EP0244435A1 - Erzeuger von energie unterschiedlicher art mit einbezogenem wärmekreislauf. - Google Patents

Erzeuger von energie unterschiedlicher art mit einbezogenem wärmekreislauf.

Info

Publication number
EP0244435A1
EP0244435A1 EP19860905867 EP86905867A EP0244435A1 EP 0244435 A1 EP0244435 A1 EP 0244435A1 EP 19860905867 EP19860905867 EP 19860905867 EP 86905867 A EP86905867 A EP 86905867A EP 0244435 A1 EP0244435 A1 EP 0244435A1
Authority
EP
European Patent Office
Prior art keywords
pistons
fluid
engine
forming
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19860905867
Other languages
English (en)
French (fr)
Other versions
EP0244435B1 (de
Inventor
Etienne Baudino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86905867T priority Critical patent/ATE52570T1/de
Publication of EP0244435A1 publication Critical patent/EP0244435A1/de
Application granted granted Critical
Publication of EP0244435B1 publication Critical patent/EP0244435B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy

Definitions

  • the present invention relates to a device for improving energy generators with multiple functions driven by the combined application of heat sources of different temperatures acting on a sealed and motive condensing capacity.
  • thermodynamic cycle generate mechanical energy recoverable on a motor axis, but do not exploit the heat contained in the thermal circuit after the expansion of the volatile motor fluid, which must be removed • j r through suitable condensers for this purpose, not having multi-compressor and mechanical assemblies.
  • the object of the present invention is to at least partially remedy the drawbacks mentioned above and to provide a multifunctional device of modular type which exploits and combines for all purposes the said thermal and mechanical energies generated from a motor group.
  • thermal compressor and its constituent elements integrally contained in a closed enclosure and tightly connected to at least one fluidic multi-stage heat transfer loop forming a heat pump with successive stages partially contained in said closed enclosure forming a sealed capacity assembly and modular condensing motor for all purposes, containing at least one motor-compressor group forming at least: *
  • A a compression assembly with at least three offset compressors 35 of which (a) the inlet is connected to at least one multi-stage steam source, one of the elements being at least partially contained in the engine thermal circuit and of which (b ) the exhaust is connected to at least one multi-stage condensation capacity, forming in combination with the evaporation capacity, a heat transfer device with reverse cycle heat pump (B) an engine assembly with at least three engine pistons for driving said compression assembly.
  • the engine assembly and the compression assembly each comprise three cylinders with sliding pistons, the engine pistons mounted in parallel forming a reference plane, being arranged orthogonally to the compression plane actuated by au .
  • a judiciously profiled cam mounted on an axis forming a crankshaft animated by the engine pistons acting in combination and in conjunction with a flywheel constituting a means of circulation of the working fluid in the sealed enclosure, - of acceleration 1'êtement of this Luide through a conduit provided for this purpose • connected to the axis of rotation of said flywheel:
  • the engine block assembly with at least three cylinders
  • the plane of the said three reinjection cylinders is parallel to the plane of the said three compressor cylinders and orthogonal to the axis of the said crankshaft and to the plane containing the said three engine pistons,
  • a distribution device with rotary elements consists of an intake slide designed to supply 0 successively the three following engine pistons. a very precise chronology, and an exhaust drawer designed to allow the evacuation of the expanded fluid in the said engine cylinders, also following a well specified chronology.
  • the said drawers are set in motion by the crankshaft; ⁇
  • these drawers are driven by a chain connected to one axis of said crankshaft which acts on one of the drawers, which drives another drawer, such an embodiment allowing access to the "setting" of the distribution.
  • the said intake and exhaust drawers are in intimate contact at the intake and exhaust ports, with capsules of suitable shape, perforated in their center to allow free passage of the working fluid, which exerts on the walls of said opposite capsules the walls into intimate contact with the so-called 'drawer, a thrust which is added to an elastic means ensuring the permanence of said intimate contacting.
  • the thermal motor-compressor device forming the motor and waterproof condensing capacity described according to the invention comprises, on request, various partially deformable waterproof capacities for recovering the various vapor leaks and their reinjection on demand. through various sealed conduits, by reinjection pistons positioned in a plane orthogonal to the axis of the crankshaft and driven by a cam integral with said crankshaft axis.
