EP0240811A1 - Control system for installations having a refrigerating circuit with capillary tube expansion - Google Patents

Control system for installations having a refrigerating circuit with capillary tube expansion Download PDF

Info

Publication number
EP0240811A1
EP0240811A1 EP87104174A EP87104174A EP0240811A1 EP 0240811 A1 EP0240811 A1 EP 0240811A1 EP 87104174 A EP87104174 A EP 87104174A EP 87104174 A EP87104174 A EP 87104174A EP 0240811 A1 EP0240811 A1 EP 0240811A1
Authority
EP
European Patent Office
Prior art keywords
liquid
container
refrigerant
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87104174A
Other languages
German (de)
French (fr)
Inventor
Claudio Rossi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiross International Corp SA
Original Assignee
Hiross International Corp SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiross International Corp SA filed Critical Hiross International Corp SA
Publication of EP0240811A1 publication Critical patent/EP0240811A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle

Definitions

  • the present invention relates to a system for regulating refrigeration circuit installations comprising a capillary expansion, installations in which a refrigerant flows through a thermodynamic cycle which consists of evaporation, compression, condensation and expansion.
  • the objective is to improve the known adjustment systems both from an economic point of view and from a regulation point of view.
  • the fields of application of the invention can be, by way of nonlimiting example: - compressed gas dryers - air conditioning units - heat pumps - liquid refrigerators - more besides.
  • Refrigerant circuits provided with a capillary rolling member.
  • Figures 2 and 3 moreover, show the same type of installation, but being in abnormal operating conditions, namely in the first case with insufficient refrigerant in the evaporator and in the second case, with an excess of refrigerant in the evaporator.
  • the reference 10 designates the evaporator, 11 the refrigerant (at the normal level in Figure 1, in insufficient quantity in Figure 2 and in excess in Figure 3), 12 the compressor, 13 the compressor motor, 14 the condenser, 15 a filter and 16 the expansion capillary.
  • the reference 17 indicates returns of refrigerant in the liquid state to the compressor 12 due to the presence of an excess of said fluid at the level of the evaporator 10.
  • the adjustment system by capillary rolling member is generally used in low-power installations in which it is important to have a low cost and where the drawbacks arising from the imperfect adaptability of the refrigerating installation to variable conditions of use of the capillary 16, which constitutes a regulating member of the static type, are of little importance.
  • This non-adaptability of the capillary 16 can alternatively cause significant overheating of the refrigerant aspirated by the compressor 12 or liquid returns 17, also to the compressor 12.
  • the high overheating can be caused for example by an insufficient charge of refrigerant 11 (see Figure 2) or by an increase in refrigeration charge requested from the evaporator 10 or by a significant decrease in the condensing pressure and can seriously damage the compressor 12 since the cooling of the windings of the electric motor 13, which is almost always supplied by the refrigerant drawn into the compressors 12 used for these applications, may no longer be sufficient.
  • the liquid returns 17 can for example be caused by an excessive charge of refrigerant fluid (see FIG. 3) or by a reduction in the fridge charge. required by the evaporator 10 or by a significant increase in the condensing pressure and can seriously damage the compressor 12 since the possible presence of liquid in the compression phase can lead to rupture of the valves or seizure of the compressor 12.
  • capillary tube installations 16 Another problem with capillary tube installations 16 results from the precision required for the metering of the charge, moreover rather reduced, of refrigerant. In fact, if there is leakage - even very small - of refrigerant, the installation discharges in a short time and gives rise to dangerous operating situations, such as too high overheating at compressor 12 already mentioned. In addition, the refrigerant charge requires a lot of attention and care since, as it is very small, small and large variations can significantly affect the performance and the operational safety of the installation.
  • Refrigerant circuits provided with rolling elements with thermostatic valve.
  • FIG. 5 also relates to this type of installation with a thermostatic valve, showing in detail the function exerted by the valve.
  • the evaporator is designated by the reference 10, the compressor by 12, the compressor motor by 13 and the condenser by 14.
  • the reference 18 marks the presence of a receptacle for receiving condensed fluid at the outlet of the condenser, 19 designates the thermostatic valve, 20 a detector of variation in the flow of refrigerant which will be discussed later.
  • the reference 21 indicates the liquid in evaporation in the evaporator 10 and the reference 22 designates a zone of superheating of the gas leaving the evaporator 10 and going towards the compressor 12.
  • the thermostatic valve 19 controls the flow of the refrigerant 11 which passes through it so as to maintain a constant and moderate superheating of the refrigerant in the vapor state at the outlet of the evaporator 10 (see reference 21 to the 5 to ensure the complete transformation of the refrigerant from liquid to gas and consequently to eliminate the possibility of dangerous returns of liquid to the compressor.
  • a drawback of the thermostatic valve system results from the instability that this dynamic type regulating member introduces. , due to the phase shifts, practically impossible to eliminate, between the effect on the system of the variation in refrigerant flow due to the regulating action of the valve and the signal which controls this regulating action and which comes from the detector 20 placed in downstream of the evaporator 10.
  • This instability of the system consists, for example, of a fluctuation in the evaporation pressure which gives rise to a deterioration in the performance of the installation.
  • the superheating which must be maintained at the outlet of the evaporator 10 must not be excessive but never lower than a minimum value otherwise, because of the variables which have just been described, there may be at certain times dangerous liquid returns to the compressor. This means that in thermostatic valve installations, part 22 of the evaporator exchange surface 10 must be intended for the superheating of the vapor and that, consequently, the exchange capacity of the evaporator is not fully exploited.
  • a regulating member capable of reducing the excess cooling capacity
  • Figures 6 and 7 give the diagram of installations of this type, Figure 6 for capillary tube installations (improvement to the installation of Figures 1 to 3) and Figure 7 for thermostatic valve installations (improvement to the 'installation of Figures 4 and 5).
  • the common members are designated by the same reference numbers as above (10 for the evaporator, 12 for the compressor, 13 for the motor, 14 for the condenser, 15 for the filter, 16 for the capillary, 18 for the container after the condenser, 19 for the thermostatic valve and 20 for the flow variation detector).
  • Reference 23 indicates the pressostatic or other valve for regulating the capacity and 24 the point of injection of the hot gas coming from the evaporator and from the regulating valve.
  • the refrigerant circuits with a capillary tube rolling member and capacity regulator keep the pressure but not the temperature of the refrigerating fluid under control downstream of the capacity regulating valve which injects hot gas and consequently, in the event of drawbacks such as loss of refrigerant or malfunction of the valves, they are exposed to drawbacks to the compressor due to the excessively high overheating which occurs in these cases.
  • the refrigeration circuits with laminating member with thermostatic valve and capacity regulator keep the temperature of the refrigerating fluid drawn in by the compressor under control, provided that the injection of hot gas occurs upstream of the detector of the thermostatic valve, but they can present, at partial loads, that is to say when the capacity regulating valve intervenes, fairly intense evaporation pressure fluctuations determined by the interaction between the two regulating organs. In practice, these interactions are very difficult to eliminate since both the thermostatic valve and the pressostatic valve are controlled by the evaporation pressure and that the intervention of any of their control functions influences this pressure.
  • the present invention consists of a capillary tube adjustment system making it possible to obviate the drawbacks of the existing systems indicated above.
  • thermodynamic cycle which consists of evaporation, compression, condensation and expansion
