EP0241380B1 - Method and device for focusing an antenna array at a test point - Google Patents

Method and device for focusing an antenna array at a test point Download PDF

Info

Publication number
EP0241380B1
EP0241380B1 EP87400803A EP87400803A EP0241380B1 EP 0241380 B1 EP0241380 B1 EP 0241380B1 EP 87400803 A EP87400803 A EP 87400803A EP 87400803 A EP87400803 A EP 87400803A EP 0241380 B1 EP0241380 B1 EP 0241380B1
Authority
EP
European Patent Office
Prior art keywords
signal
microwave
signals
radiation
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400803A
Other languages
German (de)
French (fr)
Other versions
EP0241380A1 (en
Inventor
Jean-Charles Bolomey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0241380A1 publication Critical patent/EP0241380A1/en
Application granted granted Critical
Publication of EP0241380B1 publication Critical patent/EP0241380B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • H01Q21/225Finite focus antenna arrays
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays

Definitions

  • the present invention firstly relates to a method of focusing, on at least one point to be examined from a radiation source, the antennas of an array of antennas receiving the radiation from the point with corresponding respective reception phase shifts at the time of travel of said radiation between said point and the respective antennas.
  • Such a method is used when it is desired to obtain, from the microwave radiation coming from an object to be analyzed, a microwave image of this object.
  • a set of antennas is organized to form a network, this term being taken in a similar, but broader, sense than that which it possesses in optics, and this network of antennas is successively focused on each of the points to examine of the object, so as to build, point by point, the microwave image of this object.
  • Microwave imaging systems have, in particular, applications in biomedical engineering for the detection and treatment of tumors, for example, as well as in civil engineering, for the detection of buried objects for example, or for control of materials treated by microwave radiation (polymerization, thawing, drying ).
  • the antennas known by the name of electronically scanned antennas are organized in a fixed array of antennas which has maximum sensitivity in a variable direction electronically controllable, and implements such a process, corresponding to focusing on a point located at an infinite distance, and defined only by its direction.
  • a focusing method is already known in the microwave radiation field, in which the signal received by each antenna is phase-shifted in a microwave phase shifter, the phase-shifted signals are added and the summation signal subjected to microwave detection.
  • the phase law which determines the particular phase shift to be applied to each received signal, is established so that the contributions from the point on which the network is focused are in phase at the time of summation, the contributions from other points having any phases with respect to each other.
  • the signal obtained mainly represents the contribution of the focal point.
  • This known method has, on the one hand, the disadvantage of a difficult implementation from a practical point of view, because it requires the use of as many microwave phase shifters as there are antennas in the array.
  • a microwave phase shifter is a relatively complex component, with a high cost price and a large size. In cases where the number of antennas reaches several hundred, even several thousand, this solution is therefore very expensive.
  • the size of the phase shifters conditions the distance between an antenna and the neighboring antennas, that is to say the pitch of the network.
  • a not-too-large antenna will give a poor quality image.
  • a drawback of this method is that it does not allow simultaneous focusing on several points.
  • each received signal is not phase-shifted, which is subjected directly to coherent microwave detection, that is to say a detection making it possible to know the signal detected in module and in phase.
  • Module and phase of each signal received are then acquired by a computer.
  • the computer performs digital processing of all of this data, in order to extract the contribution from any point of the object.
  • Such processing therefore amounts to synthetic focusing as opposed to analog focusing obtained using microwave phase shifters.
  • the modulated signals are each delayed by a specific delay before undergoing an addition. This therefore implies the use of as many delay circuits as there are antennas in the network and complicates the law followed by the modulation phase shifts.
  • the applicant has sought a focusing method of analog type, which can adapt to any geometry of the network, but does not require the use of a large number of elementary circuits, such as the microwave phase shifters of the known microwave process or the delay circuits of the known acoustic process.
  • the method of the invention does not use any microwave phase shifter. This is the low modulation signal frequency which is out of phase in low frequency phase shifters, moreover very simple. This result is obtained by modulating in amplitude the signals delivered by antennas. However, as will be discussed below, it is possible to use space-saving and inexpensive microwave modulators.
  • the method of the invention being an analog type method, it can adapt to unconventional network geometries, it makes it possible to compensate for irregularities in the alignment of the antennas of the network, for example, it has a better signal ratio noise than the synthetic focusing process, and it can adapt to incoherent radiation.
  • the signals delivered by the antennas are amplitude modulated by a low frequency modulation signal of the square type, with modulation phase shifts.
  • the modulation can be carried out using microwave switches, of the PIN diode type for example, therefore with a low cost and size.
  • the invention can also be implemented for focusing the antennas of an array of transmit antennas.
  • a focusing device 30 is provided with J inputs receiving the J signals s l , ..., s j , ..., and s J. It is also provided with two outputs delivering two useful signals U X and V X , as well as a control input receiving, here by means of a parallel bus, a control signal ⁇ X.
  • the object 20 may itself be the source of radiation received by the antennas 1, or it may act as a secondary source, that is to say as a reflector of radiation emitted by a primary microwave source, intended to illuminate object 20, and not shown in FIG. 1 for the sake of simplicity.
  • the microwave radiation received by the antennas l is monochromatic of frequency f , either because the radiation source is itself monochromatic of frequency f , or because, the source emitting a radiation in a certain frequency band, a selective focusing device 30 is used, centered on the frequency f .
  • the series of J antennas 1 arranged regularly in the plane P is called, by analogy with the networks encountered in optics, antenna array.
  • the microwave image is obtained by successively focusing the array of antennas l on each of the points to be examined X of the object 20, during a sequential scanning, point by point, of this object.
  • focusing the antennas l of the antenna array on a point X is meant control of the focusing device 30 using the control signal ⁇ X so that the useful signals U X and V X at the output of the device are only representative of microwave radiation from point X.
  • a sequential scanning device not shown, generates the successive control signals ⁇ X and a display device, not shown, synchronized by the sequential scanning device, collects the signals U X and V X.
  • the sequential scanning device and the viewing device are of the conventional type used in known imaging systems.
  • each signal s j is subjected to a microwave phase shift of a determined angle ⁇ X (j), and the J signals are phase-shifted.
  • the law ⁇ X (j) which determines the phase shift angle for each signal s j called the phase law for point X, is established so that the contributions coming from point X, finding themselves in phase at the time of the summation, interfere constructively, while the contributions coming from the other points, having any phases with respect to each other, interfere destructively.
  • the result of the summation mainly represents the contribution of point X.
  • We therefore focus the array of antennas l on point X by imposing the phase law ⁇ X (j) using the signal ⁇ X.
  • the phase law ⁇ X (j) can be deduced from knowing the lengths of the paths connecting point X to each of the antennas l.
  • each reference 2 designates a microwave switch. There are as many switches 2 as there are inputs, that is to say here J switches.
  • the switch 2 of row j is provided with a microwave input receiving the signal s j and a microwave output delivering the signal s ′ j , as well as a control input receiving a signal C j .
  • a microwave summing device 3 is provided with J inputs receiving the J signals s ′ l , ..., s ′ j , ... and s ′ J , and an output delivering a signal s .
  • a coherent microwave detection circuit 6 is provided a signal input receiving the signal s , a control input and two outputs delivering DA and DB signals.
  • a microwave oscillator 4 is provided with an output delivering a signal r of coherent microwave detection, connected to the control input of circuit 6.
  • the signal r is a sinusoidal signal of frequency f .
  • a low frequency coherent detection circuit 8 is provided with two signal inputs receiving the signals DA and DB, a control input and two outputs delivering the signals U X and V X.
  • a low frequency oscillator ll is provided with an output delivering a modulation signal D, connected to the control input of circuit 8.
  • the signal D is a sinusoidal signal of frequency F, of value between substantially a few kilohertz and substantially a few megahertz.
  • a phase shift circuit l2 is provided with an input receiving the signal D, J commando inputs connected to the parallel duo receiving the control signal ⁇ X , and J outputs delivering the J signals C l , ..., C j , ... and C J.
  • the microwave coherent detection circuit 6 comprises two mixers 6l and 62 and a phase shifter 63.
  • the mixers 6l and 62 are of the type comprising two inputs, and one output delivering a signal equal, at all times, to the produces signals received on both inputs. These are devices known to those skilled in the art as ring modulators or balanced mixers.
  • the mixer 6l receives on an input the signal s and on the other input signals r , and outputs DA signal.
  • the mixer 62 receives on one input the signal s and on the other input the signal r phase shifted by an angle equal to ⁇ / 2, in the phase shifter 63.
  • the mixer 62 outputs the signal DB.
  • the low frequency coherent detection circuit 8 includes four mixers 8l, 82, 83 and 84, two phase shifters 85 and 85 ′, a subtractor 86 and an adder 88, and two low-pass filters 87 and 89 .
  • the mixers 8l to 84 are of a type comparable to that of the mixers 6l and 62.
  • the mixer 8l receives on one input the signal DA and on the other input the signal D, and it outputs a signal SA.
  • the mixer 82 receives on one input the signal DB and on the other input the signal D phase shifted by an angle equal to ⁇ / 2 in the phase shifter 85, and it outputs the signal SB.
  • the mixer 83 receives on one input the signal DA and on the other between the signal D phase shifted by an angle equal to ⁇ / 2 in the phase shifter 85 ′, and it outputs the signal SC.
  • the mixer 84 receives the signal DB on one input and the signal D on the other input, and outputs the signal SD.
  • the subtractor 86 receives on its two inputs the signals SA and SB; its output is connected to filter 87, which outputs the signal U X.
  • the adder 88 receives on its two inputs the signals SC and SD; its output is connected to filter 89 which outputs the signal V X.
  • the phase shift circuit l2 includes J controllable phase shifters l2l.
  • the phase shifter l2l of rank j is provided with a signal input receiving the signal D, with a control input for the angle ⁇ X (j) of phase shift, receiving a control signal also called ⁇ X (j) in for the sake of simplicity, and of a signal output delivering the signal C j , phase shifted by the angle ⁇ X (j) relative to the modulation signal D.
  • the J control inputs of the J phase shifters l2l constitute the parallel bus to which is applied the signal ⁇ X composed of the J signals ⁇ X (j).
  • the switches 2 are here PIN diode switches, well known to those skilled in the art.
  • the adder 3 and the mixers 6l and 62 are circuits of the type known by a person skilled in the art for microwave use, while the mixers 8l to 84, the subtractor 86 and the adder 88, the low-pass filters 87 and 89 and phase shifters 12l are circuits of the type known to those skilled in the art for use at low frequency.
  • the signal s ′ j is amplitude modulated by a square type modulation signal, as shown in Figure l0.
  • the first component of this signal is here filtered by the mixer 6l. If this were not the case, a low pass filter would eliminate this component.
  • DA j A j / 2. cos ⁇ j . Ech [C j ]
  • Ech [C j ] can be broken down into a fundamental: l ⁇ cos (2 ⁇ Ft + ⁇ X (j)) and harmonics.
  • U Xj A j / 4 ⁇ [cos ⁇ j . cos ( ⁇ X (j)) - sin ⁇ j . sin ( ⁇ X (j))]
  • V Xj A j / 4 ⁇ . sin [ ⁇ j + ⁇ X (j)]
  • phase shift ⁇ X (j) of the modulation signal is added to the phase shift ⁇ j of the microwave signal. So everything happens as if the signal s j was phase shifted by an angle ⁇ X (j) in a microwave phase shifter.
  • the signals U X and V X equal to the sum of all U Xj and V Xj respectively, are well representative of the radiation emitted by the focusing point X.
  • the focusing device 70 shown in Figure 6 allows the simultaneous focusing on two points X and Y of the object 20, to continuously observe what is happening at these two particular points without having to form a complete image, for example to follow the evolution of their temperature in the case of certain biomedical applications.
  • the focusing device 70 is provided with two buses receiving the signals ⁇ X and ⁇ Y representative phase laws ⁇ X (j) and ⁇ Y (j) corresponding to the points X and Y to be observed.
  • the focusing device 70 is also provided with two groups of two outputs continuously supplying signals representative of the points X and Y, here for example the previously defined signals U X , V X , U Y and V Y.
  • the focusing device 70 differs from the device 30 of FIG. 2 essentially in that it comprises two oscillators 7ll and 7ll ′ delivering two signals D l and D2 respectively, of frequency F l and F2 respectively.
  • the two signals D l and D2 are of the same type as the signal D already encountered.
  • the output signal from the oscillator 7ll is applied to a phase shift circuit 7l2 analogous to the circuit l2 in FIG. 2.
  • the circuit 7l2 is controlled by the signal ⁇ X.
  • the output signal from the oscillator 7ll ′ is applied to a phase shift circuit 7l2 ′ analogous to the circuit l2 in FIG. 2, controlled by the signal ⁇ Y.
  • Each circuit 7l2 and 7l2 ′ delivers a set of J modulation signals analogous to the signals C l , ..., C j ..., and C J of FIG. 2.
  • the two modulation signals of rank j control two switches 72 mounted in parallel downstream of an antenna 7l, of row j .
  • the switches 72, 2J in number, and the antennas 71, the number of J, are similar to the switches 2 and the antennas 1 in FIG. 2.
  • the J output signals of the J groups of the two switches 72 in parallel are added in a microwave summator 73, which delivers a signal s .
  • a coherent microwave detection circuit 76 analogous to circuit 6 in FIG. 3, receives the signal s on its signal input and deliberates two signals DA and DB on its two outputs.
  • a microwave oscillator 74 analogous to oscillator 4 of FIG. 2, delivers a signal r to the control input of circuit 76.
  • Two low frequency coherent detection circuits 78 and 78 ′ are provided, analogous to circuit 8 in FIG. 4. Each circuit 78 and 78 ′ receives the signals DA and DB on its two signal inputs, and, on its control input the signal D l and signal D2 respectively. Circuit 78 outputs the signals U X and V X , and circuit 78 ′ signals U Y and V Y.
  • the operation of the focusing device 70 is as follows. Because the frequencies F l and F2 of the signals D l and D2 are different, the low frequency coherent detection circuit 78 demodulates only the components of the signals DA and DB modulated at the frequency F l in the switches 72, that is ie those which correspond to the phase shift law ⁇ X , determined by the phase shift circuit 7l2, focusing the network on the point X. For the same reason, the circuit 78 ′ demodulates only the components of the signals DA and DB modulated at the frequency F2, that is to say those which correspond to the phase shift law ⁇ Y , focusing the grating on the point Y.
  • the focusing method of the invention can be extended to imaging systems in which a focused antenna array is used to illuminate a point of the object to be observed and an unfocused antenna array, or even a single omnidirectional antenna, to receive radiation from the illuminated point.
  • FIG. 7 represents a device implementing such a method.
  • Block 50 represents the focusing device of a network of K transmitting antennas 5l to focus on the point X ′ of the object 20 ′.
  • the focusing device 50 comprises a microwave oscillator 54, delivering a microwave emission signal e , of frequency f .
  • Each antenna 5l is connected to the output of the oscillator 54 by means of a microwave switch 52, of the same type as the switches 2 in FIG. 2.
  • the switch 52 of rank k is provided with an input of command receiving a signal C k .
  • a phase shift circuit 5l2 analogous to the phase shift circuit l2 in FIG. 5, is provided with a signal input and with K outputs delivering the signals C l , ..., C k , ..., and C K each signal C k being out of phase with respect to the signal received on the input of circuit 5l2 by an angle ⁇ X (k) controlled by the signal ⁇ X applied to the control bus of block 5l2.
  • An oscillator 511 analogous to the oscillator ll of FIG. 2, delivers a signal D ′ of frequency modulation F, at the input of the block 5l2.
  • a reception antenna 40 On reception, a reception antenna 40, here unique, receives the signals coming from the object 20 ′. It is followed by a coherent microwave detection circuit 56, analogous to circuit 6 in FIG. 3. Circuit 56 receives, on its control input, the output signal from oscillator 54. The two outputs of circuit 56 are connected to a coherent detection circuit 58, analogous to circuit 8 in FIG. 4. The control input of circuit 58 receives the modulation signal D′. Circuit 58 outputs the signals U X and V X.
  • the operation of the focusing device 50 is similar to that of the device 30.
  • the phase shifts ⁇ X (k) introduced on the modulation signals of the microwave signals emitted produce the same effect, on the signal received and subjected to coherent microwave microwave detection. f , in circuit 56, and at coherent low frequency detection at frequency F in circuit 58, that phase shifts ⁇ X (k) introduced on the microwave signals transmitted. If these phase shifts ⁇ X (k) are chosen to correspond to the phasing, at point X, of the signals coming from the K antennas 5l, the transmission network has therefore been focused on point X.
  • linear networks are used instead of planar networks, the direction of the transmission network being perpendicular, for example, to the direction of the reception network.
  • crossed linear arrays are well known to those skilled in the art for their better longitudinal spatial resolution and the reduced number of antennas used.
  • each antenna was a microwave signal guided by a guide structure of the waveguide, cable type. coaxial or ribbon line, for example.
  • the summation is carried out by a microwave summing device, like the summing device 3 of FIG. 2, provided with J inlet access and an outlet access, each access being connectable to a guide structure of the type defined here. -above.
  • FIG. 8 shows for example a device in which the receiving antennas are dipole antennas l ′, regularly arranged on a panel l00 made of insulating material.
  • the panel l00 is placed in front of a single antenna 4l, which plays the role of summing of the microwave signals picked up and radiated again by the antennas l ′, these signals no longer being, as previously, supported by a guide structure.
  • the switches may be simple diodes 2 ′, the switching signals C l , ..., C j , ... and C J being for example applied by means of connections 2l which are not very disturbing for the electromagnetic field.
  • connections are made, for example, of carbon wires so as to be sufficiently resistive to have only a slight influence on the electromagnetic field.
  • connections 2l can also consider, to remove the connections 2l, to use diodes 2 'photoconductive switched using light signals applied for example using a laser beam.
  • the antenna 4l playing the role of summing device, is directly connected to a coherent microwave detection circuit, identical to the circuit 6 in FIG. 2, in the case of a network of reception antennas. The rest of the device is unchanged.
  • the focusing device 90 of FIG. 9 represents a variant of the device of the invention, using only two mixers instead of six.
  • a mixer 96l identical to the mixer 6l in FIG. 3, is provided with a first input receiving the signal s at the output of the summator 3, with a second input and with an output.
  • a mixer 98l identical to the mixer 8l in Figure 4, is provided with a first input connected to the output of the mixer 96l, a second input and an output connected to the input of a low-pass filter 987, identical to the low-pass filter 87 of FIG. 4 .
  • the output of an oscillator 94 is connected to the second input of the mixer 96l via a controllable phase shifter 963.
  • the output of an oscillator 9ll is connected to the second input of the mixer 981 via a controllable phase shifter 985.
  • the controllable phase shifters 963 and 985 are likely to phase shift by an angle equal to 0, or equal to ⁇ / 2, as a function of a signal applied to the control input with which each of them is provided.
  • a processing and control circuit 9l for example with a microprocessor, and provided with two outputs connected to the control inputs of the phase shifters 963 and 985, an input connected to the output of the low-pass filter 987, and two outputs delivering the signals U X and V X.
  • the operation of the focusing device 90 is as follows: the processing and control circuit 9l controls the phase shifters 963 and 985 sequentially, so that the previously defined signals SA, SB, SC and SD appear the year after the other at the input of the filter 987.
  • the circuit 9l stores the various filtered signals and processes the corresponding data to add them and deliver the signals U X and V X previously defined.
  • the signals picked up are coherent signals, that is to say periodic signals of defined phase, to which coherent microwave detection can be applied, as in circuits 6, 76, 6 ′ and 96l-63, as the case may be.
  • the invention is not limited to such coherent radiation and can also be applied to thermography, for example.
  • an image representative of the temperatures of the various points of the object is constructed, from microwave signals of which the object is itself the source.
  • These signals being inconsistent, that is to say of random phase, they must be detected with particular detection devices of known type, for example quadratic detection devices with or without prior frequency changes.
  • the devices of FIGS. 2, 6, 8 and 9 must therefore be modified, in this case, so that the coherent microwave detection circuits 6, 76, 6 ′ and 96l-963 are replaced by suitable devices.
  • the device 70 for simultaneous focusing on several points of FIG. 6 could then be modified by placing only one modulator downstream of each antenna, and by controlling this modulator with the sum of the two corresponding signals coming from the phase shift circuits 7l2 and 7l2 ′.
  • the antennas are generally organized on a surface to form an array.
  • the antennas can be organized in a line, straight or curved, to form a linear network.
  • a single switch can be used controlled by a suitable signal, for example the signal resulting from the product of the step functions relating to each of the phase shifted modulation signals.

