated, it is necessary that the object both penetrates into the measuring field and exits the measuring field again.
- known evaluation methods can be designed to output a corresponding detection signal only after a sequence of preselectable detection sequences, for example a plurality of measuring field entries and exits. The amplitude and number or polarity of the sensor output pulses generated by the entries and exits are compared with specified reference values and specified polarity sequences and time sequences.
- a passive infrared motion detector according to the preamble of claim 1 is known from EP 107 042 A1. It has a first sensor, the output signal of which is evaluated according to two criteria. The evaluation takes place on the one hand according to the correlation with a stored reference signal and on the other hand according to a predetermined amplitude threshold value of the correlation result. Furthermore, the close range of the first sensor is monitored by a second sensor and the output signal of the second sensor is used as a reference for the output signal of the first sensor.
- an infrared motion detector is known from EP 70 364 B1, which has a window discriminator with dynamic reference voltage. Both a positive and a negative signal pulse of a given amplitude occur within a given time interval. This voltage curve is characteristic of an entry and exit of a person in the surveillance area.
- the invention has for its object to provide a passive infrared motion detector of the type mentioned, which is simplified in terms of circuitry and in which a technically complex correlation process can be dispensed with and nevertheless a reliable detection of the useful signal against noise takes place.
- the invention takes advantage of the fact that after Radiation law changes the radiant power in the square of the distance. In relation to a certain object, a certain characteristic radiation power can therefore be assigned to each distance zone. Due to the generally approximately conical design of the measuring field, which depends on the optical device used, the time between an entry and an exit of the measuring field is also different at two distance zones. The invention is therefore based on the idea of evaluating the measured variables characteristic of the individual distance zones in order to detect a transition of an object from one distance zone to the other. For example, the signal amplitude decreases to a quarter when the distance of the object from the sensor doubles. A movement of the object can therefore be concluded from the change in amplitude.
- the amplitudes assigned to the distance zones can be determined on the basis of reference objects which are brought into the distance zones. In this way, the signal amplitudes on which the evaluation is based can be measured precisely. It is also easily possible to subdivide into signal amplitudes that are based on movement and signal amplitudes that are caused by interference.
- a preferred development of the invention consists in that more than two distance zones are specified with an amplitude sequence assigned to the distance zones.
- a subdivision can consist, for example, of providing a near area in which the object is much larger than the measurement zone, a near area, a middle area and a far area. The classification is made according to the specific detection requirements.
- the individual distance zones can be assigned different, individual signal intervals will.
- This measure takes into account the fact that the usually conical measuring field increases with increasing distance from the sensor, so that the time for traversing increases correspondingly with increasing distance from the sensor.
- the individual distance zones can therefore be assigned a signal sequence corresponding to their diameter of those signals which indicate the entry and exit of an object into or out of the distance zone.
- a preferred development is that the outputs of all selective amplifiers are connected via a multiplexer to a threshold value comparator with a variable reference threshold, which can be controlled via a multiplexer in accordance with the input signal present.
- the output of the threshold value comparator is preferably connected to a first and second cross-connected timer in such a way that the first timer when a Threshold value is started and that an output signal can only be tapped at the first timing element if the second timing element has been activated within a predetermined time period by exceeding a negated threshold value.
- the outputs of the selective amplifiers are connected to an interference signal detection unit, with which the output signals are monitored for signal amplitudes that clearly differ from the expected signal amplitudes.
- Fig. 1 shows purely schematically the formation of measuring fields of a PIR motion detector and their subdivision into distance zones.
- Fig. 2 shows a block diagram of an arrangement for monitoring the distance zones acc. Fig. 1.
- Fig. 3 shows an alternative of a circuit part of the arrangement according to. Fig. 2;
- Fig. 4 shows an alternative arrangement for monitoring the distance zones acc. Fig. 1
- FIG. 1 illustrates purely schematically an area monitored by a PIR motion detector with a sensor 1.
- the infrared radiation of the two measuring zones 20, 20 ' is focused on the sensor 1 via an optical device, not shown. Any change in radiation incidence causes an output voltage change at sensor 1, which is evaluated in an arrangement described in the following figures.
- the distances of the individual distance zones e1 to e5 as well as their lengths can basically be freely selected. However, it makes sense to make and coordinate the classification according to the specific detection requirements.
- the radiation in the two measuring fields 20, 20 ' is bundled via the optical device on the sensor 1 from antiparallel connected, adjacent radiation detectors 1, 1' pyro-electric type, which can also be referred to as dual sensors.
- FIG. 1 also illustrates in a purely schematic manner the manner in which the relationship between the object size and the measurement field size changes in the individual distance zones e1 to e4.
- a reference object 22 is shown in the measuring field 20 in each of the distance zones.
- Fig. 1 illustrates that the time for traversing the measuring fields in the individual distance zones e1 to e4 is different at the same speed in the individual distance zones e1 to e4. The determination of this interval can be determined on the basis of an entrance amplitude and an exit amplitude at the outputs of the two detectors 1, 1 '.
- Fig. 2 illustrates a first example of an evaluation unit with which the output signals of the two radiation detectors 1, 1 'are evaluated.
- evaluation branches I, I' For both radiation detectors 1, 1 'there are separate evaluation branches I, I'. They each consist of a series connection of selective amplifiers 2, 4, 6 and 2 ', 4', 6 '. The number corresponds to the number of distance zones e1 to e4. With, for example, four distance zones, four selective amplifiers are also connected in series. The output signals of the individual selective amplifiers are passed through differentiators 3, 5, 7 and 3 ', 5', 7 ', to the next stage. Through the series connection of the selective amplifiers and the differentiators, the evaluation circuit can be designed for a predetermined sensitivity with regard to a certain monitoring volume.