  • said system being characterized by fact that it comprises, in line, between the evaporator and the compressor, a small container containing refrigerant in the liquid state which simultaneously exercises the function of lung / liquid separator and of device ensuring a return of oil from compressor lubrication.
  • the small lung / liquid separator container has at its lower part a vapor inlet tube coming from the evaporator, at its upper part a suction tube extending into the container by a section of "U" -tube, the second branch of which stops a short distance from the upper part of the container and fitted in the bottom bend with a calibrated passage used to sample of a small quantity of liquid, and a liquid level indicator fixed on the body of the container, at a height located between the two tubes making it possible to ascertain the level of the liquid which is contained in the container and in which the incoming steam should bubble.
  • this level indicator can have any form of construction, even external to the container, provided that it is able to exercise its function.
  • the expansion capillary tube and the capacity of the lung / separator are dimensioned in such a way that whatever the operating condition (i.e. at any evaporation and condensation pressure) the refrigerant to the evaporator outlet is always in the saturated vapor state (never superheated).
  • the level in the container drops due to migration of refrigerant from it to the condenser which, due to the partial flooding of the condenser, causes an increase in subcooling and condensing pressure. In turn, these increases cause an increase in the capacity of the capillary and therefore an increase in the flow rate of the refrigerant.
  • the final situation will therefore be as follows: - increase in evaporation pressure - increase in condensing pressure - increased sub-cooling of the liquid at the capillary inlet - decrease in level in the lung / separator container - always saturated steam at the outlet of the evaporator.
  • the capacity of the container / lung is established in relation to the variations in volume of the coolant as a result of the variation in the operating conditions.
  • This variation in volume must be less than the capacity of said container and the free surface of the liquid refrigerant in the container must always be between the refrigerant outlet section, to prevent liquid from returning to the compressor, and the return device. of oil or the fluid inlet section coming from the evaporator, so that the oil return device is always immersed in the liquid and that there is always a certain amount of liquid above the entrance section.
  • the oil return device necessary for the lubrication of the compressor serves the fact that due to the complete evaporation of the refrigerant in the evaporator there occurs a complete separation between the oil, initially mixed with the refrigerating fluid to liquid state, and vapor.
  • the oil return is ensured by the mechanical drive due to the high speed of the vapor in the suction pipe, in this case, due to the low speed of the vapor in the lung / separator container, which must ensure the separation of the entrained droplets of liquid, it is necessary to withdraw (for example by exploiting the Venturi effect in a U-shaped tube) a small amount of liquid containing the oil not entrained in solution.
  • the level indicator is used to control the amount of refrigerant present and makes the charging phase of the refrigerant in the installation elementary. In fact, as soon as we know the level that the fluid must reach under the preselected charging conditions, it suffices to charge the refrigerant until that it reaches the prefixed level without any type of control.
  • an additional device can be provided for regulating the capacity of the pressostatic valve type.
  • the gas taken from the compressor discharge is mixed with the refrigerant at the outlet of the evaporator before the lung / separator container in order to eliminate the superheating of this gas by bubbling through the liquid contained therein, and therefore always ensure the presence of saturated steam at the compressor intake.
  • the present invention has the following advantages: - adaptability to wide variations in operating conditions, - possibility of application to installations having refrigerant charges which may be significant, thanks to an adequate dimensioning of the volume of the container / separator, without imbalance due to variations in speed, - functionality, even in large cooling capacity installations which generally require relatively large refrigerant charges, - consistency of the suction temperature of the refrigerant to the compressor, which always corresponds to that of the saturated steam.
  • the present invention is characterized by the advantages mentioned below: - reduced cost due to the absence of the thermostatic valve itself, - operating stability due to the absence of dynamic type regulations, - maximum use of the heat exchange surface of the evaporator since, unlike what occurs for the thermostatic valve, it is not necessary to overheat the refrigerant which therefore always works in the saturation state, - minimum torque at the compressor motor thrust, since the capillary quickly balances the suction and discharge pressures of the refrigerant circuit, - absence of instability of the operating conditions, even in the case of using a capacity regulation valve by injection of hot gas, thanks to the functional stability of the capillary, - efficient cooling of the electric motor of the compressor thanks to the small withdrawal of liquid which ensures the return of the oil.
  • reference 10 indicates the evaporator, the number 12 the compressor, 13 the compressor motor, 14 the condenser, 15 the filter 16 the expansion capillary and 23 (figure 11) the capacity regulating valve.
  • the lung / separator container placed at the outlet of the evaporator 10 is designated by the reference 1.
  • it may be of cylindrical shape (see FIGS. 9 and 10) and be provided with a tube d suction 2, of a level indicator 3 (for example a porthole-shaped sight fixed on the body of the container 1) and by an inlet tube 4 of the refrigerating tube coming from the evaporator 10, which tube is arranged preferably in the lower part of the container 1.
  • a level indicator 3 for example a porthole-shaped sight fixed on the body of the container 1
  • an inlet tube 4 of the refrigerating tube coming from the evaporator 10 which tube is arranged preferably in the lower part of the container 1.
  • the suction tube 2 is constituted, for example, by a section of pipe in "U" shape, the end of which inlet 5 is located at the upper part of the container 1 and which is provided with a calibrated passage 6 in the lower part, passage serving (as we have seen) to ensure adequate return of oil to the compressor, the second branch of the U-shaped tube stopping close to the top of the container.
  • the level indicator 3 which here has the shape of a transparent porthole, is placed higher than the inlet tube 4 so that the fluid which enters the container 1 must bubble through the liquid as far as the free surface of the latter is maintained in the visual field of the level 3 indicator.
  • FIG. 11 gives the diagram of an installation according to the invention which can be used more particularly in cases where the refrigerating charge requested from the evaporator can vary within significant limits, or even from 0% to 100%. It is then necessary to provide, in addition, a body for regulating capacity.
  • this member consists of a valve 23, which is here of the pressostatic type, placed in bypass between the discharge of the compressor 12 and the outlet of the evaporator 10 in order, as mentioned above, to always ensure the presence of saturated steam at the suction of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressor (AREA)

Abstract

The installation, which comprises in a cycle, as usual, an evaporator (10), a compressor (12), a condenser (14), a refrigerant fluid filter (15) and an expansion capillary tube (16), is characterised in that it comprises, in a line, for control, between the evaporator (10) and the compressor (12), a small vessel (1) containing refrigerant fluid in the liquid state which fulfils simultaneously the function of lung/liquid separator and of a device which ensures a return of lubrication oil to the compressor (12). The installation can also comprise a valve (23) for controlling the capacity. <IMAGE>

Description

La présente invention concerne un système de réglage des installations à circuit frigorifique compor­tant une détente à capillaire, installations dans les­quelles un fluide frigorigène parcourt un cycle thermody­namique qui consiste en une évaporation, une compression, une condensation et une détente.The present invention relates to a system for regulating refrigeration circuit installations comprising a capillary expansion, installations in which a refrigerant flows through a thermodynamic cycle which consists of evaporation, compression, condensation and expansion.