Description

La présente invention a tout d'abord pour objet un procédé de focalisation, sur au moins un point à examiner d'une source de rayonnement, des antennes d'un réseau d'antennes recevant le rayonnement du point avec des déphasages de réception respectifs correspondant au temps de parcours dudit rayonnement entre ledit point et les antennes respectives.The present invention firstly relates to a method of focusing, on at least one point to be examined from a radiation source, the antennas of an array of antennas receiving the radiation from the point with corresponding respective reception phase shifts at the time of travel of said radiation between said point and the respective antennas.

Un tel procédé est utilisé lorsque l'on désire obtenir, à partir du rayonnement microonde en provenance d'un objet à analyser, une image microonde de cet objet. A cet effet, un ensemble d'antennes est organisé pour former un réseau, ce terme étant pris dans un sens voisin, mais plus large, que celui qu'il possède en optique, et ce réseau d'antennes est successivement focalisé sur chacun des points à examiner de l'objet, de façon à construire, point par point, l'image microonde de cet objet. Les systèmes d'imagerie microonde ont, en particulier, des applications dans le génie biomédical pour la détection et le traitement de tumeurs, par exemple, ainsi que dans le génie civil, pour la détection d'objets enterrés par exemple, ou bien pour le contrôle des matériaux traités par rayonnement microonde (polymérisation, décongélation, séchage...). Par ailleurs, les antennes connues sous le nom d'antennes à balayage électronique, utilisées par exemple en radar et en télécommunications, sont organisées en un réseau d'antennes fixe qui présente un maximum de sensibilité dans une direction variable commandable électroniquement, et mettent en oeuvre un tel procédé, correspondant à la focalisation sur un point situé à une distance infinie, et défini uniquement par sa direction.Such a method is used when it is desired to obtain, from the microwave radiation coming from an object to be analyzed, a microwave image of this object. To this end, a set of antennas is organized to form a network, this term being taken in a similar, but broader, sense than that which it possesses in optics, and this network of antennas is successively focused on each of the points to examine of the object, so as to build, point by point, the microwave image of this object. Microwave imaging systems have, in particular, applications in biomedical engineering for the detection and treatment of tumors, for example, as well as in civil engineering, for the detection of buried objects for example, or for control of materials treated by microwave radiation (polymerization, thawing, drying ...). Furthermore, the antennas known by the name of electronically scanned antennas, used for example in radar and in telecommunications, are organized in a fixed array of antennas which has maximum sensitivity in a variable direction electronically controllable, and implements such a process, corresponding to focusing on a point located at an infinite distance, and defined only by its direction.

On connaît déjà, dans le domaine des rayonnements microondes, un procédé de focalisation, dans lequel le signal reçu par chaque antenne est déphasé dans un déphaseur microonde, les signaux déphasés sont additionnés et le signal de sommation soumis à une détection microonde. La loi de phase, qui détermine le déphasage particulier à appliquer à chaque signal reçu, est établie de façon à ce que les contributions en provenance du point sur lequel est focalisé le réseau se retrouvent en phase au moment de la sommation, les contributions en provenance des autres points ayant des phases quelconques les unes par rapport aux autres. Ainsi, après sommation, le signal obtenu représente principalement la contribution du point de focalisation.A focusing method is already known in the microwave radiation field, in which the signal received by each antenna is phase-shifted in a microwave phase shifter, the phase-shifted signals are added and the summation signal subjected to microwave detection. The phase law, which determines the particular phase shift to be applied to each received signal, is established so that the contributions from the point on which the network is focused are in phase at the time of summation, the contributions from other points having any phases with respect to each other. Thus, after summation, the signal obtained mainly represents the contribution of the focal point.