- the radiation changes upon entry and exit into or from a distance zone are evaluated by assigning a selective amplifier to each distance zone e1 to e n and comparing the amplitude of the respective output signal with reference amplitudes will. The assignment and subdivision takes place accordingly the expected useful signal amplitudes in the distance ranges e1 to e n .
- the respective output signal E to E n of an amplifier 2, 4, 6 of the evaluation branch I is fed via an analog multiplexer 8 to a threshold value comparator 9 with a variable reference voltage, which likewise via a further analog multiplexer 12 in association with the input signal currently being applied can be interpreted as changeable.
- timing element 10 or 11 When a threshold value is exceeded, one of two timing elements 10 or 11 is triggered, which only emits an output signal if the other negated timing element is activated within a predetermined time. Depending on whether a positive or negative reference threshold is exceeded (reference voltage u+ or reference voltage U ⁇ ), a corresponding output signal A+ or A ⁇ is output by the relevant timing element 10, 11.
- the two analog multiplexers 8, 12 are controlled via a clock signal ST, which is generated in a predetermined time pattern by a clock stage (not shown).
- the second evaluation branch I ' is identical to the first evaluation branch I.
- the output signals of the individual amplifiers 2 ', 3', 6 ', are tapped for comparison purposes and, similarly to the output signals E1 to E n, are fed to an analog multiplexer (not shown).
- the evaluation branch I ' can improve the evaluation overall depending on the sensor type and requirement.
- the comparison levels V1 to V n are preferably determined by measurement by placing a reference object in the individual distance zones and measuring the characteristic output amplitudes of the associated selective amplifiers. In this way, an amplitude sequence adapted to the respective monitoring task can be determined and defined.
- the determined maximum signal amplitudes at the outputs of the amplifiers can also be divided into signal amplitudes that originate from motion detection and signal amplitudes that are caused due to interference.
- a logical evaluation unit (not shown) can be used in this way prevent a message from the motion detector that can be clearly assigned to interference. With the aid of the logic evaluation not only the absence of a predetermined amplitude sequence but also the absence of an entry / exit detection can be detected and displayed, if the individual distance zones are assigned to e n e1 characteristic signal frequencies.
- a processor-controlled evaluation can be provided according to FIG. 3.
- the output signals Se1 to Se n of the selective amplifiers 2, 4, 6 of the first evaluation branch I are fed to a processor 19 which works with an A / D converter with multiplexed inputs and correspondingly multiplexed threshold value outputs (not shown).
- a threshold value corresponding to the example described in FIG. 2 is exceeded, one of the counter stages 13 and 14 is activated depending on the polarity of the level U x +, U x ⁇ , and then one of the memory elements 15 and 16 is set, each of the two Time counter stages 143 and 14 are connected downstream.
- an output stage 18 for actuator control is activated with the aid of a logic combination stage 17, one of the corresponding alarm outputs A e1 to A en of the relevant distance stage e1 to e n being activated.
- FIG. 4 Another example for monitoring the distance zones e1 to e n is illustrated in FIG. 4.
- the arrangement is designed as an example for four distance levels e1 to e4. Accordingly, the radiation detector 1 is followed by a selective amplifier with four stages 41, 42, 43, 44.
- the output signal of each amplifier 41 to 44 is fed to an evaluation unit 54, 55, 56 and 57, the circuit details of which are identical.
- the evaluation unit is representative of all other evaluation units 57 at the output of the amplifier 44 shown in detail.
- It includes a comparator evaluation 45 for interference signal detection or for detection detection. If signal amplitudes appear within the range selected as a function of the distance, a memory cell 46 and a timer 47 are activated. The timer 47 resets the memory 46 within a time that is selected as a function of the distance. If the corresponding negated signal amplitude is reached within this time, then additional memory element 48 is set and an actuator signal A e4 is set via an AND link 40 of the outputs of the two memories 46, 48.
- one of the two memory elements 51 or 52 is set as a function of the polarity of the signal amplitude and activates an actuator B e4 with a time delay via a block 13 if the corresponding negated signal amplitude does not appear within the time delay.
- the actuator B e4 indicates that an object remains in the detection area.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
- Studio Devices (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Burglar Alarm Systems (AREA)
Abstract
Description
Die Erfindung geht aus von einem passiven Infrarot-Bewegungsmelder, wie er im Oberbegriff des Hauptanspruchs angegeben ist.The invention relates to a passive infrared motion detector as specified in the preamble of the main claim.
Derartige PIR-(Passiver InfraRot)-Bewegungsmelder werden bekanntlich in der Gefahrenmeldetechnik, insbesondere in der Instrusionsschutztechnik und in der Steuerungstechnik zur Erfassung von bewegten Objekten in Innenräumen eingesetzt. Dabei wird die von einem menschlichen Körper oder von einer anderen Wärmequelle abgegebene Infrarotstrahlung (IR-Strahlung) von einer Spiegeloptik gebündelt und einem Pyro-Element zugeführt. Im Meßbereich eines PIR-Bewegungsmelders können auch kleinste Strahlenflußänderungen, d.h. zeitliche Änderungen der Temperaturdifferenz zwischen der Umgebungstemperatur und der jeweiligen Oberflächentemperatur des Objektes, detektiert werden.Such PIR (P assiver I nfra R ot) motion are known to be used in the hazard detection, particularly in the Instrusionsschutztechnik and in control systems for the detection of moving objects indoors. The infrared radiation (IR radiation) emitted by a human body or by another heat source is bundled by mirror optics and fed to a pyro element. In the measuring range of a PIR motion detector, even the smallest changes in radiation flow, ie changes over time in the temperature difference between the ambient temperature and the respective surface temperature of the object, can be detected.