L'objectif est d'améliorer les systèmes de ré­glage connus tant au point de vue économique qu'au point de vue de la régulation.The objective is to improve the known adjustment systems both from an economic point of view and from a regulation point of view.

Les champs d'application de l'invention peuvent être, à titre d'exemple non limitatif :
- les sécheurs de gaz comprimés
- les unités de conditionnement d'air
- les pompes à chaleur
- les réfrigérateurs de liquides
- d'autres encore.
The fields of application of the invention can be, by way of nonlimiting example:
- compressed gas dryers
- air conditioning units
- heat pumps
- liquid refrigerators
- more besides.

Du point de vue du système de réglage du circuit frigorifique, les installations peuvent se diviser sui­vant le type d'organe de laminage qui peut être :

  • 1) un tube capillaire
  • 2) une soupape thermostatique
  • 3) d'autres systèmes de moindre diffusion.
From the point of view of the refrigeration circuit adjustment system, the installations can be divided according to the type of rolling element which can be:
  • 1) a capillary tube
  • 2) a thermostatic valve
  • 3) other less widespread systems.

On va examiner ci-après, du point de vue des inconvénients qu'ils présentent, les circuits frigori­fères à tube capillaire et à soupape thermostatique, avec ou sans réglage de la capacité au moyen d'une dérivation (by-pass) de gaz chaud. On ne donnera pas de description détaillée des principes physiques de fonctionnement des deux systèmes, du fait que l'on considère que le lecteur en a déjà connaissance.We will examine below, from the point of view of the disadvantages that they present, the refrigerant circuits with capillary tube and thermostatic valve, with or without adjustment of the capacity by means of a bypass (hot gas) . No detailed description will be given of the physical operating principles of the two systems, since it is considered that the reader is already aware of it.

Circuits frigorifères pourvus d'un organe de laminage à capillaire.Refrigerant circuits provided with a capillary rolling member.

Le schéma de principe du circuit frigorifère à tube capillaire est donné dans la figure 1 annexée.The schematic diagram of the refrigerant circuit with capillary tube is given in Figure 1 attached.

Les figures 2 et 3, par ailleurs, représentent le même type d'installation, mais se trouvant dans des con­ditions d'exploitation anormales, à savoir dans le pre­mier cas avec une insuffisance de fluide frigorigène dans l'évaporateur et dans le second cas, avec un excès de fluide frigorigène dans l'évaporateur.Figures 2 and 3, moreover, show the same type of installation, but being in abnormal operating conditions, namely in the first case with insufficient refrigerant in the evaporator and in the second case, with an excess of refrigerant in the evaporator.

Dans ces figures 1 à 3, la référence 10 désigne l'évaporateur, 11 le fluide frigorigène (au niveau normal à la figure 1, en quantité insuffisante à la figure 2 et en excès à la figure 3), 12 le compresseur, 13 le moteur du compresseur, 14 le condenseur, 15 un filtre et 16 le capillaire de détente. A la figure 3, la référence 17 indique des retours de fluide frigorigène à l'état li­quide vers le compresseur 12 du fait de la présence d'un excès dudit fluide au niveau de l'évaporateur 10.In these Figures 1 to 3, the reference 10 designates the evaporator, 11 the refrigerant (at the normal level in Figure 1, in insufficient quantity in Figure 2 and in excess in Figure 3), 12 the compressor, 13 the compressor motor, 14 the condenser, 15 a filter and 16 the expansion capillary. In FIG. 3, the reference 17 indicates returns of refrigerant in the liquid state to the compressor 12 due to the presence of an excess of said fluid at the level of the evaporator 10.

Le système de réglage par organe de laminage à capillaire est utilisé en général dans des installations de faible puissance dans lesquelles il est important de disposer d'un bas coût et où les inconvénients découlant de l'adaptabilité imparfaite de l'installation frigori­fère aux conditions variables d'emploi du capillaire 16, lequel constitue un organe de réglage du type statique, ont peu d'importance. Cette non-adaptabilité du capil­laire 16 peut provoquer alternativement des surchauffages importants du fluide frigorigène aspiré par le compres­seur 12 ou des retours de liquide 17, également vers le compresseur 12. Les surchauffages élevés peuvent être provoqués par exemple par une charge insuffisante de fluide réfrigérant 11 (voir figure 2) ou par une augmen­tation de charge frigorifère demandée à l'évaporateur 10 ou encore par une diminution importante de la pression de condensation et peuvent endommager sérieusement le com­presseur 12 vu que le refroidissement des bobinages du moteur électrique 13, lequel est presque toujours assuré par le réfrigérant aspiré dans les compresseurs 12 em­ployés pour ces applications, peut ne plus être suffi­sant. Les retours de liquide 17 peuvent par exemple être provoqués par une charge excessive de fluide réfrigérant (voir figure 3) ou par une diminution de la charge frigo­ rifère demandée à l'évaporateur 10 ou par une augmenta­tion importante de la pression de condensation et peuvent endommager sérieusement le compresseur 12 vu que la pré­sence éventuelle de liquide dans la phase de compression peut conduire à la rupture des soupapes ou au grippement du compresseur 12. Un autre problème des installations à tube capillaire 16 résulte de la précision exigée pour le dosage de la charge, d'ailleurs plutôt réduite, de fluide frigorigène. En fait, s'il se produit des fuites - même très minimes - de réfrigérant, l'installation se décharge en peu de temps et donne lieu à des situations de fonc­tionnement dangereuses, telles que les surchauffages trop élevés au compresseur 12 déjà mentionnés. En outre, la charge de fluide frigorifère exige beaucoup d'attention et de soin vu que, comme elle est très petite, des varia­tions de faible importance en plus ou en moins peuvent peser notablement sur les prestations et sur la sécurité de fonctionnement de l'installation.The adjustment system by capillary rolling member is generally used in low-power installations in which it is important to have a low cost and where the drawbacks arising from the imperfect adaptability of the refrigerating installation to variable conditions of use of the capillary 16, which constitutes a regulating member of the static type, are of little importance. This non-adaptability of the capillary 16 can alternatively cause significant overheating of the refrigerant aspirated by the compressor 12 or liquid returns 17, also to the compressor 12. The high overheating can be caused for example by an insufficient charge of refrigerant 11 (see Figure 2) or by an increase in refrigeration charge requested from the evaporator 10 or by a significant decrease in the condensing pressure and can seriously damage the compressor 12 since the cooling of the windings of the electric motor 13, which is almost always supplied by the refrigerant drawn into the compressors 12 used for these applications, may no longer be sufficient. The liquid returns 17 can for example be caused by an excessive charge of refrigerant fluid (see FIG. 3) or by a reduction in the fridge charge. required by the evaporator 10 or by a significant increase in the condensing pressure and can seriously damage the compressor 12 since the possible presence of liquid in the compression phase can lead to rupture of the valves or seizure of the compressor 12. Another problem with capillary tube installations 16 results from the precision required for the metering of the charge, moreover rather reduced, of refrigerant. In fact, if there is leakage - even very small - of refrigerant, the installation discharges in a short time and gives rise to dangerous operating situations, such as too high overheating at compressor 12 already mentioned. In addition, the refrigerant charge requires a lot of attention and care since, as it is very small, small and large variations can significantly affect the performance and the operational safety of the installation.