  • each vapor leakage recovery capacity forms a sealed enclosure and of condensation of these vapor leaks and of balancing of the pressures between the pressure contained in said enclosure which is that of the vapors at least partially. condensed and the pressure of the external medium in intimate contact with said enclosure.
  • said sealed vapor leakage recovery capacities are preferably carried out to recover the steam leaks at the level of the compressor pistons and the passage through the crankcase of the motor capacity and leaktight condensing by the crankshaft,
  • the side walls of said capacity for recovering steam leaks from inside the motor capacity and leaktight condensation consist of rotating sealing rings of the type that one usually found commercially mounted without play on said crankshaft and spaced apart by a suitable distance allowing rotation under the best conditions of said crankshaft .
  • the pressure of the working fluid expanded in the expansion chambers being very slightly higher than the pressure of the condensed fluid, thrust springs or other equivalent elastic devices are generally necessary to ensure evacuation ⁇ tion of the working fluid.
  • the device according to the present inven ⁇ tion by the judicious combination of three cylinders and pisotns engines makes it unnecessary to use such devices as it ensures the evacuation of the working fluid by the ef and rotation of the flywheel which is combined with them.
  • the distribution of the working fluid in said expansion chambers requires compression springs with elements or recall and other elements of binding to the mechanical servo piston, which reduces the performance of a not negligible.
  • the device according to the invention overcomes this drawback thanks to the arrangement and judicious use of the respective position of the engine pistons, cylinders and drawers combined with the advantageous exploitation of the pressure of the condensed fluid contained in waterproof capacity.
  • the device according to the present invention also eliminates this drawback thanks to the rational use of a cam acting simultaneously on the three compressing pistons, the profile of this cam being defined and chosen as a function of the fluid to be compressed. , the expansion of the fluid existing in the expansion chambers so that the speed of displacement of said compressor pistons being inversely proportional to the pressure exerted by the compressed fluid on these pistons, allows
  • cams can be associated and arranged in such a way that each can act simultaneously on three pistons in the cases of -operations- ⁇ admirof applications justifying several stages of compression.
  • * 5 will be cited, for example, the case of freezing or demineralization of sea water by freezing.
  • the device according to the invention overcomes this drawback by causing one simultaneous drive of three pistons by a
  • the device according to the invention also obviates this inconvenience.
  • the device according to the invention is designed so that the three intended reinjection pistons are entered simultaneously by the action of a judiciously profiled cam mounted on the axis of the crankshaft which was discussed above.
  • the rise in temperature of the reinjected fluid requires a calorific contribution "Q" supplied by the hot source.
  • the device according to the present invention is designed in such a way that the condensed fluid is sucked in and then discharged by the reinjection pistons to the starting boiler after possibly having ; beforehand, recovered at least partially, the heat produced at the compressor cylinders by the compression of the heat pump cycle fluid then, necessarily at least partially that evacuated at the exhaust from the chambers of expansion of the engine pistons.
  • the quantity "Q" is thus significantly reduced, which further improves the overall yield and reduces the cost of the hot source, in particular in the case where it is constituted by solar panels.
  • the multi-stage compression unit transferred on demand, the heat of the fluid from the interior of the sealed and motive capacitance of condensation towards the external environment or vice versa, by inversion of the thermal cycle ( from the external environment towards the interior of said capacity or any other combination of cycles.
  • the cam-compressor assembly forming a compression assembly is exchangeable, which makes it possible inter alia to meet all needs, to use any type of product to be compressed, as well as to ensure in combination with a equivalent compression assembly mounted externally on the axis or any other receiver performing multiple and combined functions "
  • the motor and waterproof condensing capacity contains at least one evaporator forming an element of the multi-stage waterproof thermal transfer capacity associated in leaktight manner at least partially with a compression assembly according to the invention which evacuates at least partially the heat of the expanded working fluid, by successive compression and successive temperature rises through the multi-stage heat transfer capacity designed and profiled on demand and according to needs;