Die bekannten PIR-Bewegungsmelder sind darauf ausgelegt, dynamische Änderungen zu erfassen und auszuwerten. Damit ein Meldesignal erzeugt wird, ist es erforderlich, daß das Objekt sowohl in das Meßfeld eindringt als auch aus dem Meßfeld wieder austritt. Ferner können bekannte Auswerteverfahren darauf ausgelegt sein, erst nach einer sequenz von vorwählbaren Detektionsabläufen, beispielsweise mehreren Meßfeldeintritten und -austritten, ein entsprechendes Detektionssignal abzugeben. Die von den Eintritten und Austritten erzeugten Sensorausgangsimpulse werden hinsichtlich ihrer Amplituden und ihrer Anzahl bzw. Polarität mit vorgegebenen Referenzwerten sowie vorgegebenen Polaritätsfolgen und Zeitfolgen verglichen.The well-known PIR motion detectors are designed to detect and evaluate dynamic changes. So that a message signal is generated, it is necessary that the object both penetrates into the measuring field and exits the measuring field again. Furthermore, known evaluation methods can be designed to output a corresponding detection signal only after a sequence of preselectable detection sequences, for example a plurality of measuring field entries and exits. The amplitude and number or polarity of the sensor output pulses generated by the entries and exits are compared with specified reference values and specified polarity sequences and time sequences.
Für diese PIR-Bewegungsmelder ist also charakteristisch, daß sie im wesentlichen auf das Durchqueren des Meßfeldes reagieren, und daß das Verweilen von Objekten im Meßbereich nicht differenziert erkannt werden kann. Die Referenzwerte der bekannten PIR-Bewegungsmelder müssen aus naheliegenden Gründen auf die Kleinsten zu detektierenden Signale sowie die längste Folgezeit des Polaritätswechsels des Sensorsignals ausgelegt sein. Dies hat insbesondere bei der Anwendung eines PIR-Bewegungsmelders im Intrusionsschutz zur Folge, daß entweder der Detektionsbereich sehr klein gehalten werden muß oder daß die Detektion eines bewegten Objektes innerhalb des Meßfeldes nicht erkannt werden kann, so daß in dieser Hinsicht keine Überwachung erfolgt. Im Bereich der Steuerungsanwendungen kann dieser Mangel Fehlfunktionen mit gravierenden Folgeerscheinungen auslösen.It is characteristic of these PIR motion detectors that they essentially respond to the crossing of the measuring field, and that the dwelling of objects in the measuring range cannot be recognized differentially. For obvious reasons, the reference values of the known PIR motion detectors must be designed for the smallest signals to be detected and the longest subsequent time of the polarity change of the sensor signal. In particular when using a PIR motion detector in intrusion protection, this has the consequence that either the detection area must be kept very small or that the detection of a moving object within the measuring field cannot be recognized, so that no monitoring takes place in this regard. In the area of control applications, this deficiency can trigger malfunctions with serious sequelae.
Ein passiver Infrarot-Bewegungsmelder gemäß dem Obergegriff des Anspruchs 1 ist aus der EP 107 042 A1 bekannt. Er weist einen ersten Sensor auf, dessen Ausgangssignal nach zwei Kriterien ausgewertet wird. Die Auswertung erfolgt einerseits nach der Korrelation mit einem abgespeicherten Referenzsignal und andererseits nach einem vorgegebenen Amplituden-Schwellenwert des Korrelationsergebnisses. Ferner wird der Nahbereich des ersten Sensors über einen zweiten Sensor überwacht und das Ausgangssignal des zweiten Sensors als Referenz für das Ausgangssignal des ersten Sensors verwertet.A passive infrared motion detector according to the preamble of
Ferner ist aus der EP 70 364 B1 ein Infrarot-Bewegungsmelder bekannt, der einen Fensterdiskriminator mit dynamischer Referenzspannung aufweist. Innerhalb eines vorgegebenen Zeitintervalls tritt sowohl ein positiver als auch ein negativer Signalimpuls vorgegebener Amplitude auf. Dieser Spannungsverlauf ist charakteristisch für einen Eintritt und einen Austritt einer Person in den Überwachungsbereich.Furthermore, an infrared motion detector is known from EP 70 364 B1, which has a window discriminator with dynamic reference voltage. Both a positive and a negative signal pulse of a given amplitude occur within a given time interval. This voltage curve is characteristic of an entry and exit of a person in the surveillance area.
Der Erfindung liegt die Aufgabe zugrunde, einen passiven Infrarot-Bewegungsmelder der eingangs genannten Art anzugeben, welcher schaltungstechnisch vereinfacht ist und bei welchem auf einen sich technisch aufwendig gestaltenden Korrelationsvorgang verzichtet werden kann und trotzdem eine zuverlässige Erkennung des Nutzsignals gegenüber dem Rauschen erfolgt.The invention has for its object to provide a passive infrared motion detector of the type mentioned, which is simplified in terms of circuitry and in which a technically complex correlation process can be dispensed with and nevertheless a reliable detection of the useful signal against noise takes place.