Ce procédé connu présente, d'une part, l'inconvénient d'une mise en oeuvre difficile sur le plan pratique, car elle nécessite d'utiliser autant de déphaseurs microondes qu'il y a d'antennes dans le réseau. Or un déphaseur microonde est un composant relativement complexe, d'un prix de revient élevé et d'un encombrement important. Dans les cas où le nombre d'antennes atteint plusieurs centaines, voire plusieurs milliers, cette solution est donc très onéreuse. De plus, il est clair que l'encombrement des déphaseurs conditionne la distance entre une antenne et les antennes voisines, c'est-à-dire le pas du réseau. Or une antenne à pas trop grand donnera une image de mauvaise qualité, D'autre part, un invonvénient de ce procédé est qu'il ne permet pas, à un instant donné, la focalisation simultanée sur plusieurs points.This known method has, on the one hand, the disadvantage of a difficult implementation from a practical point of view, because it requires the use of as many microwave phase shifters as there are antennas in the array. However, a microwave phase shifter is a relatively complex component, with a high cost price and a large size. In cases where the number of antennas reaches several hundred, even several thousand, this solution is therefore very expensive. In addition, it is clear that the size of the phase shifters conditions the distance between an antenna and the neighboring antennas, that is to say the pitch of the network. However, a not-too-large antenna will give a poor quality image. On the other hand, a drawback of this method is that it does not allow simultaneous focusing on several points.

Pour pallier ces inconvénients, il est connu d'utiliser un procédé de focalisation synthétique. Dans un tel procédé, on ne déphase pas chaque signal reçu, qui est soumis directement à une détection cohérente microonde, c'est-à-dire une détection permettant de connaître le signal détecté en module et en phase. Module et phase de chaque signal reçu sont alors acquis par un calculateur. Le calculateur effectue un traitement numérique de l'ensemble de ces données, afin d'en extraire la contribution en provenance d'un point quelconque de l'objet. Un tel traitement revient donc à une focalisation synthétique par opposition à la focalisation analogique obtenue en utilisant des déphaseurs microondes.To overcome these drawbacks, it is known to use a synthetic focusing process. In such a method, each received signal is not phase-shifted, which is subjected directly to coherent microwave detection, that is to say a detection making it possible to know the signal detected in module and in phase. Module and phase of each signal received are then acquired by a computer. The computer performs digital processing of all of this data, in order to extract the contribution from any point of the object. Such processing therefore amounts to synthetic focusing as opposed to analog focusing obtained using microwave phase shifters.

Le procédé de focalisation synthétique présente cependant les inconvénients suivants :

  • le rapport signal à bruit est très inférieur au rapport signal à bruit du procédé de focalisation analogique;
  • les seuls algorithmes de traitement numériques qu'il est possible de mettre en oeuvre ne correspondent qu'à des géométries de réseau particulières et en nombre limité (géométrie plane, cylindrique, sphérique ...);
  • la mise en oeuvre pratique du procédé, qui nécessite autant de détections cohérentes microondes successives que d'antennes, impose l'utilisation d'un multiplexeur microonde à très grand nombre de voies, donc d'un prix de revient et d'un encombrement élevé;
  • les détections cohérentes effectuées sur chaque signal rendent impossible le traitement des signaux incohérents, c'est-à-dire des signaux dont la phase varie de façon aléatoire, comme les signaux microondes émis par l'objet lui-même utilisés par exemple en thermographie pour obtenir une image de la température des différents points de l'objet ;
  • la focalisation simultanée sur plusieurs points nécessite d'utiliser autant de calculateurs que de points de focalisation.
The synthetic focusing method has the following drawbacks, however:
  • the signal to noise ratio is much lower than the signal to noise ratio of the analog focusing method;
  • the only digital processing algorithms that it is possible to implement correspond only to specific network geometries and in limited number (plane, cylindrical, spherical geometry, etc.);
  • the practical implementation of the method, which requires as many coherent successive microwave detections as there are antennas, requires the use of a microwave multiplexer with a very large number of channels, therefore of a cost price and a large size ;
  • the coherent detections carried out on each signal make it impossible to process incoherent signals, that is to say signals whose phase varies randomly, such as the microwave signals emitted by the object itself used for example in thermography for obtain an image of the temperature of the various points of the object;
  • simultaneous focusing on several points requires the use of as many computers as there are focal points.

On connaît également, dans le domaine des rayonnements acoustiques, par l'article de R.D. GATZKE et al. "Electronic Scanner for a Phased-Array Ultrasound Transducer" dans Hewlett-Packard Journal, volume 34, n°l2, décembre l983, pages l3-20, un procédé de focalisation, sur au moins un point à examiner d'une source de rayonnement, des antennes d'un réseau d'antennes recevant le rayonnement du point avec des déphasages de réception respectifs, correspondant au temps de parcours dudit rayonnement entre ledit point et les antennes respectives, dans lequel les signaux délivrés par les antennes sont modulés en amplitude par au moins un même signal de modulation basse fréquence, respectivement avec des déphasages de modulation correspondant aux déphasages de réception.Also known, in the field of acoustic radiation, from the article by R.D. GATZKE et al. "Electronic Scanner for a Phased-Array Ultrasound Transducer" in Hewlett-Packard Journal, volume 34, n ° l2, December l983, pages l3-20, a method of focusing, on at least one point to examine from a radiation source , antennas of an antenna array receiving the radiation from the point with respective reception phase shifts, corresponding to the travel time of said radiation between said point and the respective antennas, in which the signals delivered by the antennas are amplitude modulated by at least one and the same low frequency modulation signal, respectively with modulation phase shifts corresponding to the reception phase shifts.

Dans ce procédé connu, les signaux modulés sont retardés chacun d'un retard qui leur est propre avant de subir une addition. Ceci implique donc l'utilisation d'autant de circuits de retard qu'il y a d'antennes dans le réseau et complique la loi suivie par les déphasages de modulation.In this known method, the modulated signals are each delayed by a specific delay before undergoing an addition. This therefore implies the use of as many delay circuits as there are antennas in the network and complicates the law followed by the modulation phase shifts.

Pour pallier les inconvénients de ces procédés connus le demandeur a cherché un procédé de focalisation de type analogique, pouvant s'adapter à n'importe quelle géométrie de réseau, mais ne nécessitant pas l'emploi d'un grand nombre de circuits élémentaires, comme les déphaseurs microondes du procédé microonde connu ou les circuits de retard du procédé acoustique connu.To overcome the drawbacks of these known methods, the applicant has sought a focusing method of analog type, which can adapt to any geometry of the network, but does not require the use of a large number of elementary circuits, such as the microwave phase shifters of the known microwave process or the delay circuits of the known acoustic process.

L'invention, qui a été faite au Laboratoire des Signaux et Systèmes de l'Ecole Supérieure d'Electricité, unité mixte l4 du Centre National de la Recherche Scientifique, a donc pour objet un procédé de focalisation, sur au moins un point à examiner d'une source de rayonnement, des antennes d'un réseau d'antennes recevant le rayonnement du point avec des déphasages de réception respectifs, correspondant au temps de parcours dudit rayonnement entre ledit point et les antennes respectives, dans lequel les signaux délivrés par les antennes sont modulés en amplitude par au moins un même signal de modulation basse fréquence, respectivement avec des déphasages de modulation correspondant aux déphasages de réception, caractérisé par le fait que :

  • ledit rayonnement est un rayonnement microonde,
  • chaque déphasage de modulation correspond à chaque déphasage de réception pour que leur somme soit la même, quelle que soit l'antenne délivrant le signal,
  • les signaux modulés sont additionnés en un signal de sommation,
  • la composante microonde du signal de sommation est détectée, et,
  • le signal détecté est démodulé par démodulation synchrone.
The invention, which was made at the Signals and Systems Laboratory of the Higher School of Electricity, mixed unit l4 of the National Center for Scientific Research, therefore relates to a focusing process, on at least one point to be examined of a radiation source, antennas of an array of antennas receiving radiation from the point with respective reception phase shifts, corresponding to the travel time of said radiation between said point and the respective antennas, in which the signals delivered by the antennas are amplitude modulated by at least one and the same low frequency modulation signal, respectively with modulation phase shifts corresponding to the reception phase shifts, characterized in that:
  • said radiation is microwave radiation,
  • each modulation phase shift corresponds to each reception phase shift so that their sum is the same, whatever the antenna delivering the signal,
  • the modulated signals are added up into a summation signal,
  • the microwave component of the summation signal is detected, and,
  • the detected signal is demodulated by synchronous demodulation.

Le procédé de l'invention ne met en oeuvre aucun déphaseur microonde. C'est le signal de modulation basse fréquence qui est déphasé dans des déphaseurs basse fréquence, au demeurant très simples. Ce résultat est obtenu en modulant en amplitude les signaux délivrés par des antennes. Or, comme cela sera abordé plus loin, on peut utiliser des modulateurs microondes peu encombrants et peu coûteux.The method of the invention does not use any microwave phase shifter. This is the low modulation signal frequency which is out of phase in low frequency phase shifters, moreover very simple. This result is obtained by modulating in amplitude the signals delivered by antennas. However, as will be discussed below, it is possible to use space-saving and inexpensive microwave modulators.

Le procédé de l'invention étant un procédé de type analogique, il peut s'adapter à des géométries de réseau non conventionnelles, il permet de compenser des irrégularités dans l'alignement des antennes du réseau, par exemple, il présente un meilleur rapport signal à bruit que le procédé de focalisation synthétique, et il peut s'adapter aux rayonnements incohérents.The method of the invention being an analog type method, it can adapt to unconventional network geometries, it makes it possible to compensate for irregularities in the alignment of the antennas of the network, for example, it has a better signal ratio noise than the synthetic focusing process, and it can adapt to incoherent radiation.

Avantageusement, les signaux délivrés par les antennes sont modulés en amplitude par un signal de modulation basse fréquence de type carré, avec des déphasages de modulation.Advantageously, the signals delivered by the antennas are amplitude modulated by a low frequency modulation signal of the square type, with modulation phase shifts.

Dans ce cas, la modulation peut être effectuée à l'aide d'interrupteurs microondes, du type à diode PIN par exemple, donc d'un prix de revient et d'un encombrement faibles.In this case, the modulation can be carried out using microwave switches, of the PIN diode type for example, therefore with a low cost and size.

L'invention a également pour objet un dispositif pour la mise en oeuvre du procédé de l'invention de focalisation sur au moins un point à examiner d'une source de rayonnement, des antennes d'un réseau d'antennes recevant le rayonnement du point avec des déphasages de réception respectifs, correspondant au temps de parcours dudit rayonnement entre ledit point et les antennes respectives délivrant des signaux, caractérisé par le fait que ledit rayonnement est un rayonnement microonde, et il est prévu :

  • des moyens pour engendrer un signal basse fréquence,
  • des moyens pour déphaser le signal basse fréquence de déphasages de modulation correspondant aux déphasages de réception, chaque déphasage de modulation correspond à chaque déphasage de réception pour que leur somme soit la même, quelle que soit l'antenne délivrant le signal
  • des moyens pour moduler en amplitude les signaux délivrés par les antennes, par le signal basse fréquence avec les déphasages de modulation respectivement,
  • des moyens pour additionner les signaux modulés, délivrant un signal de sommation,
  • des moyens pour détecter la composante microonde du signal de sommation, et,
  • des moyens pour démoduler le signal détecté par démodulation synchrone.
The invention also relates to a device for implementing the method of the invention of focusing on at least one point to be examined from a radiation source, antennas of an array of antennas receiving the radiation from the point with respective reception phase shifts, corresponding to the travel time of said radiation between said point and the respective antennas delivering signals, characterized in that said radiation is microwave radiation, and provision is made:
  • means for generating a low frequency signal,
  • means for shifting the low frequency signal of modulation phase shifts corresponding to the reception phase shifts, each modulation phase shift corresponds to each reception phase shift so that their sum is the same, whatever the antenna delivering the signal
  • means for amplitude modulation of the signals delivered by the antennas, by the low frequency signal with the modulation phase shifts respectively,
  • means for adding the modulated signals, delivering a summation signal,
  • means for detecting the microwave component of the summation signal, and,
  • means for demodulating the detected signal by synchronous demodulation.

Naturellement et comme cela sera vu dans la description, l'invention peut également être mise en oeuvre pour la focalisation des antennes d'un réseau d'antennes d'émission.Naturally and as will be seen in the description, the invention can also be implemented for focusing the antennas of an array of transmit antennas.