Circuits frigorifères pourvus d'organes de laminage à soupape thermostatique.Refrigerant circuits provided with rolling elements with thermostatic valve.

Le schéma de principe du circuit frigorifère à soupape thermostatique est donné à la figure 4.The schematic diagram of the refrigerating circuit with thermostatic valve is given in Figure 4.

La figure 5 concerne également ce type d'instal­lation à soupape thermostatique en montrant en détail la fonction exercée par la soupape.FIG. 5 also relates to this type of installation with a thermostatic valve, showing in detail the function exerted by the valve.

Dans ces figures 4 et 5 on désigne, comme précé­demment, l'évaporateur par la référence 10, le compres­seur par 12, le moteur du compresseur par 13 et le condenseur par 14. La référence 18 marque la présence d'un récipient de réception de fluide condensé à la sortie du condenseur, 19 désigne la soupape thermostati­que, 20 un détecteur de variation du flux de fluide frigorigène dont il sera question plus loin. A la figure 5, la référence 21 indique le liquide en évaporation dans l'évaporateur 10 et la référence 22 désigne une zone de surchauffage du gaz sortant de l'évaporateur 10 et se dirigeant vers le compreseur 12.In these Figures 4 and 5, as above, the evaporator is designated by the reference 10, the compressor by 12, the compressor motor by 13 and the condenser by 14. The reference 18 marks the presence of a receptacle for receiving condensed fluid at the outlet of the condenser, 19 designates the thermostatic valve, 20 a detector of variation in the flow of refrigerant which will be discussed later. In FIG. 5, the reference 21 indicates the liquid in evaporation in the evaporator 10 and the reference 22 designates a zone of superheating of the gas leaving the evaporator 10 and going towards the compressor 12.

Comme ce schéma de réglage à soupape thermostati­ que est plus coûteux que celui à capillaire, il est géné­ralement employé quand ce dernier, en raison de la non-­adaptabilité aux variations des conditions de fonctionne­ment, présente les problèmes déjà décrits.Like this thermostatic valve setting diagram that is more expensive than that with capillary, it is generally used when the latter, due to the non-adaptability to variations in operating conditions, presents the problems already described.

Par rapport au tube capillaire, la soupape ther­mostatique19 contrôle le flux du liquide frigorigène 11 qui la traverse de manière à maintenir un surchauffage constant et modéré du réfrigérant à l'état de vapeur à la sortie de l'évaporateur 10 (voir référence 21 à la fi­gure 5 pour assurer la transformation complète du fluide frigorigène de liquide en gaz et par conséquent pour éliminer la possibilité de retours dangereux de liquide au compresseur. Un inconvénient du système à soupape thermostatique résulte de l'instabilité que cet organe de régulation de type dynamique introduit, par suite des déphasages, pratiquement impossibles à éliminer, entre l'effet sur le système de la variation de flux de réfri­gérant due à l'action régulatrice de la soupape et le signal qui commande cette action régulatrice et qui pro­vient du détecteur 20 placé en aval de l'évaporateur 10.Relative to the capillary tube, the thermostatic valve 19 controls the flow of the refrigerant 11 which passes through it so as to maintain a constant and moderate superheating of the refrigerant in the vapor state at the outlet of the evaporator 10 (see reference 21 to the 5 to ensure the complete transformation of the refrigerant from liquid to gas and consequently to eliminate the possibility of dangerous returns of liquid to the compressor. A drawback of the thermostatic valve system results from the instability that this dynamic type regulating member introduces. , due to the phase shifts, practically impossible to eliminate, between the effect on the system of the variation in refrigerant flow due to the regulating action of the valve and the signal which controls this regulating action and which comes from the detector 20 placed in downstream of the evaporator 10.

Cette instabilité du système consiste par exemple en une fluctuation de la pression d'évaporation qui donne lieu à une détérioration des prestations de l'installa­tion. Le surchauffage que l'on doit maintenir à la sortie de l'évaporateur 10 ne doit pas être excessif mais jamais inférieur à une valeur minimale sinon, du fait des variables que l'on vient de décrire, il peut y avoir à certains moments de dangereux retours de liquide au com­presseur. Ceci signifie que dans les installations à soupape thermostatique une partie 22 de la surface d'échange de l'évaporateur 10 doit être destinée au surchauffage de la vapeur et que, par conséquent, la capacité d'échange de l'évaporateur n'est pas pleinement exploitée.This instability of the system consists, for example, of a fluctuation in the evaporation pressure which gives rise to a deterioration in the performance of the installation. The superheating which must be maintained at the outlet of the evaporator 10 must not be excessive but never lower than a minimum value otherwise, because of the variables which have just been described, there may be at certain times dangerous liquid returns to the compressor. This means that in thermostatic valve installations, part 22 of the evaporator exchange surface 10 must be intended for the superheating of the vapor and that, consequently, the exchange capacity of the evaporator is not fully exploited.

Circuits frigorifères à contrôle de capacitéCapacity-controlled refrigeration circuits

Un cas particulier, mais assez fréquent, se pré­sente quand la charge frigorifère demandée à l'évapora­teur peut varier entre 0 % et 100 % de la valeur maximale projetée et quand, en même temps, la pression d'évapora­tion du fluide frigorigène ne doit pas êre inférieure à une valeur déterminée (par exemple 0°C manométrique) pour éviter la congélation des fluides dans l'évaporateur, comme par exemple quand le fluide à refroidir est de l'air humide ou de l'eau. Il est donc nécessaire de disposer d'un organe de régulation capable de réduire l'excès de puissance frigorifère, organe qui consiste généralement en une soupape pressostatique (voir figure 6, référence 23) qui ouvre une dérivation (by-pass) entre le refoulement et l'aspiration du compresseur afin d'em­pêcher que la pression à l'aspiration ne descende en-­dessous d'une valeur préfixée.A special case, but quite frequent, occurs when the refrigerant charge requested from the evaporator can vary between 0% and 100% of the maximum value projected and when, at the same time, the evaporation pressure of the refrigerant must not be lower than a determined value (for example 0 ° C gauge) to avoid freezing of the fluids in the evaporator, as for example when the fluid to cool is moist air or water. It is therefore necessary to have a regulating member capable of reducing the excess cooling capacity, a member which generally consists of a pressostatic valve (see FIG. 6, reference 23) which opens a bypass between the discharge. and the compressor suction in order to prevent the suction pressure from falling below a preset value.