Diese Aufgabe wird mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen gelöst. Bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved with the features specified in the characterizing part of
Die Erfindung macht sich den Umstand zunutze, daß sich nach dem Strahlungsgesetz die Strahlungsleistung im Quadrat der Entfernung ändert. Bezogen auf ein bestimmtes Objekt kann daher jeder Entfernungszone eine bestimmte charakteristische Strahlungsleistung zugeordnet werden. Durch die in der Regel etwa kagelförmige Ausbildung des Meßfeldes, die von der verwendeten optischen Einrichtung abhängt, ist ferner auch die Zeit zwischen einem Meßfeld-Eintritt und einem -Austritt bei zwei Entfernungszonen unterschiedlich. Der Erfindung liegt also der Gedanke zugrunde, die für die einzelnen Entfernungszonen charakteristischen Meßgrößen auszuwerten, um einen Übergang eines Objektes von einer Entfernungszone in die andere zu detektieren. Beispielsweise verringert sich die Signalamplitude auf ein Viertel, wenn sich die Entfernung des Objektes vom Sensor verdoppelt. Aus der Amplitudenänderung kann also auf eine Bewegung des Objektes geschlossen werden.The invention takes advantage of the fact that after Radiation law changes the radiant power in the square of the distance. In relation to a certain object, a certain characteristic radiation power can therefore be assigned to each distance zone. Due to the generally approximately conical design of the measuring field, which depends on the optical device used, the time between an entry and an exit of the measuring field is also different at two distance zones. The invention is therefore based on the idea of evaluating the measured variables characteristic of the individual distance zones in order to detect a transition of an object from one distance zone to the other. For example, the signal amplitude decreases to a quarter when the distance of the object from the sensor doubles. A movement of the object can therefore be concluded from the change in amplitude.
Die den Entfernungszonen zugeordneten Amplituden können anhand von Referenzobjekten ermittelt werden, die in die Entfernungszonen gebracht werden. Auf diese Weise können die der Auswertung zugrundeliegenden Signalamplituden genau gemessen werden. Es ist ferner leicht möglich, eine Unterteilung in Signalamplituden, die auf einer Bewegung beruhen, und in Signalamplituden, die aufgrund von Störeinflüssen hervorgerufen werden, vorzunehmen.The amplitudes assigned to the distance zones can be determined on the basis of reference objects which are brought into the distance zones. In this way, the signal amplitudes on which the evaluation is based can be measured precisely. It is also easily possible to subdivide into signal amplitudes that are based on movement and signal amplitudes that are caused by interference.
Eine bevorzugte Weiterbildung der Erfindung besteht darin, daß mehr als zwei Entfernungszonen mit einer den Entfernungszonen zugeordneten Amplitudensequenz vorgegeben werden. Eine Unterteilung kann beispielsweise darin bestehen, daß ein Nahstbereich, in welchem das Objekt sehr viel größer ist als die Meßzone, ein Nahbereich, ein Mittelbereich und ein Fernbereich vorgesehen sein können. Die Einteilung erfolgt sinnvollerweise entsprechend den spezifischen Detektionsanforderungen.A preferred development of the invention consists in that more than two distance zones are specified with an amplitude sequence assigned to the distance zones. A subdivision can consist, for example, of providing a near area in which the object is much larger than the measurement zone, a near area, a middle area and a far area. The classification is made according to the specific detection requirements.
Weiterhin kann es vorteilhaft sein, daß den einzelnen Entfernungszonen unterschiedliche, individuelle Signalintervalle zugeordnet werden. Diese Maßnahme trägt dem Umstand Rechnung, daß sich das üblicherweise kegelförmig ausgebildete Meßfeld mit zunehmender Entfernung vom Sensor vergrößert, so daß sich die Zeit zur Durchquerung entsprechend mit zunehmendem Abstand vom Sensor vergrößert. Den einzelnen Entfernungszonen kann daher eine ihrem Durchmesser entsprechend zugeordnete Signalfolge derjenigen Signale zugeordnet werden, die einen Eintritt und einen Austritt eines Objektes in die bzw. aus der Entfernungszone anzeigen.Furthermore, it can be advantageous for the individual distance zones to be assigned different, individual signal intervals will. This measure takes into account the fact that the usually conical measuring field increases with increasing distance from the sensor, so that the time for traversing increases correspondingly with increasing distance from the sensor. The individual distance zones can therefore be assigned a signal sequence corresponding to their diameter of those signals which indicate the entry and exit of an object into or out of the distance zone.
Es erweist sich als vorteilhaft, daß beim Ausbleiben einer vorgegebenen Amplitudensequenz und/oder wenn die Signale nicht innerhalb eines vorgegebenen Intervalls auftreten, eine Störung angezeigt wird. Es erfolgt also anderen Worten eine Plausibilitätskontrolle, durch welche Fehlalarme verhindert werden.It proves to be advantageous that if a predetermined amplitude sequence fails and / or if the signals do not occur within a predetermined interval, a fault is displayed. In other words, there is a plausibility check by means of which false alarms are prevented.
Eine bevorzugte Weiterbildung besteht darin, daß die Ausgänge aller selektiven Verstärker über einen Multiplexer mit einem Schwellenwert-Komparator mit variierbarer Referenzschwelle verbunden sind, die über einen Multiplexer entsprechend dem anliegenden Eingangssignal ansteuerbar ist.A preferred development is that the outputs of all selective amplifiers are connected via a multiplexer to a threshold value comparator with a variable reference threshold, which can be controlled via a multiplexer in accordance with the input signal present.