La présente invention sera mieux comprise à l'aide de la description suivante de plusieurs mises en oeuvre du procédé de l'invention et de plusieurs formes de réalisation du dispositif de l'invention, faite en se référant aux dessins annexés, sur lesquels :

  • la figure l représente un schéma par blocs d'un réseau d'antennes de réception et d'un dispositif de focalisation selon l'invention ;
  • la figure 2 représente un schéma détaillé du dispositif de focalisation de la figure l ;
  • la figure 3 représente un schéma détaillé du circuit de détection cohérente microonde de la figure 2 ;
  • la figure 4 représente un schéma détaillé du circuit de détection cohérente basse-fréquence de la figure 2 ;
  • la figure 5 représente un schéma détaillé du circuit de déphasage de la figure 2;
  • la figure 6 représente un dispositif de focalisation simultanée sur deux points des antennes d'un réseau d'antennes de réception;
  • la figure 7 représente un dispositif de focalisation des antennes d'un réseau d'antennes d'émission;
  • la figure 8 représente une première variante du dispositif de focalisation de la figure 2;
  • la figure 9 représente une deuxième variante du dispositif de focalisation de la figure 2, et,
  • la figure l0 représente un diagramme temporel des signaux du dispositif de focalisation de la figure 2.
The present invention will be better understood with the aid of the following description of several implementations of the method of the invention and of several embodiments of the device of the invention, made with reference to the appended drawings, in which:
  • FIG. 1 represents a block diagram of an array of reception antennas and of a focusing device according to the invention;
  • 2 shows a detailed diagram of the focusing device of Figure l;
  • FIG. 3 represents a detailed diagram of the coherent microwave detection circuit of FIG. 2;
  • FIG. 4 represents a detailed diagram of the low-frequency coherent detection circuit of FIG. 2;
  • FIG. 5 represents a detailed diagram of the phase shift circuit of FIG. 2;
  • FIG. 6 represents a device for simultaneous focusing on two points of the antennas of an array of reception antennas;
  • FIG. 7 represents a device for focusing the antennas of an array of transmitting antennas;
  • Figure 8 shows a first variant of the focusing device of Figure 2;
  • FIG. 9 represents a second variant of the focusing device of FIG. 2, and,
  • FIG. 10 represents a time diagram of the signals of the focusing device of FIG. 2.

En référence à la figure l, afin d'obtenir une image microonde d'un objet 20, on dispose une série de J antennes l sur une surface, ici un plan P, exposée à un rayonnement électromagnétique microonde en provenance de l'objet 20. L'antenne l de rang j reçoit un signal microonde sj. Un dispositif de focalisation 30 est pourvu de J entrées recevant les J signaux sl,..., sj,..., et sJ. Il est aussi pourvu de deux sorties délivrant deux signaux utiles UX et VX, ainsi que d'une entrée de commande recevant, ici par l'intermédiaire d'un bus parallèle, un signal de commande ΔX.With reference to FIG. 1, in order to obtain a microwave image of an object 20, there is a series of J antennas l on a surface, here a plane P, exposed to microwave electromagnetic radiation coming from the object 20 The antenna l of row j receives a microwave signal s j . A focusing device 30 is provided with J inputs receiving the J signals s l , ..., s j , ..., and s J. It is also provided with two outputs delivering two useful signals U X and V X , as well as a control input receiving, here by means of a parallel bus, a control signal Δ X.

L'objet 20 peut être lui-même la source de rayonnement reçu par les antennes l, ou il peut agir comme source secondaire, c'est-à-dire comme réflecteur d'un rayonnement émis par une source primaire microonde, destinée à illuminer l'objet 20, et non représentée sur la figure l dans un souci de simplicité. On considèrera dans toute la suite, sauf indication contraire, que le rayonnement microonde reçu par les antennes l est monochromatique de fréquence f, soit parce que la source de rayonnement est elle-même monochromatique de fréquence f, soit parce que, la source émettant un rayonnement dans une certaine bande de fréquence, on utilise un dispositif de focalisation 30 sélectif, centré sur la fréquence f.The object 20 may itself be the source of radiation received by the antennas 1, or it may act as a secondary source, that is to say as a reflector of radiation emitted by a primary microwave source, intended to illuminate object 20, and not shown in FIG. 1 for the sake of simplicity. In the following, it will be assumed, unless otherwise indicated, that the microwave radiation received by the antennas l is monochromatic of frequency f , either because the radiation source is itself monochromatic of frequency f , or because, the source emitting a radiation in a certain frequency band, a selective focusing device 30 is used, centered on the frequency f .

La série des J antennes l disposées régulièrement dans le plan P est appelée, par analogie avec les réseaux rencontrés en optique, réseau d'antennes. L'image microonde est obtenue en focalisant successivement le réseau d'antennes l sur chacun des points à examiner X de l'objet 20, au cours d'un balayage séquentiel, point par point, de cet objet.The series of J antennas 1 arranged regularly in the plane P is called, by analogy with the networks encountered in optics, antenna array. The microwave image is obtained by successively focusing the array of antennas l on each of the points to be examined X of the object 20, during a sequential scanning, point by point, of this object.

Par focalisation des antennes l du réseau d'antennes sur un point X, on entend commande du dispositif de focalisation 30 à l'aide du signal de commande ΔX de façon à ce que les signaux utiles UX et VX en sortie du dispositif ne soient représentatifs que du rayonnement microonde en provenance du point X.By focusing the antennas l of the antenna array on a point X, is meant control of the focusing device 30 using the control signal Δ X so that the useful signals U X and V X at the output of the device are only representative of microwave radiation from point X.

Un dispositif de balayage séquentiel, non représenté, engendre les signaux de commande ΔX successifs et un dispositif de visualisation, non représenté, synchronisé par le dispositif de balayage séquentiel, recueille les signaux UX et VX. Le dispositif de balayage séquentiel et le dispositif de visualisation sont du type classique utilisé dans les systèmes d'imagerie connus.A sequential scanning device, not shown, generates the successive control signals Δ X and a display device, not shown, synchronized by the sequential scanning device, collects the signals U X and V X. The sequential scanning device and the viewing device are of the conventional type used in known imaging systems.

Avant de décrire le dispositif de focalisation 30 selon l'invention, il est utile de préciser le principe des procédés de l'art antérieur.Before describing the focusing device 30 according to the invention, it is useful to clarify the principle of prior art methods.

Dans ces procédés, on fait subir à chaque signal sj un déphasage microonde d'un angle déterminé ΔX(j), et on somme les J signaux déphasés. La loi ΔX(j) qui détermine l'angle de déphasage pour chaque signal sj, appelée loi de phase pour le point X, est établie de façon à ce que les contributions en provenance du point X, se retrouvant en phase au moment de la sommation, interfèrent de façon constructive, alors que les contributions en provenance des autres points, ayant des phases quelconques les unes par rapport aux autres, interfèrent de façon destructive. Ainsi, le résultat de la sommation représente principalement la contribution du point X. On focalise donc le réseau d'antennes l sur le point X en imposant la loi de phase ΔX(j) à l'aide du signal ΔX. La loi de phase ΔX(j) peut se déduire de la connaissance des longueurs des trajets reliant le point X à chacune des antennes l.In these methods, each signal s j is subjected to a microwave phase shift of a determined angle Δ X (j), and the J signals are phase-shifted. The law Δ X (j) which determines the phase shift angle for each signal s j , called the phase law for point X, is established so that the contributions coming from point X, finding themselves in phase at the time of the summation, interfere constructively, while the contributions coming from the other points, having any phases with respect to each other, interfere destructively. Thus, the result of the summation mainly represents the contribution of point X. We therefore focus the array of antennas l on point X by imposing the phase law Δ X (j) using the signal Δ X. The phase law Δ X (j) can be deduced from knowing the lengths of the paths connecting point X to each of the antennas l.

Le dispositif de focalisation 30 selon l'invention va maintenant être décrit, en référence à la figure 2. Sur cette figure, chaque référence 2 désigne un interrupteur microonde. Il est prévu autant d'interrupteurs 2 que d'entrées, c'est-à-dire ici J interrupteurs.The focusing device 30 according to the invention will now be described, with reference to FIG. 2. In this figure, each reference 2 designates a microwave switch. There are as many switches 2 as there are inputs, that is to say here J switches.

L'interrupteur 2 de rang j est pourvu d'une entrée microonde recevant le signal sj et d'une sortie microonde délivrant le signal s′j, ainsi que d'une entrée de commande recevant un signal Cj.The switch 2 of row j is provided with a microwave input receiving the signal s j and a microwave output delivering the signal s ′ j , as well as a control input receiving a signal C j .

Un sommateur microonde 3 est pourvu de J entrées recevant les J signaux s′l,..., s′j,... et s′J, et d'une sortie délivrant un signal s.A microwave summing device 3 is provided with J inputs receiving the J signals s ′ l , ..., s ′ j , ... and s ′ J , and an output delivering a signal s .

Un circuit 6 de détection cohérente microonde est pourvu d'une entrée de signal recevant le signal s, d'une entrée de commande et de deux sorties délivrant des signaux DA et DB.A coherent microwave detection circuit 6 is provided a signal input receiving the signal s , a control input and two outputs delivering DA and DB signals.

Un oscillateur microonde 4 est pourvu d'une sortie délivrant un signal r de détection cohérente microonde, reliée à l'entrée de commande du circuit 6. Le signal r est un signal sinusoïdal de fréquence f.A microwave oscillator 4 is provided with an output delivering a signal r of coherent microwave detection, connected to the control input of circuit 6. The signal r is a sinusoidal signal of frequency f .

Un circuit 8 de détection cohérente basse fréquence est pourvu de deux entrées de signal recevant les signaux DA et DB, d'une entrée de commande et de deux sorties délivrant les signaux UX et VX.A low frequency coherent detection circuit 8 is provided with two signal inputs receiving the signals DA and DB, a control input and two outputs delivering the signals U X and V X.

Un oscillateur basse fréquence ll est pourvu d'une sortie délivrant un signal de modulation D, reliée à l'entrée de commande du circuit 8. Le signal D est un signal sinusoïdal de fréquence F, de valeur comprise entre sensiblement quelques kilohertz et sensiblement quelques mégahertz.A low frequency oscillator ll is provided with an output delivering a modulation signal D, connected to the control input of circuit 8. The signal D is a sinusoidal signal of frequency F, of value between substantially a few kilohertz and substantially a few megahertz.

Un circuit de déphasage l2 est pourvu d'une entrée recevant le signal D, de J entrées de commando reliées au duo parallèle recevant le signal de commande ΔX, et de J sorties délivrant les J signaux Cl,..., Cj,... et CJ.A phase shift circuit l2 is provided with an input receiving the signal D, J commando inputs connected to the parallel duo receiving the control signal Δ X , and J outputs delivering the J signals C l , ..., C j , ... and C J.

En référence à la figure 3, le circuit 6 de détection cohérente microonde comprend deux mélangeurs 6l et 62 et un déphaseur 63. Les mélangeurs 6l et 62 sont du type comprenant deux entrées, et une sortie délivrant un signal égal, à tout instant, au produit des signaux reçus sur les deux entrées. Il s'agit ici des dispositifs connus par l'homme de métier sous le nom de modulateurs en anneau ou mélangeurs équilibrés.With reference to FIG. 3, the microwave coherent detection circuit 6 comprises two mixers 6l and 62 and a phase shifter 63. The mixers 6l and 62 are of the type comprising two inputs, and one output delivering a signal equal, at all times, to the produces signals received on both inputs. These are devices known to those skilled in the art as ring modulators or balanced mixers.

Le mélangeur 6l reçoit sur une entrée le signal s et sur l'autre entrée le signal r, et délivre en sortie le signal DA.The mixer 6l receives on an input the signal s and on the other input signals r , and outputs DA signal.

Le mélangeur 62 reçoit sur une entrée le signal s et sur l'autre entrée le signal r déphasé d'un angle égal à π/2, dans le déphaseur 63.Le mélangeur 62 délivre en sortie le signal DB.The mixer 62 receives on one input the signal s and on the other input the signal r phase shifted by an angle equal to π / 2, in the phase shifter 63. The mixer 62 outputs the signal DB.

En référence à la figure 4, le circuit de détection cohérente basse fréquence 8 comprend quatre mélangeurs 8l, 82, 83 et 84, deux déphaseurs 85 et 85′, un soustracteur 86 et un additionneur 88, et deux filtres passe-bas 87 et 89.Referring to Figure 4, the low frequency coherent detection circuit 8 includes four mixers 8l, 82, 83 and 84, two phase shifters 85 and 85 ′, a subtractor 86 and an adder 88, and two low-pass filters 87 and 89 .