Les figures 6 et 7 donnent le schéma d'installa­tions de ce type, la figure 6 pour les installations à tube capillaire (perfectionnement à l'installation des figures 1 à 3) et la figure 7 pour les installations à soupape thermostatique (perfectionnement à l'installation des figures 4 et 5).Figures 6 and 7 give the diagram of installations of this type, Figure 6 for capillary tube installations (improvement to the installation of Figures 1 to 3) and Figure 7 for thermostatic valve installations (improvement to the 'installation of Figures 4 and 5).

Dans ces figures, les organes communs sont dési­gnés par les mêmes numéros de référence que précédemment (10 pour l'évaporateur, 12 pour le compresseur, 13 pour le moteur, 14 pour le condenseur, 15 pour le filtre, 16 pour le capillaire, 18 pour le récipient après le conden­seur, 19 pour la soupape thermostatique et 20 pour le détecteur de variations de flux). La référence 23 indi­que la soupape pressostatique ou autre pour la régulation de la capacité et 24 le point d'injection du gaz chaud venant de l'évaporateur et de la soupape régulatrice.In these figures, the common members are designated by the same reference numbers as above (10 for the evaporator, 12 for the compressor, 13 for the motor, 14 for the condenser, 15 for the filter, 16 for the capillary, 18 for the container after the condenser, 19 for the thermostatic valve and 20 for the flow variation detector). Reference 23 indicates the pressostatic or other valve for regulating the capacity and 24 the point of injection of the hot gas coming from the evaporator and from the regulating valve.

Les circuits frigorifères à organe de laminage à tube capillaire et régulateur de capacité (voir figure 6) tiennent sous contrôle la pression mais pas la tempéra­ture du fluide frigorifère en aval de la soupape régula­trice de capacité qui injecte du gaz chaud et par consé­quent, en cas d'inconvénients tels qu'une perte de réfri­gérant ou un mauvais fonctionnmnt des soupapes, il sont exposés à des inconvénients au compresseur dus aux surchauffages trop élevés qui se produisent dans ces cas.The refrigerant circuits with a capillary tube rolling member and capacity regulator (see FIG. 6) keep the pressure but not the temperature of the refrigerating fluid under control downstream of the capacity regulating valve which injects hot gas and consequently, in the event of drawbacks such as loss of refrigerant or malfunction of the valves, they are exposed to drawbacks to the compressor due to the excessively high overheating which occurs in these cases.

Les circuits frigorifères à organe de laminage à soupape thermostatique et régulateur de capacité (voir figure 7) tiennent sous contrôle la température du fluide frigorifère aspiré par le compresseur pourvu que l'injec­tion de gaz chaud se produise en amont du détecteur de la soupape thermostatique, mais ils peuvent présenter, aux charges partielles, c'est-à-dire quand la soupape de régulation de la capacité intervient, des fluctuations de la pression d'évaporation assez intenses déterminés par l'interaction entre les deux organes de régulation. Pra­tiquement, ces interactions sont très difficiles à élimi­ner vu que aussi bien la soupape thermostatique que la soupape pressostatique sont contrôlées par la pression d'évaporation et que l'intervention de l'une quelconque de leurs fonctions de réglage influence cette pression.The refrigeration circuits with laminating member with thermostatic valve and capacity regulator (see FIG. 7) keep the temperature of the refrigerating fluid drawn in by the compressor under control, provided that the injection of hot gas occurs upstream of the detector of the thermostatic valve, but they can present, at partial loads, that is to say when the capacity regulating valve intervenes, fairly intense evaporation pressure fluctuations determined by the interaction between the two regulating organs. In practice, these interactions are very difficult to eliminate since both the thermostatic valve and the pressostatic valve are controlled by the evaporation pressure and that the intervention of any of their control functions influences this pressure.

La présente invention consiste en un système de réglage à tube capillaire permettant d'obvier aux incon­vénients des systèmes existants signalés ci-avant.The present invention consists of a capillary tube adjustment system making it possible to obviate the drawbacks of the existing systems indicated above.

Elle a trait à un système de réglage des instal­lations à circuit frigorifique comportant une détente à capillaire, installations dans lesquelles un fluide fri­gorifique parcourt un cycle thermodynamique qui consiste en une évaporation, une compression, une condensation et une détente, ledit système étant caractérisé par le fait qu'il comprend, en ligne, entre l'évaporateur et le com­presseur, un petit récipient contenant du fluide frigori­gène à l'état liquide qui exerce simultanément la fonc­tion de poumon/séparateur de liquide et de dispositif assurant un retour d'huile de lubrification au compres­seur.It relates to a system for regulating refrigeration circuit installations comprising a capillary expansion, installations in which a refrigerant flows through a thermodynamic cycle which consists of evaporation, compression, condensation and expansion, said system being characterized by fact that it comprises, in line, between the evaporator and the compressor, a small container containing refrigerant in the liquid state which simultaneously exercises the function of lung / liquid separator and of device ensuring a return of oil from compressor lubrication.

Suivant une forme d'exécution préférée, le petit récipient poumon/séparateur de liquide comporte à sa partie inférieure un tube d'entrée de la vapeur venant de l'évaporateur, à sa partie supérieure un tube d'aspira­tion se prolongeant dans le récipient par un tronçon de tube en "U" dont la deuxième branche s'arrête à faible distance de la partie supérieure du récipient et muni dans le coude du bas d'un passage calibré servant au prélèvement d'une petite quantité de liquide, et un indi­cateur de niveau de liquide fixé sur le corps du réci­pient, à une hauteur située entre les deux tubes permet­tant de s'assurer du niveau du liquide qui est contenu dans le récipient et dans lequel la vapeur entrante doit barboter. Il va de soi que cet indicateur de niveau peut avoir une forme de construction quelconque, même exté­rieure au récipient, pourvu qu'il soit à même d'exercer sa fonction.According to a preferred embodiment, the small lung / liquid separator container has at its lower part a vapor inlet tube coming from the evaporator, at its upper part a suction tube extending into the container by a section of "U" -tube, the second branch of which stops a short distance from the upper part of the container and fitted in the bottom bend with a calibrated passage used to sample of a small quantity of liquid, and a liquid level indicator fixed on the body of the container, at a height located between the two tubes making it possible to ascertain the level of the liquid which is contained in the container and in which the incoming steam should bubble. It goes without saying that this level indicator can have any form of construction, even external to the container, provided that it is able to exercise its function.