Bevorzugt ist der Ausgang des Schwellenwert-Komparators mit einem ersten und zweiten kreuzweise verschalteten Zeitglied in der Weise verbunden, daß das erste Zeitglied beim Überschreiten eines Schwellenwertes gestartet wird und daß am ersten Zeitglied nur dann ein Ausgangssignal abgreifbar ist, wenn innerhalb einer vorgegebenen Zeitdauer das zweite Zeitglied durch Überschreiten eines negierten Schwellenwertes aktiviert wurde. Eine andere bevorzugte Weiterbildung besteht darin, daß die Ausgänge der selektiven Verstärker mit einer Störsignalerkennungseinheit verbunden sind, mit welcher die Ausgangssignale auf Signalamplituden überwacht werden, die eindeutig von den erwarteten Signalamplituden abweichen.The output of the threshold value comparator is preferably connected to a first and second cross-connected timer in such a way that the first timer when a Threshold value is started and that an output signal can only be tapped at the first timing element if the second timing element has been activated within a predetermined time period by exceeding a negated threshold value. Another preferred development is that the outputs of the selective amplifiers are connected to an interference signal detection unit, with which the output signals are monitored for signal amplitudes that clearly differ from the expected signal amplitudes.
Im folgenden wird die Erdindung anhand von zwei Ausführungsbeispielen weiter beschrieben:The ground connection is further described below using two exemplary embodiments:
Fig. 1 zeigt rein schematisch die Ausbildung von Meßfeldern eines PIR-Bewegungsmelders und ihre Unterteilung in Entfernungszonen.Fig. 1 shows purely schematically the formation of measuring fields of a PIR motion detector and their subdivision into distance zones.
Fig. 2 zeigt ein Blockschaltbild einer Anordnung zur Überwachung der Entfernungszonen gem. Fig. 1.Fig. 2 shows a block diagram of an arrangement for monitoring the distance zones acc. Fig. 1.
Fig. 3 zeigt eine Alternative eines Schaltungsteils der Anordnung gem. Fig. 2; undFig. 3 shows an alternative of a circuit part of the arrangement according to. Fig. 2; and
Fig. 4 zeigt eine alternative Anordnung zur Überwachung der Entfernungszonen gem. Fig. 1Fig. 4 shows an alternative arrangement for monitoring the distance zones acc. Fig. 1
Fig. 1 veranschaulicht rein schematisch einen von einem PIR-Bewegungsmelder mit einem Sensor 1 überwachten Bereich. Es sind beispielhaft zwei Meßzonen 20, 20′ dargestellt, die etwa kegelförmig ausgebildet sind. Selbstverständlich kann auch eine andere Anzahl von Meßzonen vorgesehen sein. Die infrarote Strahlung der beiden Meßzonen 20, 20′ wird über eine nicht dargestellte optische Einrichtung auf den Sensor 1 gebündelt. Jede Änderung des Strahlungseinfalls bewirkt am Sensor 1 eine Ausgangsspannungsänderung, die in einer in den nachfolgenden Figuren beschriebenen Anordnung ausgewertet wird.1 illustrates purely schematically an area monitored by a PIR motion detector with a
Die Meßfelder 20, 20′ sind in mehrere Entfernungszonen e1 bis e5 aufgeteilt, deren Grenzen etwa radial zum Sensor 1 verlaufen. Die Entfernungen der einzelnen Entfernungszonen e1 bis e5 sowie ihre Längen sind grundsätzlich frei wählbar. Allerdings ist es sinnvoll, die Einteilung entsprechend den spezifischen Detektionsanforderungen vorzunehmen und abzustimmen.The
Die Strahlung in den beiden Meßfeldern 20, 20′ wird über die optische Einrichtung auf den Sensor 1 aus antiparallel geschalteten, nebeneinander liegenden Strahlungsdetektoren 1, 1′ pyro-elektrischer Art, die auch als Dual-Sensoren bezeichnet werden können, gebündelt. Die beiden Strahlungsdetektoren 1, 1′ bestehen jeweils aus einem Kristall im Abstand B mit einer wirksamen Länge X und einer wirksamen Fläche A bzw. A′.The radiation in the two
In der Fig. 1 ist ferner rein schematisch veranschaulicht, auf welche Weise sich das Verhältnis zwischen Objektgröße und Meßfeldgröße in den einzelnen Entfernungszonen e1 bis e4 ändert. Dazu ist im Meßfeld 20 in jeder der Entfernungszonen jeweils ein Referenzobjekt 22 dargestellt. Es dürfte damit deutlich werden, daß ein gleich großes Objekt beim Eindringen in die unterschiedlichen Entfernungszonen charakteristische Strahlungsänderungen verursacht, die den einzelnen Entfernungszonen zugeordnet werden können. Nach dem Strahlungsgesetz reduziert sich nämlich die Strahlungsleistung im Quadrat der Entfernung. Desweiteren veranschaulicht die Fig. 1, daß die Zeit zum Durchqueren der Meßfelder in den einzelnen Entfernungszonen e1 bis e4 bei gleicher Geschwindigkeit in den einzelnen Entfernungszonen e1 bis e4 unterschiedlich ist. Die Bestimmung dieses Intervalls kann anhand einer Eintrittsamplitude und einer Austrittsamplitude an den Ausgängen der beiden Detektoren 1, 1′ ermittelt werden.1 also illustrates in a purely schematic manner the manner in which the relationship between the object size and the measurement field size changes in the individual distance zones e1 to e4. For this purpose, a
Diese Überlegungen lassen sich grundsätzlich auf alle Detektortypen übertragen und sind nicht auf die hier beispielhaft wierdergegebene Detektoranordnung beschränkt.These considerations can in principle be applied to all types of detectors and are not restricted to the detector arrangement shown here by way of example.