  • Figure 1 shows a front view in partial section of the entire device forming a closed enclosure and sealed and motive condensing capacity with multistage fluid transfer heat loop, and. a compression assembly mounted by way of nonlimiting example on the rotating force shaft.
  • FIG. 2 shows a partial sectional view of a variant of the closed enclosure device with constituent elements contained respectively in their sealed capacities, on a different scale.
  • FIG. 3 shows on a different scale a top view in partial section of Figure 2.
  • FIG. 4 shows a partial side section on another scale showing more particularly the compression assembly and the relative position of the pistons compressors and reinjection with respect to the engine pistons.
  • the device comprises a closed enclosure of modular type 1 forming a sealed and driving capacity with condensing volume 2, connected in leaktight manner by conduits to at least one multi-stage thermal transfer fluid loop - 3 forman _ reversible cycle heat pump with successive * stages ⁇ , partially contained by at least one of its constituent elements in at least one of the capacities forming said closed enclosure 1, and forming at least partial separation with the volume of condensation 2, whose thermal effects of the external environment acting on it by means of the volatile working fluid which it contains, a thrust of opposition forming back pressure on the constituent elements of the thermal motor-compressor group contained in a sealed manner in at least one capacity of the enclosure comprising in: combination :
  • a distribution device 7 with rotary elements comprising a single intake duct 7A for the three engine pistons
  • This pipe 8A constitutes a heat recovery device in the sense that it absorbs and optionally stores in the material or fluid 8B the heat evacuated at the cylinder exhaust through 8A and returns it to the condensed working fluid circulating against the current in the conduits 8E which pass through 8B before reinjection into the starting boiler, and after aspira ⁇ tion by the reinjection pistons 6, which raises the temperature of said condensed fluid with a tendency to reach temperature and. therefore the pressure of the working fluid contained in the starting boiler.
  • a device for setting in motion, conduits, 7A, 8, constitutes of a part chain 9A connected from one to a roller 9B for regulating the speed of rotation of said conduits, secured to the shaft 11, on the other hand to at least one of said conduits, which drives the other by the kinematics
  • This shaft 11 actuated by the engine pistons comprises:
  • the axes of displacement of the reinjection pistons and of the compression pistons being in parallel planes are arranged with a judicious offset .uns with respect to each other so that for each cycle, the reinjection takes place in the phases of least compression work and maximum displacement speed of the pistons. If the type of compression to be achieved, for example high compression rates, is provided at least one cam per compression assembly.
  • the shaft 11 comprises at least two sealing rings of the rotating type 15, 16, forming watertight side walls with a capacity for recovering leaks 17, they are mounted without play on the shaft 11 and in the wall 1A - or any other positive device tightly connected to said wall 1A - allowing the free rotation of said shaft 11.
  • Said rings 15, 16, are positioned in planes orthogonal to the axis of the shaft 11, and separated by a suitable distance, in order to receive leaktight the leaks in question.
  • the capacity 17 is connected by at least one sealed conduit 18, to a capacity 19 deformable by pressure balancing.
  • the fluid leaks having passed through the ring 15 forming an oaroi. sealing condense and are reinjected on demand by the piston 6D (for example) through the conduits 29 and 30 in the engine thermal cir ⁇ cuit.
  • the deformable capacity .19 located exté ⁇ laughing at the closed enclosure 1,2 forming a device for balancing the pressures with the external environment preventing any further leakage of fluid through the sealing ring 16 forming a tight side wall.
  • the thermal transfer fluid loops contain a volatile refrigerant fluid in circulation under the action of the compression pistons 5A, 5B, 5C, each being at a precise compression phase don ⁇ born by the profile of the cam 12, forming a multi-stage heat transfer heat pump between the evaporator 20 and the condenser contained in the thermal evacuation stage 3C, successively through the fluid loops C1 .
  • each of the pistons 5A, 5B, 5C providing work equivalent to the lowest possible compression ratio in order to optimize the coefficient of performance, respectively connected to the corresponding fluidic loops, preferably made up of at least minus an evaporator, a condenser, a holder (possibly a oil separator) and sealed conduits for connecting these constituent elements to each other partially contained in the capacities