Le tube capillaire de détente et la capacité du poumon/séparateur sont dimensionnés de telle manière que quelle que soit la condition de fonctionnement (c'est-à-­dire pour n'importe quelle pression d'évaporation et de condensation) le fluide frigorigène à la sortie de l'éva­porateur se trouve toujours à l'état de vapeur saturée (jamais surchauffée).The expansion capillary tube and the capacity of the lung / separator are dimensioned in such a way that whatever the operating condition (i.e. at any evaporation and condensation pressure) the refrigerant to the evaporator outlet is always in the saturated vapor state (never superheated).

De cette façon, l'ajustement de la capacité du capillaire aux diverses conditions de fonctionnement de l'installation s'obtient grâce à une variation du sous-­refroidissement du liquide à l'entrée du capillaire.In this way, the adjustment of the capacity of the capillary to the various operating conditions of the installation is obtained by varying the sub-cooling of the liquid at the inlet of the capillary.

Considérons par exemple une installation de ré­gime stationnaire (c'est-à-dire caractérisée par une constance dans le temps des paramètres caractéristiques de l'installation) dans laquelle il existe un certain degré de sous-refroidissement à l'entrée du capillaire, que le fluide frigorigène à la sortie de l'évaporateur soit de la vapeur saturée et que le récipient poumon/séparateur contienne une certaine quantité de liquide et analysons ce qu'il adviendra en cas d'augmen­tation ou de diminution de la charge frigorifère demandée à l'évaporateur.Let us consider for example a stationary regime installation (that is to say characterized by a constancy over time of the characteristic parameters of the installation) in which there is a certain degree of sub-cooling at the inlet of the capillary, that the refrigerant at the outlet of the evaporator is saturated vapor and the lung / separator container contains a certain amount of liquid and analyze what will happen in the event of an increase or decrease in the refrigerant charge requested from the 'evaporator.

1) Augmentation de la charge frigorifère demandée :1) Increase in the refrigeration charge requested:

En même temps qu'une augmentation de la pression d'évaporation, il se fait que le fluide frigorigène à la sortie de l'évaporateur sort surchauffé mais qu'en se mélangeant avec le liquide qui se trouve à l'intérieur du récipient poumon/séparateur il revient à l'état de vapeur saturée aux dépens d'une certaine évaporation de celle-­ ci.At the same time as an increase in the evaporation pressure, it happens that the refrigerant at the outlet of the evaporator comes out superheated but that by mixing with the liquid which is inside the lung container / separator it returns to the state of saturated vapor at the expense of a certain evaporation of this this.

Le niveau dans le récipient baisse à cause d'une migration de fluide frigorigène de celui-ci au condenseur qui, à cause de l'inondation partielle du condenseur, provoque une augmentation du sous-refroidissement et de la pression de condensation. A leur tour, ces augmenta­tions provoquent une augmentation de la capacité du capillaire et donc une augmentation du débit du réfrigé­rant. La situation finale sera donc la suivante :
- augmentation de la pression d'évaporation
- augmentation de la pression de condensation
- augmentation du sous-refroidissement du liquide à l'entrée du capillaire
- diminution du niveau dans le récipient poumon/sépara­teur
- toujours de la vapeur saturée à la sortie de l'évapora­teur.
The level in the container drops due to migration of refrigerant from it to the condenser which, due to the partial flooding of the condenser, causes an increase in subcooling and condensing pressure. In turn, these increases cause an increase in the capacity of the capillary and therefore an increase in the flow rate of the refrigerant. The final situation will therefore be as follows:
- increase in evaporation pressure
- increase in condensing pressure
- increased sub-cooling of the liquid at the capillary inlet
- decrease in level in the lung / separator container
- always saturated steam at the outlet of the evaporator.

2) Diminution de la charge frigorifère demandée :2) Reduction in the refrigeration charge requested:

Il se produit exactement le contraire de ce qui a été décrit précédemment, c'est-à-dire que l'ajustement final de la capacité du capillaire s'obtiendra à cause d'une vidange partielle du condenseur et par conséquent d'une diminution du sous-refroidissement du liquide à son entrée.It is exactly the opposite of what has been described above, that is to say that the final adjustment of the capillary capacity will be obtained because of a partial emptying of the condenser and consequently of a decrease. of the sub-cooling of the liquid at its entry.

Aux pressions de condensation élevées, il peut arriver que l'on se trouve dans une situation dans la­quelle le condenseur se vide totalement de liquide qui est par conséquent saturé à l'entrée du capillaire. Dans ce cas, on obtient une réduction ultérieure de la capa­cité du capillaire aux dépens d'une certaine quantité de vapeur saturée non condensée qui entre dans le capillaire en même temps que le liquide. On obtient que de petits pourcentages de vapeur par rapport au liquide provoquent de grandes variations de capacité de passage du capil­laire, grâce à quoi la quantité de vapeur non condensée est toujours très petite et est de toute façon compensée par le fait que la vidange complète du condenseur de la part du liquide, et donc l'absence de sous-refroidisse­ ment, permet d'exploiter au mieux toute la surface du condenseur.At high condensing pressures, it can happen that we are in a situation in which the condenser is completely emptied of liquid which is consequently saturated at the inlet of the capillary. In this case, a further reduction in the capacity of the capillary is obtained at the expense of a certain amount of uncondensed saturated vapor which enters the capillary at the same time as the liquid. It is obtained that small percentages of vapor relative to the liquid cause large variations in the capillary passage capacity, whereby the amount of uncondensed vapor is always very small and is in any case compensated for by the fact that the complete emptying of the condenser on the part of the liquid, and therefore the absence of subcooling allows the best use of the entire surface of the condenser.

La capacité du récipient/poumon est établie en relation avec les variations de volume du fluide réfrigé­rant par suite de la variation des conditions de fonc­tionnement. Cette variation de volume doit être infé­rieure à la capacité dudit récipient et la surface libre du réfrigérant liquide se trouvant dans le récipient doit toujours être comprise entre la section de sortie du réfrigérant, pour empêcher des retours de liquide au compresseur, et le dispositif de retour de l'huile ou la section d'entrée du fluide venant de l'évaporateur, afin que le dispositif de retour de l'huile baigne toujours dans le liquide et qu'il y ait toujours un certain bat­tant de liquide au-dessus de la section d'entrée.The capacity of the container / lung is established in relation to the variations in volume of the coolant as a result of the variation in the operating conditions. This variation in volume must be less than the capacity of said container and the free surface of the liquid refrigerant in the container must always be between the refrigerant outlet section, to prevent liquid from returning to the compressor, and the return device. of oil or the fluid inlet section coming from the evaporator, so that the oil return device is always immersed in the liquid and that there is always a certain amount of liquid above the entrance section.