Fig. 2 veranschaulicht ein erstes Beispiel einer Auswerteeinheit, mit welcher die Ausgangssignale der beiden Strahlungsdetektoren 1, 1′ ausgewertet werden. Für beide Strahlungsdetektoren 1, 1′ sind getrennte Auswertezweige I, I′ vorhanden. Sie bestehen jeweils aus einer Hintereinanderschaltung von selektiven Verstärkern 2, 4, 6 bzw. 2′, 4′, 6′. Die Anzahl entspricht jeweils der Anzahl der Entfernungszonen e1 bis e4. Bei beispielsweise vier Entfernungszonen sind also auch vier selektive Verstärker hintereinander geschaltet. Die Ausgangssignale der einzelnen selektiven Verstärker werden über Differenzierglieder 3, 5, 7 bzw. 3′, 5′, 7′, an die folgende Stufe weitergeleitet. Durch die Reihenschaltung der selektiven Verstärker und der Differenzierglieder kann die Auswerteschaltung auf eine vorgegebene Empfindlichkeit hinsichtlich eines bestimmten Überwachungsvolumens ausgelegt werden.Fig. 2 illustrates a first example of an evaluation unit with which the output signals of the two
Im Auswertezweig I, der dem Strahlungsdetektor 1 nachgeschaltet ist, werden die Strahlungsänderungen beim Eintritt und Austritt in eine bzw. aus einer Entfernungszone dadurch ausgewertet, das jeder Entfernungszone e1 bis en jeweils ein selektiver Verstärker zugeordnet ist und die Amplitude des jeweiligen Ausgangssignals mit Referenzamplituden verglichen werden. Die Zuordnung und Unterteilung erfolgt entsprechend den zu erwartenden Nutzsignalamplituden in den Entfernungsbereichen e1 bis en. Das jeweilige Ausgangssignal E bis En eines Verstärkers 2, 4, 6 des Auswertezweiges I wird über einen Analog-Multiplexer 8 einem Schwellenwert-Komparator 9 mit variabler Referenzspannung zugeführt, welche ebenfalls über einen weiteren Analog-Multiplexer 12 in Zuordnung zu dem gerade anliegenden Eingangssignal veränderbar ausgelegt werden kann. Beim Überschreiten eines Schwellenwertes wird eines von zwei Zeitgliedern 10 oder 11 angesteuert, welches ausschließlich dann ein Ausgangssignal abgibt, wenn innerhalb einer vorgegebenen Zeit das andere negierte Zeitglied aktiviert wird. In Abhängigkeit davon, ob eine positive oder negative Referenzschwelle überschritten wird (Referenzspannung u⁺ oder Referenzspannung U⁻), wird ein entsprechendes Ausgangssignal A⁺ oder A⁻ vom betreffenden Zeitglied 10, 11 ausgegeben.In the evaluation branch I, which is connected downstream of the
Die beiden Analog-Multiplexer 8, 12 werden über ein Takt-Signal ST angesteuert, das in einem vorgegebenen Zeitraster von einer Taktstufe (nicht dargestellt) erzeugt wird. Der zweite Auswertezweig I′ ist identisch zum ersten Auswertezweig I ausgebildet. Die Ausgangssignale der einzelnen Verstärker 2′, 3′, 6′, werden zu Vergleichszwecken abgegriffen und ähnlich wie die Ausgangssignale E1 bis En einem nicht dargestellten Analog-Multiplexer zugeführt. Der Auswertezweig I′ kann je nach Sensortyp und Anforderung die Auswertung insgesamt verbessern.The two
Die Vergleichspegel V1 bis Vn werden bevorzugt meßtechnisch ermittelt, indem ein Referenzobjekt in die einzelnen Entfernungszonen gebracht wird und dabei die charakteristischen Ausgangsamplituden der zugehörigen selektiven Verstärker gemessen wird. Auf diese Weise kann eine an die jeweilige Überwachungsaufgabe angepaßte Amplitudensequenz ermittelt und festgelegt werden. Die ermittelten maximalen Signalamplituden an den Ausgängen der Verstärker lassen sich darüber hinaus in Signalamplituden einteilen, die von einer Bewegungsdetektion herrühren, sowie in Signalamplituden, die aufgrund von Störeinflüssen hervorgerufen werden. Durch eine logische Auswerteeinheit (nicht dargestellt) läßt sich auf diese Weise ein Meldung des Bewegungsmelders verhindern, die eindeutig Störeinflüssen zugeordnet werden kann. Mit Hilfe der logischen Auswerteeinheit kann nicht nur das Ausbleiben einer vorgegebenen Amplitudensequenz, sondern auch das Ausbleiben einer Eintritts-/Austritts-Detektion erkannt und angezeigt werden, wenn den einzelnen Entfernungszonen e1 bis en charakteristische Signalfrequenzen zugeordnet werden.The comparison levels V1 to V n are preferably determined by measurement by placing a reference object in the individual distance zones and measuring the characteristic output amplitudes of the associated selective amplifiers. In this way, an amplitude sequence adapted to the respective monitoring task can be determined and defined. The determined maximum signal amplitudes at the outputs of the amplifiers can also be divided into signal amplitudes that originate from motion detection and signal amplitudes that are caused due to interference. A logical evaluation unit (not shown) can be used in this way prevent a message from the motion detector that can be clearly assigned to interference. With the aid of the logic evaluation not only the absence of a predetermined amplitude sequence but also the absence of an entry / exit detection can be detected and displayed, if the individual distance zones are assigned to e n e1 characteristic signal frequencies.