  • the closed enclosure 1. contains the evaporator 20, a constituent element of the multi-stage heat transfer capacity 3 > which can function as a condenser by reversal of the thermal cycle using a four-way valve (not shown in the drawings), as in the case of known heat pump devices, it being specified that this evaporator
  • a sealed envelope 21 comprising a material or other product 22, intended to absorb the calories of the fluid which passes through it through conduits 21A, and possibly another means of communication E ⁇ , forming inertia and storage capacity, as well as a heat removal regulator linked to the temperature of evaporation of the fluid circulating in said evaporator 20, or of liquefaction in the. condenser 20A con ⁇ held in the capacity 3A with identical material or fluid 22A.
  • the capacities 3A, 3B, 3C with material 22A integrating on demand and depending on the applications, the physical phenomena linked to said er.oaporation or condensation temperatures of liquefaction of the fluids circulating in the respective fluid loops.
  • the sealed enclosure 1.2 is made up of various capacities forming sealed volumes, GHJ'K, containing ' au at least partially an element constituting the thermal oto-compressor group, said volumes being separated on demand by the watertight partitions El, E3, each comprising at least one device for recovering and reinjecting leaks E2, E4 of the type described above ( 15,16,17, 18, 19) crossed on demand by one of said constituent elements such as the mote axis H •
  • each compressor piston will include a leakage recovery device directly Q inspired by the leakage recovery device 15 5 16, 17, 18,
  • the 5 compressor pistons are provided with various elastic means per ⁇ putting permanent contact with the different cams, judiciously combined with the functional exploitation of the pressures of the fluids contained in the thermal circuits. and fluid loops and acting on said compressor pistons in order to; . , - provide in combination with the profiled cams an operation of the constant torque device.
  • said pistons comprise, according to an advantageous embodiment, a sealed and deformable capsule 24 under the effect of a volatile fluid contained in tightly in said capsule 24, the pressure of which varies as a function of the thermal environment surrounding said piston so that it exerts a thrust on the walls of said capsule acting by deformation on the segments 25 as ⁇ ensuring self-regulation friction and wear compensation, the conduits 7A and 8 being provided with 25 A capsules whose contact surface is adapted to avoid excessive friction and mounted in the upper parts of the engine cylinders as shown in the figures 1-2- 3-4 ;
  • Such a closed enclosure 1,2 forming motor capacity and condensation extended by a multi-stage heat transfer capacity constitutes an absolutely sealed and modular assembly which can operate according to the needs of mono-fluid, bi-fluid ... lo by l 'exploitation of any known heat source and providing an advantageous combination of thermal and mechanical effects available for all purposes. respectively, from capacity 3 and from force shaft 11A.
  • the combination of several devices according to one invention providing an on-demand all the ⁇ optimal exploitation of thermal energy by cascading effect, each device operated by operating at least partially heat the fluid contained in the device who is before.
  • this type of digester with thermodynamic cycle integrates. with multiple functions can equip a vehicle and function by exploiting the heat of the vehicle engine which, by its usual cooling circuit, will thermally supply the 2 ⁇ Aj accumulation material.
  • a battery of absorbers of the solar energy, fused and structured in harmony with the said vehicle will combine the recovered solar heat with that contained in the storage capacity 26.
  • this cold room can adapt to a vehicle and be connected to its heat dissipation circuit from the engine, forming a mobile unit
  • the device according to the invention 20 may prefer either the thermal evacuation capacity assembly 3, or the mechanical force exploitable from the shaft 11A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
EP19860905867 1985-10-16 1986-10-16 Erzeuger von energie unterschiedlicher art mit einbezogenem wärmekreislauf Expired - Lifetime EP0244435B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86905867T ATE52570T1 (de) 1985-10-16 1986-10-16 Erzeuger von energie unterschiedlicher art mit einbezogenem waermekreislauf.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8515545A FR2588645B1 (fr) 1985-10-16 1985-10-16 Dispositif generateur d'energies multiples, a cycle thermique integre, par l'exploitation de deux sources calorifiques de temperatures differentes agissant sur une capacite etanche et motrice de condensation modulable
FR8515545 1985-10-16