Les mélangeurs 8l à 84 sont d'un type comparable à celui des mélangeurs 6l et 62. Le mélangeur 8l reçoit sur une entrée le signal DA et sur l'autre entrée le signal D, et il délivre en sortie un signal SA. Le mélangeur 82 reçoit sur une entrée le signal DB et sur l'autre entrée le signal D déphasé d'un angle égal à π/2 dans le déphaseur 85, et il délivre en sortie le signal SB. Le mélangeur 83 reçoit sur une entrée le signal DA et sur l'autre entre le signal D déphasé d'un angle égal à π/2 dans le déphaseur 85′, et il délivre en sortie le signal SC. Le mélangeur 84 reçoit sur une entrée le signal DB et sur l'autre entrée le signal D, et il délivre en sortie le signal SD.The mixers 8l to 84 are of a type comparable to that of the mixers 6l and 62. The mixer 8l receives on one input the signal DA and on the other input the signal D, and it outputs a signal SA. The mixer 82 receives on one input the signal DB and on the other input the signal D phase shifted by an angle equal to π / 2 in the phase shifter 85, and it outputs the signal SB. The mixer 83 receives on one input the signal DA and on the other between the signal D phase shifted by an angle equal to π / 2 in the phase shifter 85 ′, and it outputs the signal SC. The mixer 84 receives the signal DB on one input and the signal D on the other input, and outputs the signal SD.

Le soustracteur 86 reçoit sur ses deux entrées les signaux SA et SB; sa sortie est reliée au filtre 87, qui délivre en sortie le signal UX.The subtractor 86 receives on its two inputs the signals SA and SB; its output is connected to filter 87, which outputs the signal U X.

L'additionneur 88 reçoit sur ses deux entrées les signaux SC et SD; sa sortie est reliée au filtre 89 qui délivre en sortie le signal VX.The adder 88 receives on its two inputs the signals SC and SD; its output is connected to filter 89 which outputs the signal V X.

En référence à la figure 5, le circuit de déphasage l2 comprend J déphaseurs commndables l2l. Le déphaseur l2l de rang j est pourvu d'une entrée de signal recevant le signal D, d'une entrée de commande de l'angle ΔX(j) de déphasage, recevant un signal de commande également appelé ΔX(j) dans un souci de simplicité, et d'une sortie de signal délivrant le signal Cj, déphasé de l'angle ΔX(j) par rapport au signal de modulation D.Referring to Figure 5, the phase shift circuit l2 includes J controllable phase shifters l2l. The phase shifter l2l of rank j is provided with a signal input receiving the signal D, with a control input for the angle Δ X (j) of phase shift, receiving a control signal also called Δ X (j) in for the sake of simplicity, and of a signal output delivering the signal C j , phase shifted by the angle Δ X (j) relative to the modulation signal D.

Les J entrées de commande des J déphaseurs l2l constituent le bus parallèle auquel est appliqué le signal ΔX composé des J signaux ΔX(j).The J control inputs of the J phase shifters l2l constitute the parallel bus to which is applied the signal Δ X composed of the J signals Δ X (j).

Les interrupteurs 2 sont ici des commutateurs à diodes PIN, bien connus de l'homme de métier.The switches 2 are here PIN diode switches, well known to those skilled in the art.

Le sommateur 3 et les mélangeurs 6l et 62 sont des circuits du type connu par l'homme de métier pour une utilisation microonde, alors que les mélangeurs 8l à 84, le soustracteur 86 et l'additionneur 88, les filtres passe-bas 87 et 89 et les déphaseurs l2l sont des circuits du type connu par l'homme de métier pour une utilisation en basse fréquence.The adder 3 and the mixers 6l and 62 are circuits of the type known by a person skilled in the art for microwave use, while the mixers 8l to 84, the subtractor 86 and the adder 88, the low-pass filters 87 and 89 and phase shifters 12l are circuits of the type known to those skilled in the art for use at low frequency.

Le fonctionnement du dispositif de focalisation 30 qui vient d'être décrit est maintenant expliqué, en référence à la figure l0.The operation of the focusing device 30 which has just been described is now explained, with reference to FIG. 10.

On suppose que le signal r, non représenté, de fréquence f, délivré par l'oscillateur microonde 4, est de la forme r = cos (2 π ft)

Figure imgb0001
et que le signal D, de fréquence F, délivré par l'oscillateur ll, est de la forme D = cos (2 πFt)
Figure imgb0002
It is assumed that the signal r , not shown, of frequency f , delivered by the microwave oscillator 4, is of the form r = cos (2 π ft)
Figure imgb0001
and that the signal D, of frequency F, delivered by the oscillator ll, is of the form D = cos (2 πFt)
Figure imgb0002

Le signal Cj à la sortie du déphaseur l2l de rang j vaut alors : C j = cos (2 πFt + Δ X (j))

Figure imgb0003
The signal C j at the output of the phase shifter l2l of rank j is then worth: VS j = cos (2 πFt + Δ X (j))
Figure imgb0003

Supposons alors que le signal microonde reçu par l'antenne de rang j soit de la forme : s j = A j cos (2 πft + δ j )

Figure imgb0004
expression dans laquelle Aj est l'amplitude de signal sj et δj son angle de phase par rapport au signal r.Suppose then that the microwave signal received by the antenna of rank j is of the form: s j = A j cos (2 πft + δ j )
Figure imgb0004
expression in which A j is the signal amplitude s j and δ j its phase angle with respect to the signal r .

Alors le signal s′j en sortie de l'interrupteur 2 de rang j s'écrit : s′ j = s j . Ech [C j ]

Figure imgb0005
dans cette expression, la fonction échelon Ech[Cj] est égale à l si Cj est positif et égal à 0 si Cj est négatif.Then the signal s ′ j at the output of the switch 2 of row j is written: s ′ j = s j . Ech [C j ]
Figure imgb0005
in this expression, the echelon function Ech [C j ] is equal to l if C j is positive and equal to 0 if C j is negative.

Ainsi, on peut dire que le signal s′j est modulé en amplitude par un signal de modulation de type carré, comme le montre la figure l0.Thus, we can say that the signal s ′ j is amplitude modulated by a square type modulation signal, as shown in Figure l0.

Le produit du signal r par la composante s′j du signal s, effectué, dans le circuit 6 de détection cohérente microonde, par le mélangeur 6l, donne un signal : r.s′ j = cos(2 πft). A j cos(2 πft + δ j ). Ech [C j ]

Figure imgb0006
c'est-à-dire : r.s′ j = A j /2.[cos (4 πft + δ j ) + cos (δ j )]. Ech [C j ]
Figure imgb0007
The product of the signal r by the component s ′ j of the signal s , carried out, in the microwave coherent detection circuit 6, by the mixer 61, gives a signal: rs ′ j = cos (2 πft). AT j cos (2 πft + δ j ). Ech [C j ]
Figure imgb0006
that is to say : rs ′ j = A j /2.[cos (4 πft + δ j ) + cos (δ j )]. Ech [C j ]
Figure imgb0007

La première composante de ce signal, à la fréquence 2f, est ici filtrée par le mélangeur 6l. Si cela n'était pas le cas, un filtre passe bas éliminerait cette composante. Ainsi, la contribution DAj du signal sj du signal DA en sortie du circuit 6 de détection cohérente microonde vaut : DA j = A j /2 . cos δ j . Ech [C j ]

Figure imgb0008
The first component of this signal, at frequency 2f, is here filtered by the mixer 6l. If this were not the case, a low pass filter would eliminate this component. Thus, the contribution DA j of the signal s j of the signal DA at the output of the microwave coherent detection circuit 6 is worth: DA j = A j / 2. cos δ j . Ech [C j ]
Figure imgb0008

Pour les mêmes raisons, et compte tenu du déphasage de π/2 introduit par le déphaseur 63, la contribution DBj du signal sj au signal DB en sortie du circuit 6 de détection cohérente microonde vaut : DB j = A j /2 . sin δ j . Ech [C j ]

Figure imgb0009
For the same reasons, and taking into account the phase shift of π / 2 introduced by the phase shifter 63, the contribution DB j of the signal s j to the signal DB at the output of the coherent microwave detection circuit 6 is worth: DB j = A j / 2. sin δ j . Ech [C j ]
Figure imgb0009

Dans le circuit 8 de détection cohérente basse fréquence, les contributions SAj, SBj, SCj et SDj (ces deux dernières non représentées dans un souci de simplicité) du signal sj aux signaux SA, SB, SC et SD valent : SA j = A j /2.cos δ j . Ech [C j ] . cos (2 πFt)

Figure imgb0010
SB j = A j /2.sin δ j . Ech [C j ] . cos (2 πFt + π 2 )
Figure imgb0011
SC j = A j /2.cos δ j . Ech [C j ] . cos (2 πFt + π 2 )
Figure imgb0012
SD j = A j /2.sin δ j . Ech [C j ] . cos (2 πFt)
Figure imgb0013
In the low frequency coherent detection circuit 8, the contributions SA j , SB j , SC j and SD j (the latter two not shown for the sake of simplicity) of the signal s j to the signals SA, SB, SC and SD are equal to: HER j = A j /2.cos δ j . Ech [C j ]. cos (2 πFt)
Figure imgb0010
SB j = A j /2.sin δ j . Ech [C j ]. cos (2 πFt + π 2 )
Figure imgb0011
SC j = A j /2.cos δ j . Ech [C j ]. cos (2 πFt + π 2 )
Figure imgb0012
SD j = A j /2.sin δ j . Ech [C j ]. cos (2 πFt)
Figure imgb0013

Or, la fonction Ech [Cj] peut être décomposée en un fondamental : l π cos (2 πFt + Δ X (j))

Figure imgb0014
et des harmoniques.However, the function Ech [C j ] can be broken down into a fundamental: l π cos (2 πFt + Δ X (j))
Figure imgb0014
and harmonics.

Seul le fondamental, multiplié par le signal D, déphasé de π 2

Figure imgb0015
ou non, donnera naissance à une composante continue ou lentement variable.Only the fundamental, multiplied by the signal D, out of phase with π 2
Figure imgb0015
or not, will give rise to a continuous or slowly variable component.

Ainsi, après passage dans le soustracteur 86 et dans l'additionneur 88, et filtrage passe-bas dans les filtres 88 et 89, les contributions UXj et VXj du signal sj aux signaux UX et VX s'écrivent : U Xj = A j /4π [cos δ j . cos(Δ X (j)) - sin δ j . sin (Δ X (j))]

Figure imgb0016
V Xj = A j /4π [cos δ j . sin(Δ X (j)) + sin δ j . cos (Δ X (j)]
Figure imgb0017
soit U Xj = A j /4π. cos [ δ j + Δ X (j)]
Figure imgb0018
V Xj = A j /4π. sin [δ j + Δ X (j)]
Figure imgb0019
Thus, after passing through the subtractor 86 and into the adder 88, and low-pass filtering in the filters 88 and 89, the contributions U Xj and V Xj of the signal s j to the signals U X and V X are written: U Xj = A j / 4π [cos δ j . cos (Δ X (j)) - sin δ j . sin (Δ X (j))]
Figure imgb0016
V Xj = A j / 4π [cos δ j . sin (Δ X (j)) + sin δ j . cos (Δ X (j)]
Figure imgb0017
is U Xj = A j / 4π. cos [δ j + Δ X (j)]
Figure imgb0018
V Xj = A j / 4π. sin [δ j + Δ X (j)]
Figure imgb0019

Il apparaît que le déphasage ΔX(j) du signal de modulation s'ajoute au déphasage δj du signal microonde. Donc, tout se passe comme si on déphasait le signal sj d'un angle ΔX(j) dans un déphaseur microonde. Ainsi, si on choisit une loi de phase pour que l'angle ΔX(j) corresponde à l'angle δj de façon à ce que leur somme reste constante quelque soit j, les signaux UX et VX, égaux à la somme de tous les UXj et VXj respectivement, sont bien représentatifs du rayonnement émis par le point X de focalisation.It appears that the phase shift Δ X (j) of the modulation signal is added to the phase shift δ j of the microwave signal. So everything happens as if the signal s j was phase shifted by an angle Δ X (j) in a microwave phase shifter. Thus, if we choose a phase law so that the angle Δ X (j) corresponds to the angle δ j so that their sum remains constant whatever j , the signals U X and V X , equal to the sum of all U Xj and V Xj respectively, are well representative of the radiation emitted by the focusing point X.

Le dispositif de focalisation 70 représenté sur la figure 6 permet la focalisation simultanée sur deux points X et Y de l'objet 20, pour observer continûment ce qui se passe en ces deux points particuliers sans avoir à former une image complète, par exemple pour suivre l'évolution de leur température dans le cas de certaines applications biomédicales.The focusing device 70 shown in Figure 6 allows the simultaneous focusing on two points X and Y of the object 20, to continuously observe what is happening at these two particular points without having to form a complete image, for example to follow the evolution of their temperature in the case of certain biomedical applications.