Alternativ zu der Auswertung mittels des Analog-Multiplexers 8 gemäß Fig. 2 kann entsprechend Fig. 3 eine prozessorgesteuerte Auswertung vorgesehen sein. Die Ausgangssignale Se1 bis Sen der selektiven Verstärker 2, 4, 6 des ersten Auswertezweiges I werden dabei einem Prozessor 19 zugeführt, der mit einem A/D-Wandler mit gemultiplexten Eingängen und entsprechend gemultiplexten Schwellenwert-Ausgängen (nicht dargestellt) arbeitet. Beim Überschreiten eines Schwellenwertes entsprechend dem in Fig. 2 beschriebenen Beispiel wird abhängig von der Polarität des Pegels Ux⁺, Ux⁻ eine der Zählstufen 13 bzw. 14 aktiviert, und daraufhin eines der Speicherelemente 15 bzw. 16 gesetzt, die jeweils den beiden Zeitzählstufen 143 und 14 nachgeschaltet sind. Erfolgt innerhalb einer fest vorgegebenen Zeitfolge das Setzen eines Gegenwertes, wird mit Hilfe einer logischen Verknüpfungsstufe 17 eine Ausgangsstufe 18 zur Aktoransteuerung aktiviert, wobei einer der entsprechenden Alarmausgänge Ae1 bis Aen der betreffenden Entfernungsstufe e1 bis en angesteuert wird.As an alternative to the evaluation by means of the analog multiplexer 8 according to FIG. 2, a processor-controlled evaluation can be provided according to FIG. 3. The output signals Se1 to Se n of the
Ein weiteres Beispiel zur Überwachung der Entfernungszonen e1 bis en ist in Fig. 4 veranschaulicht. Die Anordnung ist beispielhaft für vier Entfernungsstufen e1 bis e4 ausgelegt. Demzufolge ist dem Strahlungsdetektor 1 ein selektiver Verstärker mit vier Stufen 41, 42, 43, 44 nachgeschaltet. Das Ausgangssignal eines jeden Verstärkers 41 bis 44 wird jeweils einer Auswerteeinheit 54, 55, 56 bzw. 57 zugeführt, deren Schaltungseinzelheiten identisch sind. Stellvertretend für alle anderen Auswerteeinheiten ist die Auswerteeinheit 57 am Ausgang des Verstärkers 44 im einzelnen dargestellt.Another example for monitoring the distance zones e1 to e n is illustrated in FIG. 4. The arrangement is designed as an example for four distance levels e1 to e4. Accordingly, the
Sie umfaßt eine Komparator-Auswertung 45 zur Störsignalerkennung bzw. zur Detektionserkennung. Erscheinen Signalamplituden innerhalb der entfernungsabhängig gewählten Bandbreite, so wird eine Speicherzelle 46 sowie ein Zeitglied 47 aktiviert. Das Zeitglied 47 setzt den Speicher 46 innerhalb einer entfernungsabhängig gewählten Zeit zurück. Wird innerhalb dieser Zeit die entsprechend negierte Signalamplitude erreicht, so wird weiteres Speicherelement 48 gesetzt und über eine UND-Verknüpfung 40 der Ausgänge der beiden Speicher 46, 48 ein Aktorsignal Ae4 gesetzt. Gleichzeitig wird beim Ansprechen der Komparator-Auswertung 45 in Abhängigkeit von der Polarität der Signalamplitude eines der beiden Speicherelemente 51 oder 52 gesetzt, das zeitverzögert über einen Block 13 einen Aktor Be4 aktiviert, wenn innerhalb der Zeitverzögerung nicht die entsprechende negierte Signalamplitude erscheint. Der Aktor Be4 zeigt an, daß ein Objekt im Detektionsbereich verweilt. Diese beiden Aktoren können dazu verwendet werden, eine Meldezentrale (nicht dargestellt) zu aktivieren.It includes a
Claims (7)
characterized in that
characterized in that
there are more than two range zones (e₁ to en) with amplitude thresholds (e₁ to en) and intervals associated therewith.
characterized in that
when a predetermined sequence of amplitude thresholds (U⁺, U⁻, V₁ to Vn) does not occur and/or when the output signal within the predetermined interval does not occur a fault is indicated.
characterized in that
an evaluation unit is provided, which has at least two selective amplifiers (2,4,6), which are in each case associated with a range zone (e₁ to en) and that the output of each amplifier (2,4,6) is connected to a comparator means for comparing the particular output signal (E₁ to En) with a reference signal individualized for the associated range zone (e₁ to en).
characterized in that
the outputs of all the selective amplifiers (2,4,6) are connected across a multiplexer (8) to a threshold comparator (9) with a variable reference threshold, which are controllable across a further multiplexer (12) in accordance with the input signal applied.
characterized in that
the output of the threshold comparator (9) is connected to a first and second crosswise-connected timing element (10,11) in such a way that the first timing element is started on exceeding a threshold and that an output signal can only be tapped from the first timing element if, within a predetermined interval, the second timing element is activated by exceeding a negated threshold.