Publications (2)

Publication Number Publication Date
EP0244435A1 true EP0244435A1 (de) 1987-11-11
EP0244435B1 EP0244435B1 (de) 1990-05-09

Family

ID=9324008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860905867 Expired - Lifetime EP0244435B1 (de) 1985-10-16 1986-10-16 Erzeuger von energie unterschiedlicher art mit einbezogenem wärmekreislauf

Country Status (4)

Country Link
EP (1) EP0244435B1 (de)
DE (1) DE3671065D1 (de)
FR (1) FR2588645B1 (de)
WO (1) WO1987002413A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2816013A2 (de) 2008-10-02 2014-12-24 BAUDINO, Etienne Hybridmotorsystem, das eine Kombination aus zwei komplementären Motorschaltkreisen umfasst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007358994B2 (en) 2007-09-11 2014-01-16 H4D Health cabin
CN109611987B (zh) * 2018-12-07 2021-02-26 湖南达道新能源开发有限公司 一种抽取浅层地热能源供暖及制冷装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR963814A (de) * 1950-07-21
FR826278A (fr) * 1936-12-08 1938-03-28 Spiros Groupe moto-compresseur transportable pour toutes applications
CH207690A (fr) * 1938-10-10 1939-11-30 Spladis Societe Pour L Applic Procédé de chauffage et de refroidissement et installation pour sa mise en oeuvre.
US2991632A (en) * 1958-12-11 1961-07-11 John G Rogers Refrigeration system
US3196631A (en) * 1962-06-25 1965-07-27 Kenneth D Holland Portable refrigeration chest
US3519065A (en) * 1968-10-04 1970-07-07 Thermo Electron Corp Gas heating and cooling system
FR2234793A5 (de) * 1973-06-19 1975-01-17 Mengin Ets Pierre
US3960322A (en) * 1974-12-17 1976-06-01 Ruff John D Solar heat pump
FR2462584A1 (fr) * 1979-07-27 1981-02-13 Baudino Etienne Dispositif motocompresseur solaire a fonctions multiples
GB2062108B (en) * 1979-10-17 1984-05-10 Chih Kang Shao Power plant for producing power by use of a refrigerant as a working medium
EP0056786A1 (de) * 1981-01-15 1982-07-28 Karl-Heinz Schmall Wärmepumpenanordnung und Verwendung eines Kältemitteldampfmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8702413A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2816013A2 (de) 2008-10-02 2014-12-24 BAUDINO, Etienne Hybridmotorsystem, das eine Kombination aus zwei komplementären Motorschaltkreisen umfasst

Also Published As

Publication number Publication date
DE3671065D1 (de) 1990-06-13
EP0244435B1 (de) 1990-05-09
WO1987002413A1 (fr) 1987-04-23
FR2588645B1 (fr) 1987-12-18
FR2588645A1 (fr) 1987-04-17

Similar Documents

Publication Publication Date Title
US7124585B2 (en) Scroll-type expander having heating structure and scroll-type heat exchange system employing the expander
EP1096209B1 (de) Wärmepumpvorrichtung, insbesondere zur Kühlung
US7093528B2 (en) Seal and valve systems and methods for use in expanders and compressors of energy conversion systems
US20090000294A1 (en) Power Plant with Heat Transformation
NZ334266A (en) Thermal hydraulic engine, thermal expansion and contraction of working fluid in closed cycle operates piston
US5467600A (en) Naturally circulated thermal cycling system with environmentally powered engine
AU2013264929A1 (en) Pressure power unit
EP0062043A1 (de) Verfahren und maschine zur durchführung einer quasi-isothermischen zustandsänderung bei gaskompressions- oder expansionsvorgängen.
FR3042857B1 (fr) Chaudiere thermodynamique a compresseur thermique
US20080041056A1 (en) External heat engine of the rotary vane type and compressor/expander
US8800280B2 (en) Generator
GB1593100A (en) Thermodynamic installation
US8291722B2 (en) Generator using gravitational and geothermal energy
EP0244435A1 (de) Erzeuger von energie unterschiedlicher art mit einbezogenem wärmekreislauf.
US11852382B2 (en) Heating and cooling system powered by renewable energy and assisted by geothermal energy
US20230243599A1 (en) Thermoelectric device for storage or conversion of energy
FR3033632B1 (fr) Dispositif thermodynamique de transfert de chaleur par compression de vapeur (mono ou multi-etage) et changements de phase, reversible a haut rendement.
GB2294294A (en) Orbital scroll expander for recovering power from flashing fluids
US20150337729A1 (en) Multi-staged thermal powered hydride generator
GB2282852A (en) Single screw expander for the recovery of power from flashing fluids.
JP4997462B2 (ja) スターリング等熱再生式外燃システム及びそれを用いた冷凍機システム
FR2585457A1 (fr) Chaudiere thermodynamique a compression thermique et puissance evaporatrice interne au systeme
RU2768138C1 (ru) Способ преобразования тепловой энергии в механическую энергию вращательного движения и устройство для его осуществления
US10233788B1 (en) Method and apparatus utilizing thermally conductive pumps for conversion of thermal energy to mechanical energy
FR2851796A1 (fr) Pompe hydraulique et installation hydraulique comportant une telle pompe.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 52570

Country of ref document: AT

Date of ref document: 19900515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3671065

Country of ref document: DE

Date of ref document: 19900613

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901228

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910408

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19911016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920415

Year of fee payment: 6

BERE Be: lapsed

Owner name: BAUDINO ETIENNE

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921016

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921016

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EUG Se: european patent has lapsed

Ref document number: 86905867.7

Effective date: 19920510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: LA POURSUITE DE LA PROCEDURE REQUISE LE 05.07.1996A ETE ACCORDEE. LE BREVET EST REACTIVE.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030430

Year of fee payment: 17

Ref country code: CH

Payment date: 20030430

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030502

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051016