Le dispositif de retour de l'huile nécessaire à la lubrification du compresseur sert du fait qu'à cause de l'évaporation complète du réfrigérant dans l'évapora­teur il se produit une séparation complète entre l'huile, initialement mélangée avec le fluide frigorifère à l'état liquide, et la vapeur. Alors qu'en fait, dans les sys­tèmes ayant seulement un capillaire ou une soupape ther­mostatique, le retour d'huile est assuré par l'entraî­nement mécanique dû à la vitesse élevée de la vapeur dans la tubulure d'aspiration, dans le cas présent, du fait de la basse vitesse de la vapeur dans le récipient poumon/séparateur, qui doit assurer la séparation des gouttelettes de liquide entraînées, il faut soutirer (par exemple en exploitant l'effet Venturi dans un tube en "U") une petite quantité de liquide contenant l'huile non entraînée en solution.The oil return device necessary for the lubrication of the compressor serves the fact that due to the complete evaporation of the refrigerant in the evaporator there occurs a complete separation between the oil, initially mixed with the refrigerating fluid to liquid state, and vapor. When in fact, in systems with only a capillary or a thermostatic valve, the oil return is ensured by the mechanical drive due to the high speed of the vapor in the suction pipe, in this case, due to the low speed of the vapor in the lung / separator container, which must ensure the separation of the entrained droplets of liquid, it is necessary to withdraw (for example by exploiting the Venturi effect in a U-shaped tube) a small amount of liquid containing the oil not entrained in solution.

L'indicateur de niveau sert à contrôler la quan­tité de réfrigérant présente et rend élémentaire la phase de charge du liquide frigorigène dans l'installation. En fait, dès que l'on connaît le niveau que doit atteindre le fluide dans les conditions de charge présélectionnées, il suffit de charger le fluide frigorigène jusqu'à ce qu'il atteigne le niveau préfixé sans aucun type de contrôle. Quand la charge frigorifère demandée à l'éva­porateur peut varier de 0 % à 100 %, on peut prévoir en supplément un organe pour la régulation de capacité du type de la soupape pressostatique.The level indicator is used to control the amount of refrigerant present and makes the charging phase of the refrigerant in the installation elementary. In fact, as soon as we know the level that the fluid must reach under the preselected charging conditions, it suffices to charge the refrigerant until that it reaches the prefixed level without any type of control. When the refrigerant charge requested from the evaporator can vary from 0% to 100%, an additional device can be provided for regulating the capacity of the pressostatic valve type.

Dans ce cas, le gaz prélevé au refoulement du compresseur est mélangé avec le réfrigérant à la sortie de l'évaporateur avant le récipient poumon/séparateur afin d'éliminer le surchauffage de ce gaz par barbotage à travers le liquide qui y est contenu, et par conséquent d'assurer toujours la présence de vapeur saturée à l'as­piration du compresseur.In this case, the gas taken from the compressor discharge is mixed with the refrigerant at the outlet of the evaporator before the lung / separator container in order to eliminate the superheating of this gas by bubbling through the liquid contained therein, and therefore always ensure the presence of saturated steam at the compressor intake.

Par rapport aux installations à capillaire dont elle conserve les qualités de faible coût, de stabilité de fonctionnement et de fiabilité, la présente invention présente les avantages suivants :
- adaptabilité à de vastes variations des conditions de fonctionnement,
- possibilité d'application à des installations ayant des charges de réfrigérant pouvant être importantes, grâce à un dimensionnement adéquat du volume du récipient/sé­parateur, sans déséquilibre dû à des variations de régime,
- fonctionnalité, même dans des installations de puis­sance frigorifère importante qui exigent généralement des charges relativement importantes de réfrigérant,
- constance de la température d'aspiration du réfrigérant au compresseur, qui correspond toujours à celle de la vapeur saturée.
- insensibilité à de petites fuites de réfrigérant grâce à la capacité de fluide contenu dans le poumon/sépara­teur,
- extrême facilité de charge du réfrigérant grâce à l'in­dicateur de niveau,
- suppression du surchauffage du gaz chaud injecté au moyen d'une soupape éventuelle de régulation de capa­cité dans des installations à charge frigorifère varia­ble et à température de fonctionnement à l'évaporateur minimale.
Compared to capillary installations of which it retains the qualities of low cost, operating stability and reliability, the present invention has the following advantages:
- adaptability to wide variations in operating conditions,
- possibility of application to installations having refrigerant charges which may be significant, thanks to an adequate dimensioning of the volume of the container / separator, without imbalance due to variations in speed,
- functionality, even in large cooling capacity installations which generally require relatively large refrigerant charges,
- consistency of the suction temperature of the refrigerant to the compressor, which always corresponds to that of the saturated steam.
- insensitivity to small refrigerant leaks due to the capacity of fluid contained in the lung / separator,
- extreme ease of charging the refrigerant thanks to the level indicator,
- suppression of the superheating of the hot gas injected by means of a possible capacity regulation valve in installations with variable refrigerating charge and at operating temperature on the evaporator minimal.

Par rapport aux installations munies d'une soupape thermostatique de laminage, la présente invention est caractérisée par les avantages mentionnés ci-dessous :
- coût réduit en raison de l'absence de la soupape ther­mostatique elle-même,
- stabilité de fonctionnemnt du fait de l'absence de régulations du type dynamique,
- exploitation maximale de la surface d'échange thermique de l'évaporateur puisque, contrairement à ce qui se produit pour la soupape thermostatique, il n'est pas nécessaire de surchauffer le fluide frigorigène qui travaille donc toujours à l'état de saturation,
- couple minimal à la poussée du moteur du compresseur, vu que le capillaire équilibre rapidement les pressions d'aspiration et de refoulement du circuit frigorifère,
- absence d'instabilité des conditions de fonctionnement, même dans le cas d'utilisation d'une soupape de régula­tion de capacité par injection de gaz chaud, grâce à la stabilité fonctionnelle du capillaire,
- refroidissement efficace du moteur électrique du com­presseur grâce au petit soutirage de liquide qui assure le retour de l'huile.
Compared to installations fitted with a thermostatic rolling valve, the present invention is characterized by the advantages mentioned below:
- reduced cost due to the absence of the thermostatic valve itself,
- operating stability due to the absence of dynamic type regulations,
- maximum use of the heat exchange surface of the evaporator since, unlike what occurs for the thermostatic valve, it is not necessary to overheat the refrigerant which therefore always works in the saturation state,
- minimum torque at the compressor motor thrust, since the capillary quickly balances the suction and discharge pressures of the refrigerant circuit,
- absence of instability of the operating conditions, even in the case of using a capacity regulation valve by injection of hot gas, thanks to the functional stability of the capillary,
- efficient cooling of the electric motor of the compressor thanks to the small withdrawal of liquid which ensures the return of the oil.