characterized in that
the outputs of the selective amplifiers (2,4,6) are connected to a spurious signal detection unit, with which the output signals are monitored for signal amplitudes, which clearly differ from the expected signal amplitudes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT87105733T ATE71756T1 (en) | 1986-07-03 | 1987-04-16 | PASSIVE INFRARED MOTION DETECTOR. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3622371 | 1986-07-03 | ||
DE19863622371 DE3622371A1 (en) | 1986-07-03 | 1986-07-03 | METHOD FOR DETECTING AN OBJECT INTENDED IN THE MEASURING FIELD OF A PASSIVE INFRARED MOTION DETECTOR AND DEVICE FOR IMPLEMENTING THE METHOD |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0250746A2 EP0250746A2 (en) | 1988-01-07 |
EP0250746A3 EP0250746A3 (en) | 1988-10-19 |
EP0250746B1 true EP0250746B1 (en) | 1992-01-15 |
Family
ID=6304323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87105733A Expired - Lifetime EP0250746B1 (en) | 1986-07-03 | 1987-04-16 | Passive infrared motion detector |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0250746B1 (en) |
AT (1) | ATE71756T1 (en) |
DE (2) | DE3622371A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU615291B2 (en) * | 1988-04-28 | 1991-09-26 | Australian Electronic Securities Pty. Ltd. | Controlled access system |
DE19548578C2 (en) * | 1995-12-27 | 2001-02-08 | Elbau Elektronik Bauelemente G | Position-selective passive infrared intrusion sensor |
DE19607608C2 (en) * | 1996-02-29 | 2003-04-03 | Abb Patent Gmbh | Motion detector with at least one dual sensor for the detection of thermal radiation |
GB2314410A (en) * | 1996-06-18 | 1997-12-24 | Siemens Plc | Passive Infra-Red Detection System suitable for Traffic Control Systems |
DE10235292A1 (en) * | 2002-08-02 | 2004-02-12 | Abb Patent Gmbh | Passive infrared motion detectors |
US8354643B2 (en) * | 2009-10-29 | 2013-01-15 | Suren Systems, Ltd. | Infrared motion sensor |
US20190323897A1 (en) * | 2017-01-13 | 2019-10-24 | The Research Foundation For The State University Of New York | Chopped passive infrared sensor apparatus and method for stationary and moving occupant detection |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH599642A5 (en) * | 1976-11-15 | 1978-05-31 | Cerberus Ag | |
US4339748A (en) * | 1980-04-08 | 1982-07-13 | American District Telegraph Company | Multiple range passive infrared detection system |
DE3128256A1 (en) * | 1981-07-17 | 1983-02-03 | Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen | MOTION DETECTORS FOR SPACE MONITORING |
EP0107042B1 (en) * | 1982-10-01 | 1987-01-07 | Cerberus Ag | Infrared detector for spotting an intruder in an area |
JPS59195179A (en) * | 1983-04-20 | 1984-11-06 | Uro Denshi Kogyo Kk | Alarming device for intruder |
-
1986
- 1986-07-03 DE DE19863622371 patent/DE3622371A1/en active Granted
-
1987
- 1987-04-16 AT AT87105733T patent/ATE71756T1/en not_active IP Right Cessation
- 1987-04-16 EP EP87105733A patent/EP0250746B1/en not_active Expired - Lifetime
- 1987-04-16 DE DE8787105733T patent/DE3776001D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE3622371C2 (en) | 1989-08-10 |
DE3622371A1 (en) | 1988-02-04 |
DE3776001D1 (en) | 1992-02-27 |
EP0250746A3 (en) | 1988-10-19 |
EP0250746A2 (en) | 1988-01-07 |
ATE71756T1 (en) | 1992-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3832428C2 (en) | ||
DE69413117T2 (en) | Passive type moving object detection system | |
DE3128980C2 (en) | Method and device for detecting the unauthorised passage of protected objects through a surveillance zone | |
DE60006411T2 (en) | counting | |
EP0107042A1 (en) | Infrared detector for spotting an intruder in an area | |
EP0248298B1 (en) | Danger alarm installation | |
DE2742389A1 (en) | CIRCUIT ARRANGEMENT FOR AN INFRARED INTRUSION DETECTOR | |
DE3911180C2 (en) | ||
DE69832549T2 (en) | Motion detection system | |
DE3603568C2 (en) | ||
EP0250746B1 (en) | Passive infrared motion detector | |
DE3854218T2 (en) | CONTINUOUSLY PROVIDED IMPULSE TRAIN PROCESSOR HIGH RELIABILITY. | |
DE3842494A1 (en) | METHOD AND DEVICE FOR THE PERCEPTION AND COUNTING OF OBJECTS WHICH MOVE IN A SPECIFIC AREA WITH VARIABLE SPEED | |
WO1985003590A1 (en) | Method and circuit arrangement for the operation control of ultrasound alarm installations | |
DE2939494B2 (en) | Circuit arrangement for intrusion or fire alarm systems | |
DE19548578C2 (en) | Position-selective passive infrared intrusion sensor | |
DE2427328A1 (en) | BURGLAR SYSTEM | |
EP2112530A2 (en) | Method for detecting objects with a sensor | |
DE2451100A1 (en) | PRESENCE VERIFICATION SYSTEM | |
DE3624195C2 (en) | ||
EP0646901B1 (en) | Method for processing passive infrared detector signals and infrared detector for carrying out the method | |
DE4306425C1 (en) | Movement detector for burglar alarm system - is combined with range measuring system for monitoring detector position, to prevent sabotage | |
DE3713956A1 (en) | SENSOR UNIT | |
EP2259093B1 (en) | Optoelectronic sensor assembly and method for operating the sensor assembly | |
DE69510135T2 (en) | Alarm detection device with current loops and beacon for locating water zones for such a device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL |
|
17P | Request for examination filed |
Effective date: 19881019 |
|
17Q | First examination report despatched |
Effective date: 19910117 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19920115 Ref country code: BE Effective date: 19920115 Ref country code: NL Effective date: 19920115 Ref country code: GB Effective date: 19920115 |
|
REF | Corresponds to: |
Ref document number: 71756 Country of ref document: AT Date of ref document: 19920215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3776001 Country of ref document: DE Date of ref document: 19920227 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920330 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19920426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920429 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19920430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19920430 Year of fee payment: 6 |
|
K2C1 | Correction of patent specification (title page) published |
Effective date: 19920115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920605 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19930416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19930430 Ref country code: LI Effective date: 19930430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940101 |