A cet effet, le dispositif de focalisation 70 est pourvu de deux bus recevant les signaux ΔX et ΔY représentatifs des lois de phases ΔX(j) et ΔY(j) correspondant aux points X et Y à observer. Le dispositif de focalisation 70 est également pourvu de deux groupes de deux sorties délivrant continûment des signaux représentatifs des points X et Y, ici par exemple les signaux précédemment définis UX, VX, UY et VY.For this purpose, the focusing device 70 is provided with two buses receiving the signals Δ X and Δ Y representative phase laws Δ X (j) and Δ Y (j) corresponding to the points X and Y to be observed. The focusing device 70 is also provided with two groups of two outputs continuously supplying signals representative of the points X and Y, here for example the previously defined signals U X , V X , U Y and V Y.

Le dispositif de focalisation 70 se distingue du dispositif 30 de la figure 2 essentiellement en ce qu'il comporte deux oscillateurs 7ll et 7ll′ délivrant deux signaux Dl et D₂ respectivement, de fréquence Fl et F₂ respectivement. Les deux signaux Dl et D₂ sont du même type que le signal D déjà rencontré.The focusing device 70 differs from the device 30 of FIG. 2 essentially in that it comprises two oscillators 7ll and 7ll ′ delivering two signals D l and D₂ respectively, of frequency F l and F₂ respectively. The two signals D l and D₂ are of the same type as the signal D already encountered.

Le signal de sortie de l'oscillateur 7ll est appliqué à un circuit de déphasage 7l2 analogue au circuit l2 de la figure 2. Le circuit 7l2 est commandé par le signal ΔX.The output signal from the oscillator 7ll is applied to a phase shift circuit 7l2 analogous to the circuit l2 in FIG. 2. The circuit 7l2 is controlled by the signal Δ X.

De même, le signal de sortie de l'oscillateur 7ll′ est appliqué à un circuit de déphasage 7l2′ analogue au circuit l2 de la figure 2, commandé par le signal ΔY.Similarly, the output signal from the oscillator 7ll ′ is applied to a phase shift circuit 7l2 ′ analogous to the circuit l2 in FIG. 2, controlled by the signal Δ Y.

Chaque circuit 7l2 et 7l2′ délivre un ensemble de J signaux de modulation analogues aux signaux Cl ,..., Cj..., et CJ de la figure 2. Les deux signaux de modulation de rang j commandent deux interrupteurs 72 montés en parallèle en aval d'une antenne 7l, de rang j. Les interrupteurs 72, au nombre de 2J, et les antennes 7l, au nombre de J, sont analogues aux interrupteurs 2 et aux antennes l de la figure 2.Each circuit 7l2 and 7l2 ′ delivers a set of J modulation signals analogous to the signals C l , ..., C j ..., and C J of FIG. 2. The two modulation signals of rank j control two switches 72 mounted in parallel downstream of an antenna 7l, of row j . The switches 72, 2J in number, and the antennas 71, the number of J, are similar to the switches 2 and the antennas 1 in FIG. 2.

Les J signaux de sorties des J groupes des deux interrupteurs 72 en parallèle sont additionnés dans un sommateur microonde 73, qui délivre un signal s.The J output signals of the J groups of the two switches 72 in parallel are added in a microwave summator 73, which delivers a signal s .

Un circuit 76 de détection cohérente microonde, analogue au circuit 6 de la figure 3, reçoit le signal s sur son entrée de signal et délibre deux signaux DA et DB sur ses deux sorties.A coherent microwave detection circuit 76, analogous to circuit 6 in FIG. 3, receives the signal s on its signal input and deliberates two signals DA and DB on its two outputs.

Un oscillateur microonde 74, analogue à l'oscillateur 4 de la figure 2, délivre un signal r à l'entrée de commande du circuit 76.A microwave oscillator 74, analogous to oscillator 4 of FIG. 2, delivers a signal r to the control input of circuit 76.

Deux circuits 78 et 78′ de détection cohérente basse fréquence sont prévus, analogues au circuit 8 de la figure 4. Chaque circuit 78 et 78′ reçoit les signaux DA et DB sur ses deux entrées de signal, et, sur son entrée de commande le signal Dl et le signal D₂ respectivement. Le circuit 78 délivre en sortie les signaux UX et VX, et le circuit 78′ les signaux UY et VY.Two low frequency coherent detection circuits 78 and 78 ′ are provided, analogous to circuit 8 in FIG. 4. Each circuit 78 and 78 ′ receives the signals DA and DB on its two signal inputs, and, on its control input the signal D l and signal D₂ respectively. Circuit 78 outputs the signals U X and V X , and circuit 78 ′ signals U Y and V Y.

Le fonctionnement du dispositif de focalisation 70 est le suivant. Du fait que les fréquences Fl et F₂ des signaux Dl et D₂ sont différentes, le circuit 78 de détection cohérente basse fréquence démodule uniquement les composantes des signaux DA et DB modulée à la fréquence Fl dans les interrupteurs 72, c'est-à-dire celles qui correspondent à la loi de déphasage ΔX, déterminée par le circuit de déphasage 7l2, focalisant le réseau sur le point X. Pour la même raison, le circuit 78′ démodule uniquement les composantes des signaux DA et DB modulées à la fréquence F₂, c'est-à-dire celles qui correspondent à la loi de déphasage ΔY, focalisant le réseau sur le point Y.The operation of the focusing device 70 is as follows. Because the frequencies F l and F₂ of the signals D l and D₂ are different, the low frequency coherent detection circuit 78 demodulates only the components of the signals DA and DB modulated at the frequency F l in the switches 72, that is ie those which correspond to the phase shift law Δ X , determined by the phase shift circuit 7l2, focusing the network on the point X. For the same reason, the circuit 78 ′ demodulates only the components of the signals DA and DB modulated at the frequency F₂, that is to say those which correspond to the phase shift law Δ Y , focusing the grating on the point Y.

Naturellement, il est possible d'étendre le dispositif de focalisation qui vient d'être décrit à la focalisation simultanée sur un nombre de points supérieur à deux, en choisissant les différentes fréquences de modulation afin d'éviter tout risque d'intermodulation.Naturally, it is possible to extend the focusing device which has just been described to the simultaneous focusing on a number of points greater than two, by choosing the different modulation frequencies in order to avoid any risk of intermodulation.

Naturellement, le procédé de focalisation de l'invention peut être étendu aux systèmes d'imagerie dans lesquels on utilise un réseau d'antennes focalisé pour illuminer un point de l'objet à observer et un réseau d'antennes non focalisé, ou encore une antenne unique omnidirectionnelle, pour recevoir les rayonnements en provenance du point illuminé.Naturally, the focusing method of the invention can be extended to imaging systems in which a focused antenna array is used to illuminate a point of the object to be observed and an unfocused antenna array, or even a single omnidirectional antenna, to receive radiation from the illuminated point.

La figure 7 représente un dispositif mettant en oeuvre un tel procédé. Le bloc 50 représente le dispositif de focalisation d'un réseau de K antennes d'émission 5l à focaliser sur le point X′ de l'objet 20′.FIG. 7 represents a device implementing such a method. Block 50 represents the focusing device of a network of K transmitting antennas 5l to focus on the point X ′ of the object 20 ′.

Le dispositif de focalisation 50 comprend un oscillateur microonde 54, délivrant un signal microonde d'émission e, de fréquence f.The focusing device 50 comprises a microwave oscillator 54, delivering a microwave emission signal e , of frequency f .

Chaque antenne 5l est reliée à la sortie de l'oscillateur 54 par l'intermédiaire d'un interrupteur microonde 52, du même type que les interrupteurs 2 de la figure 2. L'interrupteur 52 de rang k est pourvu d'une entrée de commande recevant un signal Ck.Each antenna 5l is connected to the output of the oscillator 54 by means of a microwave switch 52, of the same type as the switches 2 in FIG. 2. The switch 52 of rank k is provided with an input of command receiving a signal C k .

Un circuit de déphasage 5l2, analogue au circuit de déphasage l2 de la figure 5, est pourvu d'une entrée de signal et de K sorties délivrant les signaux Cl,...,Ck,..., et CK chaque signal Ck étant déphasé par rapport au signal reçu sur l'entrée du circuit 5l2 d'un angle ΔX(k) commandé par le signal ΔX appliqué sur le bus de commande du bloc 5l2.A phase shift circuit 5l2, analogous to the phase shift circuit l2 in FIG. 5, is provided with a signal input and with K outputs delivering the signals C l , ..., C k , ..., and C K each signal C k being out of phase with respect to the signal received on the input of circuit 5l2 by an angle Δ X (k) controlled by the signal Δ X applied to the control bus of block 5l2.

Un oscillateur 5ll, analogue à l'oscillateur ll de la figure 2, délivre un signal D′ de modulation de fréquence F, à l'entrée du bloc 5l2.An oscillator 511, analogous to the oscillator ll of FIG. 2, delivers a signal D ′ of frequency modulation F, at the input of the block 5l2.

A la réception, une antenne de réception 40, ici unique, capte les signaux en provenance de l'objet 20′. Elle est suivie d'un circuit de détection cohérente microonde 56, analogue au circuit 6 de la figure 3. Le circuit 56 reçoit, sur son entrée de commande, le signal de sortie de l'oscillateur 54. Les deux sorties du circuit 56 sont reliées à un circuit de détection cohérente 58, analogue au circuit 8 de la figure 4. L'entrée de commande du circuit 58 reçoit le signal de modulation D′.Le circuit 58 délivre en sortie les signaux UX et VX.On reception, a reception antenna 40, here unique, receives the signals coming from the object 20 ′. It is followed by a coherent microwave detection circuit 56, analogous to circuit 6 in FIG. 3. Circuit 56 receives, on its control input, the output signal from oscillator 54. The two outputs of circuit 56 are connected to a coherent detection circuit 58, analogous to circuit 8 in FIG. 4. The control input of circuit 58 receives the modulation signal D′. Circuit 58 outputs the signals U X and V X.

Le fonctionnement du dispositif de focalisation 50 est analogue à celui du dispositif 30. Les déphasages ΔX(k) introduits sur les signaux de modulation des signaux microondes émis produisent le même effet, sur le signal reçu et soumis à la détection cohérente microonde à fréquence f, dans le circuit 56, et à la détection cohérente basse fréquence à fréquence F dans le circuit 58, que des déphasages ΔX(k) introduits sur les signaux microondes émis. Si ces déphasages ΔX(k) sont choisis pour correspondre à la mise en phase, au point X, des signaux en provenance des K antennes 5l, le réseau d'émission a donc été focalisé sur le point X.The operation of the focusing device 50 is similar to that of the device 30. The phase shifts Δ X (k) introduced on the modulation signals of the microwave signals emitted produce the same effect, on the signal received and subjected to coherent microwave microwave detection. f , in circuit 56, and at coherent low frequency detection at frequency F in circuit 58, that phase shifts Δ X (k) introduced on the microwave signals transmitted. If these phase shifts Δ X (k) are chosen to correspond to the phasing, at point X, of the signals coming from the K antennas 5l, the transmission network has therefore been focused on point X.

Evidemment, il est possible d'utiliser simultanément un réseau d'émission focalisé à l'aide d'interrupteurs commandés à la fréquence FE et un réseau de réception focalisé à l'aide d'interrupteurs commandés à la fréquence FR. Dans ces conditions il faudrait effectuer deux détections cohérentes basse fréquence successives, l'une à la fréquence FE, l'autre à la fréquence FR. Comme ces détections cohérentes sont suivies d'un filtrage passe-bas pour ne garder que la partie basse du spectre fréquentiel du signal de sortie, il est équivalent d'effectuer une seule détection cohérente basse fréquence à la fréquence de battement FB entre FE et FR, soit : F B = |F E - F R |

Figure imgb0020
Obviously, it is possible to use simultaneously a focused transmission network using switches controlled at the frequency F E and a focused reception network using switches controlled at the frequency F R. Under these conditions, two successive low frequency coherent detections should be carried out, one at the frequency F E , the other at the frequency F R. As these coherent detections are followed by a low pass filtering to keep only the low part of the frequency spectrum of the output signal, it is equivalent to carry out a single coherent low frequency detection at the beat frequency F B between F E and F R , that is: F B = | F E - F R |
Figure imgb0020

Une telle situation se rencontre par exemple dans les systèmes d'imagerie utilisant des réseaux linéaires croisés. Dans de tels systèmes, on utilise, au lieu de réseaux plans, des réseaux linéaires, la direction du réseau d'émission étant perpendiculaire, par exemple, à la direction du réseau de réception. Ces réseaux linéaires croisés sont bien connus de l'homme de métier pour leur meilleure résolution spatiale longitudinale et le nombre réduit d'antennes mis en oeuvre.Such a situation is encountered, for example, in imaging systems using crossed linear networks. In such systems, linear networks are used instead of planar networks, the direction of the transmission network being perpendicular, for example, to the direction of the reception network. These crossed linear arrays are well known to those skilled in the art for their better longitudinal spatial resolution and the reduced number of antennas used.

Evidemment, il est possible, avec le procédé de l'invention, de focaliser simultanément les antennes d'un réseau d'émission sur plusieurs points, en transposant à l'émission le dispositif 70 de la figure 6.Obviously, it is possible, with the method of the invention, to focus the antennas of a transmission network simultaneously on several points, by transposing the device 70 of FIG. 6 to transmission.

Dans la description qui précède, on a implicitement considéré, dans le cas par exemple d'un réseau d'antennes de réception, que la sortie de chaque antenne était un signal microonde guidé par une structure de guidage du type guide d'onde, câble coaxial ou ligne à ruban, par exemple. Dans ce cas, la sommation est effectuée par un sommateur microonde, comme le sommateur 3 de la figure 2, pourvu de J accès d'entrée et d'un accès de sortie, chaque accès étant raccordable à une structure de guidage du type défini ci-dessus.In the foregoing description, it has been implicitly considered, in the case for example of a reception antenna array, that the output of each antenna was a microwave signal guided by a guide structure of the waveguide, cable type. coaxial or ribbon line, for example. In this case, the summation is carried out by a microwave summing device, like the summing device 3 of FIG. 2, provided with J inlet access and an outlet access, each access being connectable to a guide structure of the type defined here. -above.

Ceci n'est pas obligatoire, et la figure 8 montre par exemple un dispositif dans lequel les antennes de réception sont des antennes dipôles l′, agencées régulièrement sur un panneau l00 en matériau isolant. Le panneau l00 est disposé devant une unique antenne 4l, qui joue le rôle de sommateur des signaux microondes captés et rayonnés à nouveau par les antennes l′, ces signaux n'étant plus, comme précédemment, supportés par une structure de guidage. Dans ce cas, les interrupteurs peuvent être de simples diodes 2′, les signaux de commutations Cl,..., Cj,... et CJ étant par exemple appliqués grâce à des connexions 2l peu perturbantes pour le champ électromagnétique. De façon connue de telles connexions sont réalisées par exemple, en fils de carbone de façon à être suffisamment résistives pour n'avoir qu'une faible influence sur le champ électromagnétique. On peut également envisager, pour supprimer les connexions 2l, d'utiliser des diodes 2′ photoconductrices commutées à l'aide de signaux lumineux appliqués par exemple à l'aide d'un faisceau laser.This is not compulsory, and FIG. 8 shows for example a device in which the receiving antennas are dipole antennas l ′, regularly arranged on a panel l00 made of insulating material. The panel l00 is placed in front of a single antenna 4l, which plays the role of summing of the microwave signals picked up and radiated again by the antennas l ′, these signals no longer being, as previously, supported by a guide structure. In this case, the switches may be simple diodes 2 ′, the switching signals C l , ..., C j , ... and C J being for example applied by means of connections 2l which are not very disturbing for the electromagnetic field. In a known manner, such connections are made, for example, of carbon wires so as to be sufficiently resistive to have only a slight influence on the electromagnetic field. One can also consider, to remove the connections 2l, to use diodes 2 'photoconductive switched using light signals applied for example using a laser beam.

L'antenne 4l, jouant le rôle de sommateur, est reliée directement à un circuit de détection cohérente microonde, identique au circuit 6 de la figure 2, dans le cas d'un réseau d'antennes de réception. Le reste du dispositif est inchangé.The antenna 4l, playing the role of summing device, is directly connected to a coherent microwave detection circuit, identical to the circuit 6 in FIG. 2, in the case of a network of reception antennas. The rest of the device is unchanged.

Pour réduire le nombre de mélangeurs utilisés dans le dispositif 30 de la figure 2, on peut, au lieu de faire effectuer à chaque mélangeur la même tâche en permanence, leur faire effectuer des tâches différentes au cours du temps .Ainsi, le dispositif de focalisation 90 de la figure 9 représente une variante du dispositif de l'invention, n'utilisant que deux mélangeurs au lieu de six.In order to reduce the number of mixers used in the device 30 of FIG. 2, it is possible, instead of having each mixer perform the same task continuously, having them perform different tasks over time. Thus, the focusing device 90 of FIG. 9 represents a variant of the device of the invention, using only two mixers instead of six.

En référence donc à la figure 9, un mélangeur 96l, identique au mélangeur 6l de la figure 3, est pourvu d'une première entrée recevant le signal s en sortie du sommateur 3, d'une deuxième entrée et d'une sortie.With reference therefore to FIG. 9, a mixer 96l, identical to the mixer 6l in FIG. 3, is provided with a first input receiving the signal s at the output of the summator 3, with a second input and with an output.

Un mélangeur 98l, identique au mélangeur 8l de la figure 4, est pourvu d'une première entrée reliée à la sortie du mélangeur 96l, d'une deuxième entrée et d'une sortie reliée à l'entrée d'un filtre passe-bas 987, identique au filtre passe-bas 87 de la figure 4.A mixer 98l, identical to the mixer 8l in Figure 4, is provided with a first input connected to the output of the mixer 96l, a second input and an output connected to the input of a low-pass filter 987, identical to the low-pass filter 87 of FIG. 4 .

La sortie d'un oscillateur 94, identique à l'oscillateur 4 de la figure 2, est reliée à la deuxième entrée du mélangeur 96l par l'intermédiaire d'un déphaseur commandable 963. La sortie d'un oscillateur 9ll, identique à l'oscillateur ll de la figure 2, est reliée à la deuxième entrée du mélangeur 98l par l'intermédiaire d'un déphaseur commandable 985.The output of an oscillator 94, identical to the oscillator 4 of FIG. 2, is connected to the second input of the mixer 96l via a controllable phase shifter 963. The output of an oscillator 9ll, identical to the the oscillator ll of FIG. 2 is connected to the second input of the mixer 981 via a controllable phase shifter 985.

Les déphaseurs commandables 963 et 985 sont susceptibles de déphaser d'un angle égal à 0, ou égal à π/2, en fonction d'un signal appliqué à l'entrée de commande dont chacun d'entre eux est pourvu.The controllable phase shifters 963 and 985 are likely to phase shift by an angle equal to 0, or equal to π / 2, as a function of a signal applied to the control input with which each of them is provided.

Un circuit 9l de traitement et de commande, par exemple à microprocesseur, et pourvu de deux sorties reliées aux entrées de commande des déphaseurs 963 et 985, d'une entrée reliée à la sortie du filtre passe-bas 987, et de deux sorties délivrant les signaux UX et VX.A processing and control circuit 9l, for example with a microprocessor, and provided with two outputs connected to the control inputs of the phase shifters 963 and 985, an input connected to the output of the low-pass filter 987, and two outputs delivering the signals U X and V X.

Le fonctionnement du dispositif de focalisation 90 est le suivant : le circuit 9l de traitement et de commande commande les déphaseurs 963 et 985 de façon séquentielle, de façon à ce que les signaux SA, SB, SC et SD précédemment définis apparaissent l'an après l'autre à l'entrée du filtre 987. Le circuit 9l mémorise les différents signaux filtrés et traite les données correspondantes pour les additionner et délivrer les signaux UX et VX précédemment définis.The operation of the focusing device 90 is as follows: the processing and control circuit 9l controls the phase shifters 963 and 985 sequentially, so that the previously defined signals SA, SB, SC and SD appear the year after the other at the input of the filter 987. The circuit 9l stores the various filtered signals and processes the corresponding data to add them and deliver the signals U X and V X previously defined.

Dans la description qui précède, on a toujours considéré le cas où les signaux captés sont des signaux cohérents, c'est-à-dire des signaux périodiques de phase définie, auxquels on peut appliquer de détection cohérente microonde, comme dans les circuits 6, 76, 6′ et 96l-63, selon les cas. L'invention n'est pas limitée à de tels rayonnements cohérents et peut aussi être appliquée à la thermographie, par exemple.In the above description, we have always considered the case where the signals picked up are coherent signals, that is to say periodic signals of defined phase, to which coherent microwave detection can be applied, as in circuits 6, 76, 6 ′ and 96l-63, as the case may be. The invention is not limited to such coherent radiation and can also be applied to thermography, for example.

Dans ce cas, on construit une image représentative des températures des divers points de l'objet, à partir des signaux microondes dont l'objet est lui-même la source. Ces signaux étant incohérents, c'est-à-dire de phase aléatoire, ils doivent être détectés avec des dispositifs de détection particuliers de type connu, par exemple des dispositifs de détection quadratique avec ou sans changements de fréquence préalables. Les dispositifs des figures 2, 6, 8 et 9 doivent donc être modifiés, dans ce cas, pour que les circuits de détection cohérente microonde 6, 76, 6′ et 96l-963 soient remplacés par des dispositifs adéquats.In this case, an image representative of the temperatures of the various points of the object is constructed, from microwave signals of which the object is itself the source. These signals being inconsistent, that is to say of random phase, they must be detected with particular detection devices of known type, for example quadratic detection devices with or without prior frequency changes. The devices of FIGS. 2, 6, 8 and 9 must therefore be modified, in this case, so that the coherent microwave detection circuits 6, 76, 6 ′ and 96l-963 are replaced by suitable devices.

Enfin, dans tout ce qui précède, on a considéré que les signaux microondes émis ou captés étaient soumis à une modulation d'amplitude par tout ou rien à l'aide d'interrupteurs placés sur les voies microondes. Il est clair que cette solution est matériellement la plus simple à mettre en oeuvre. Une telle modulation par tout ou rien revient à un produit par un signal de modulation de type signal carré. Le spectre d'un tel signal se compose d'une composante fondamentale et d'harmoniques. Or, comme cela a été vu, compte tenu du filtrage passe-bas effectué à la fin de la chaîne, l'influence des harmoniques est nulle. On obtiendrait donc le même résultat, à un facteur de niveau près, en remplaçant les interrupteurs microondes 2 par des modulateurs produits, par exemple des modulateurs en anneau, commandés par les signaux Cl,... CJ,... et CJ.Finally, in all of the foregoing, it has been considered that the microwave signals emitted or received were subjected to amplitude modulation by all or nothing using switches placed on the microwave channels. It is clear that this solution is materially the simplest to implement. Such all-or-nothing modulation amounts to a product by a modulation signal of the square signal type. The spectrum of such a signal consists of a fundamental component and harmonics. However, as has been seen, given the low-pass filtering carried out at the end of the chain, the influence of the harmonics is zero. The same result would therefore be obtained, except for a level factor, by replacing the microwave switches 2 by produced modulators, for example ring modulators, controlled by the signals C l , ... C J , ... and C J.

Le dispositif 70 de focalisation simultanée sur plusieurs points de la figure 6 pourrait alors être modifié en ne plaçant qu'un seul modulateur en aval de chaque antenne, et en commandant ce modulateur avec la somme des deux signaux correspondants issus des circuits de déphasage 7l2 et 7l2′.The device 70 for simultaneous focusing on several points of FIG. 6 could then be modified by placing only one modulator downstream of each antenna, and by controlling this modulator with the sum of the two corresponding signals coming from the phase shift circuits 7l2 and 7l2 ′.

Dans la description qui précède, les antennes sont en général organisées sur une surface pour former un réseau. Naturellement, ceci n'est pas obligatoire, et, comme cela a d'ailleurs été signalé pour les réseaux croisés, les antennes peuvent être organisées selon une ligne, droite ou courbe, pour former un réseau linéique.In the above description, the antennas are generally organized on a surface to form an array. Of course, this is not compulsory, and, as has been pointed out for crossed networks, the antennas can be organized in a line, straight or curved, to form a linear network.

Dans le cas de la focalisation simultanée sur plusieurs points, il n'est pas obligatoire d'utiliser autant d'interrupteurs en parallèle sur chaque voie que de points de focalisation. On peut utiliser un seul interrupteur commandé par un signal convenable, par exemple le signal résultant du produit des fonctions échelons relatives à chacun des signaux de modulation déphasés.In the case of simultaneous focusing on several points, it is not compulsory to use as many switches in parallel on each channel as there are focal points. A single switch can be used controlled by a suitable signal, for example the signal resulting from the product of the step functions relating to each of the phase shifted modulation signals.

Claims (11)

1. A method for focusing, on at least one point (X) to be examined of a radiating source (20), antennae (1;71;1′) of an antenna array receiving the radiation from the point with respective reception phase shifts (δj) corresponding to the time of path of said radiation between said point (X) and the respective antennae, in which signals (sj) delivered by the antennae are amplitude modulated by at least a same low frequency modulation signal (D), respectively with modulation phase shifts (Δx(j)) corresponding to the reception phase shifts, characterized in that :
- said radiation is a microwave radiation,
- each modulation phase shift (ΔX(j)) corresponds to each reception phase shift (δj) so that their sum (δj + ΔX(j)) is the same whatever the antenna delivering the signal (sj),
- the modulated signals (s′j) are added in a summation signal (s),
- the microwave component of the summation signal (s) is detected, and
- the detected signal (DA,DB) is demodulated by synchroneous demodulation.
2. The method as claimed in claim 1, wherein said signals (sj) delivered by the antennae are amplitude modulated by a low frequency modulation signal of square type, with modulation phase shifts (ΔX(j)).
3. The method as claimed in claim 1 or 2, wherein the detected signal (DA,DB) is demodulated by multiplying, on the one hand, by the modulation signal (D), on the other by the modulation signal (D) phase shifted by π/2, then by low pass filtering.
4. The method as claimed in any of claims 1 to 3, wherein the microwave component of the summation signal (s) is detected by multiplying, on the one hand, by a microwave detection signal (r), on the other, by this microwave detection signal (r) phase shifted by π/2, then by low pass filtering.
5. A focusing device for implementing the method of claim 1, for focusing, on at least one point (X) to be examined of a source (20) of radiation, antennae (1;71,1′) of an antenna array receiving the radiation from the point with respective reception phase shifts (δj), corresponding to the time of path between said point (X) and the respective antennae delivering signals (sj), characterized in that said radiation is a microwave radiation, and these is provided :
- means (11;711;711′;911) for generating a low frequency signal (D;D₁,D₂)
- means (12;712;712′) for phase shifting the low frequency signal (D;D₁,D₂) by modulation phase shifts ( ΔX(j)) corresponding to the reception phase shifts (δj), each modulation phase shift ( ΔX(j)) corresponds to each reception phase shift (δj) so that their sum (δj + ΔX(j)) is the same whatever the antenna delivering the signal (sj),
- means (2;72;2′) for modulating in amplitude the signals (sj) delivered by the antenna, by the low frequency signal (D;D₁,D₂) with modulation phase shifts ( Δx(j)), respectively,
- means (3;73;41) for adding the modulated signals (s′j), delivering a summation signal (s),
- means (4,6;74,76;94,963,961,6′) for detecting the microwave component of the summation signal (s), and,
- means (8;78,78′,985,981) for demodulating the detected signal by synchroneous demodulation .
6. The device as claimed in claim 5, wherein said means for amplitude modulating the signals (sj) delivered by the antennae comprise microwave switches (2;72;2′).
7. The device as claimed in claim 5 or 6, wherein said means (8;78,78′,985,981) for demodulating the detected signal include :
- means (85,85,985) for phase shifting said low frequency signal (D;D₁,D₂) by an angle equal to π/2,
- means (81-84;981) for multiplying the detected signal, on the one hand by the modulation signal (D;D₁,D₂) and on the other by the phase shifted modulation signal, and
- means (87,89;987) for filtering the low frequency components of the multiplied detected signal.
8. The device as claimed in any of claim 5 to 7, wherein said means (4,6;74,76;94,963,961,6′) for detecting the microwave component of the summation signal (s) include :
- means (4,74,94) for generating a microwave detection signal (r),
- means (63;963) for phase shifting said microwave detection signal (r) by an angle equal to π/2,
- means (61,62;961) for multiplying the summation signal (s), on the one hand, by the microwave detection signal (r) and, on the other, by the phase shifted microwave detection signal and for filtering the low frequency components from said multiplied summation signal.
9. A method of focusing, on at least one point (X′) to be examined of an object (20′) illuminated by microwave radiation, antennae (51) of a first antenna array transmitting the radiation towards the point with respective transmission phase shifts corresponding to the time of path of said radiation between the respective antennae and said point (X′), at least one antenna (40) receiving the radiation from said point (X′), characterized in that :
- the signals delivered to the antennae are obtained from the same microwave transmission signal (e) modulated in amplitude by at least a first low frequency modulation signal (D′), respectively with modulation phase shifts (ΔX(k)) corresponding to transmission phase shifts so that their sum is the same whatever the antenna,
- the microwave component of the received signal is detected, and
- the detected signal is demodulated by synchroneous demodulation.
10. The method as claimed in claim 9, wherein several antennae receiving radiation from said point (X′) are provided, arranged so as to form a second array, each antenna receiving the radiation from the point with respective reception phase shifts, wherein :
- the signals delivered by the reception antennae are modulated in amplitude by at least one same second low frequency modulation signal, respectively with modulation phase shifts corresponding to the reception phase shifts, each modulation phase shift (ΔX(j)) corresponding to each reception phase shift (δj) so that their sum (δj + ΔX(j)) is the same whatever the antenna delivering the signal (sj),
- the modulated received signals are added into a summation signal before detection of the microwave component of the received signal.
11. The method as claimed in claim 10, wherein the detected signal is demodulated by multiplying by at least one signal at the beat frequency (|FE - FR|), between the frequency (FE) of the first low frequency modulation signal and the frequency (FR) of the second low frequency modulation signal.
EP87400803A 1986-04-11 1987-04-09 Method and device for focusing an antenna array at a test point Expired - Lifetime EP0241380B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8605205 1986-04-11
FR8605205A FR2597268B1 (en) 1986-04-11 1986-04-11 METHOD AND DEVICE FOR FOCUSING, ON A POINT TO BE EXAMINED, ANTENNAS OF A NETWORK

Publications (2)

Publication Number Publication Date
EP0241380A1 EP0241380A1 (en) 1987-10-14
EP0241380B1 true EP0241380B1 (en) 1992-01-08

Family

ID=9334147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400803A Expired - Lifetime EP0241380B1 (en) 1986-04-11 1987-04-09 Method and device for focusing an antenna array at a test point

Country Status (4)

Country Link
US (1) US4870423A (en)
EP (1) EP0241380B1 (en)
DE (1) DE3775806D1 (en)
FR (1) FR2597268B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236431B (en) * 1989-08-30 1993-11-03 Marconi Gec Ltd Antenna array
US5235342A (en) * 1989-08-30 1993-08-10 Gec-Marconi, Ltd. Antenna array with system for locating and adjusting phase centers of elements of the antenna array
US5228006A (en) * 1992-07-20 1993-07-13 Westinghouse Electric Corp. High resolution beam former apparatus
US6011512A (en) * 1998-02-25 2000-01-04 Space Systems/Loral, Inc. Thinned multiple beam phased array antenna
US7725167B2 (en) * 2005-07-13 2010-05-25 Clemson University Microwave imaging assisted ultrasonically
FR2941333B1 (en) 2009-01-20 2012-12-14 Satimo Sa SYSTEM FOR EMITTING ELECTROMAGNETIC BEAMS WITH ANTENNA NETWORK.
IT1395141B1 (en) * 2009-08-06 2012-09-05 Siae Microelettronica Spa METHOD AND EQUIPMENT FOR THE RECONSTRUCTION OF MULTIPLE SIGNALS AT HIGH FREQUENCY TRANSMITTED ON A SINGLE CHANNEL OF RADIO BRIDGES.
US8579317B2 (en) 2011-09-19 2013-11-12 Salomon S.A.S. Binding for a boot on a gliding board

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140490A (en) * 1961-11-30 1964-07-07 Sichak Associates Communication system with automatic antenna beam steering
US3757333A (en) * 1962-02-13 1973-09-04 Philco Ford Corp Receiving antenna system
US3806931A (en) * 1971-10-26 1974-04-23 Us Navy Amplitude modulation using phased-array antennas
US3859622A (en) * 1973-01-15 1975-01-07 Gen Electric Electronic scanning switch for sonar
US3878520A (en) * 1973-01-24 1975-04-15 Stanford Research Inst Optically operated microwave phased-array antenna system
US4010474A (en) * 1975-05-05 1977-03-01 The United States Of America As Represented By The Secretary Of The Navy Two dimensional array antenna
US3993999A (en) * 1975-05-16 1976-11-23 Texas Instruments Incorporated Amplitude modulation scanning antenna system
US4186398A (en) * 1975-06-09 1980-01-29 Commonwealth Scientific And Industrial Research Organization Modulation of scanning radio beams
US4028702A (en) * 1975-07-21 1977-06-07 International Telephone And Telegraph Corporation Fiber optic phased array antenna system for RF transmission
US4121221A (en) * 1977-03-14 1978-10-17 Raytheon Company Radio frequency array antenna system
US4190818A (en) * 1977-08-25 1980-02-26 The United States Of America As Represented By The Secretary Of The Navy Digital beamsteering for a parametric scanning sonar system
US4166274A (en) * 1978-06-02 1979-08-28 Bell Telephone Laboratories, Incorporated Techniques for cophasing elements of a phased antenna array
US4189733A (en) * 1978-12-08 1980-02-19 Northrop Corporation Adaptive electronically steerable phased array
FR2448231A1 (en) * 1979-02-05 1980-08-29 Radant Et MICROWAVE ADAPTIVE SPATIAL FILTER
US4467328A (en) * 1981-10-26 1984-08-21 Westinghouse Electric Corp. Radar jammer with an antenna array of pseudo-randomly spaced radiating elements
GB2141876B (en) * 1983-06-16 1986-08-13 Standard Telephones Cables Ltd Optical phased array radar
US4649393A (en) * 1984-02-17 1987-03-10 The United States Of America As Represented By The Secretary Of The Army Phased array antennas with binary phase shifters
US4701762A (en) * 1985-10-17 1987-10-20 Sanders Associates, Inc. Three-dimensional electromagnetic surveillance system and method

Also Published As

Publication number Publication date
DE3775806D1 (en) 1992-02-20
EP0241380A1 (en) 1987-10-14
FR2597268B1 (en) 1988-06-24
FR2597268A1 (en) 1987-10-16
US4870423A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
EP0050060B1 (en) Imaging system with simultaneous multiple transmission
EP0472709B1 (en) Device for producing optical delays and application to an optical control system of a sweep aerial
EP0415818B1 (en) Control of beam direction for antenna system with electronic scanning and beamforming by computation
EP0107552B1 (en) Interferometric sonar apparatus using non-linear acoustic properties
CA2318378C (en) Multielement ultrasonic contact transducer
EP0241380B1 (en) Method and device for focusing an antenna array at a test point
FR2478824A1 (en) ACOUSTIC IMAGING SYSTEM
FR2493528A1 (en) MULTIVOIS DETECTION SYSTEM WITH DIVERSIFIED TRANSMISSION
FR2639124A1 (en) OPTICAL DOPPLER VELOCIMETER WITH REFERENCE BEAM FOR MULTIDIMENSIONAL MEASUREMENTS
EP0173617B1 (en) Transceiver system for laser imaging
EP0287444B1 (en) Device for optical control of a scanning antenna
EP0732803A1 (en) Method and device for demodulation by sampling
EP3749949B1 (en) Terahertz reflection imaging system
WO1988008529A1 (en) Device for measuring, at a plurality of points, the microwave field diffracted by an object
US4245333A (en) Beamforming utilizing a surface acoustic wave device
FR2674028A1 (en) Method and device for determining the radiation pattern of an antenna
EP2039021B1 (en) Method and device of transmission of waves
FR2766574A1 (en) WAVE DISTRIBUTION OBSERVATION METHOD BASED ON HOLOGRAM OBSERVATION
EP0616705A4 (en) Time delay beam formation.
CA2840848C (en) Device for detecting objects such as mines
EP3761857A1 (en) Acoustic-optical imaging methods and systems
FR2692999A1 (en) Echography probe for medical use - Has normal and zoom modes of operation using micro detectors and parallel transducers connected to channel
FR2541786A1 (en) Heterodyne-detection optical imaging device
EP0928042A1 (en) Wide band detection means, particularly radars
FR2736162A1 (en) Laser Transmitter/Receiver for Image Tracking

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19880411

17Q First examination report despatched

Effective date: 19900307

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3775806

Country of ref document: DE

Date of ref document: 19920220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930407

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940409

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940409