Dans ce qui suit, l'invention est exposée en se référant aux figures 8 à 11 qui illustrent un mode d'exé­cution donné uniquemnt à titre d'exemple.

  • La figure 8 donne un schéma général d'une instal­lation suivant l'invention.
  • La figure 9 représente une vue latérale, agran­die, du récipient poumon/séparateur qui constitue une caractéristique de l'invention.
  • La figure 10 montre une coupe de ce même réci­pient.
  • La figure 11 donne un schéma général d'une installation analogue à celle de la figure 8, mais pour­vue en supplément d'une soupape régulatrice de la capa­cité.
In what follows, the invention is explained with reference to Figures 8 to 11 which illustrate an embodiment given only by way of example.
  • FIG. 8 gives a general diagram of an installation according to the invention.
  • Figure 9 shows an enlarged side view of the lung / separator container which is a feature of the invention.
  • Figure 10 shows a section of this same container.
  • Figure 11 gives a general diagram of an installation similar to that of Figure 8, but additionally provided with a capacity regulating valve.

Comme dans les figures 1 à 7, la référence 10 indique l'évaporateur, le nombre 12 le compresseur, 13 le moteur du compresseur, 14 le condenseur, 15 le filtre 16 le capillaire de détente et 23 (figure 11) la soupape régulatrice de la capacité.As in Figures 1 to 7, reference 10 indicates the evaporator, the number 12 the compressor, 13 the compressor motor, 14 the condenser, 15 the filter 16 the expansion capillary and 23 (figure 11) the capacity regulating valve.

Le récipient poumon/séparateur placé à la sortie de l'évaporateur 10 est désigné par la référence 1. A titre d'exemple donné ici, il peut être de forme cylindrique (voir figures 9 et 10) et être muni d'un tube d'aspiration 2, d'un indicateur de niveau 3 (par exemple un regard en forme de hublot fixé sur le corps du réci­pient 1) et par un tube d'entrée 4 du tube frigorifère venant de l'évaporateur 10, tube qui est disposé de préférence dans la partie inférieure du récipient 1. Dans cette forme de réalisation (voir figure 10), le tube d'aspiration 2 est constitué, à titre d'exemple, par un tronçon de conduite en "U" dont l'extrémité d'entrée 5 est située à la partie supérieure du récipient 1 et qui est muni d'un passage calibré 6 dans la partie infé­rieure, passage servant (comme on l'a vu) à assurer un retour adéquat d'huile au compresseur, la deuxième bran­che du tube en "U" s'arrêtant à faible distance de la partie supérieure du récipient.The lung / separator container placed at the outlet of the evaporator 10 is designated by the reference 1. By way of example given here, it may be of cylindrical shape (see FIGS. 9 and 10) and be provided with a tube d suction 2, of a level indicator 3 (for example a porthole-shaped sight fixed on the body of the container 1) and by an inlet tube 4 of the refrigerating tube coming from the evaporator 10, which tube is arranged preferably in the lower part of the container 1. In this embodiment (see FIG. 10), the suction tube 2 is constituted, for example, by a section of pipe in "U" shape, the end of which inlet 5 is located at the upper part of the container 1 and which is provided with a calibrated passage 6 in the lower part, passage serving (as we have seen) to ensure adequate return of oil to the compressor, the second branch of the U-shaped tube stopping close to the top of the container.

L'indicateur du niveau 3, qui présente ici la forme d'un hublot transparent, est placé plus haut que le tube d'entrée 4 de telle sorte que le fluide qui entre dans le récipient 1 doit barboter à travers le liquide pour autant que la surface libre de ce dernier soit maintenue dans le champ visuel de l'indicateur de ni­veau 3.The level indicator 3, which here has the shape of a transparent porthole, is placed higher than the inlet tube 4 so that the fluid which enters the container 1 must bubble through the liquid as far as the free surface of the latter is maintained in the visual field of the level 3 indicator.

La figure 11 donne le schéma d'une installation suivant l'invention utilisable plus spécialement dans les cas où la charge frigorifère demandée à l'évaporateur peut varier dans des limites importantes, voire de 0 % à 100 %. Il est nécessaire alors de prévoir, en supplé­ment, un organe de régulation de la capacité. Dans la forme d'exécution de la figure 11, cet organe consiste en une soupape 23, qui est ici du type pressostatique, placée en dérivation entre le refoulement du compresseur 12 et la sortie de l'évaporateur 10 afin, comme on l'a dit plus haut, d'assurer toujours la présence de vapeur saturée à l'aspiration du compresseur.FIG. 11 gives the diagram of an installation according to the invention which can be used more particularly in cases where the refrigerating charge requested from the evaporator can vary within significant limits, or even from 0% to 100%. It is then necessary to provide, in addition, a body for regulating capacity. In the embodiment of Figure 11, this member consists of a valve 23, which is here of the pressostatic type, placed in bypass between the discharge of the compressor 12 and the outlet of the evaporator 10 in order, as mentioned above, to always ensure the presence of saturated steam at the suction of the compressor.

Claims (7)

1. - Système de réglage des installations à cir­cuit frigorifique comportant une détente à capillaire, installations dans lesquelles un fluide frigorifique parcourt un cycle thermodynamique qui consiste en une évaporation, une compression, une condensation et une détente, caractérisé en ce que ledit système comprend, en ligne, entre l'évaporateur (10) et le compresseur (12), un petit récipient (1) contenant du fluide frigorigène à l'état liquide qui exerce simultanément la fonction de poumon/séparateur de liquide et de dispositif assurant un retour d'huile de lubrification au compresseur.1. - System for regulating refrigerating circuit installations comprising a capillary expansion, installations in which a refrigerating fluid traverses a thermodynamic cycle which consists of evaporation, compression, condensation and expansion, characterized in that said system comprises, in line, between the evaporator (10) and the compressor (12), a small container (1) containing refrigerant in the liquid state which simultaneously exercises the function of lung / liquid separator and of device ensuring a return d lubricating oil to the compressor. 2. - Système de réglage suivant la revendication 1, caractérisé en ce que le petit récipient (1) poumon/séparateur de liquide comporte à sa partie infé­rieure un tube d'entrée (4) de la vapeur venant de l'éva­porateur (10), à sa partie supérieure un tube d'aspira­tion (2) se prolongeant dans le récipient (1) par un tronçon de tube en "U" dont la deuxième branche (5) s'arrête à faible distance de la partie supérieure du récipient et muni dans le coude du bas d'un passage calibré (6) servant au prélèvement d'une petite quantité de liquide, et un indicateur de niveau de liquide (3) fixé sur le corps du récipient, à une hauteur située entre les deux tubes permettant de s'assurer du niveau du liquide qui est contenu dans le récipient et dans lequel la vapeur entrante doit barboter.2. - adjustment system according to claim 1, characterized in that the small container (1) lung / liquid separator has at its lower part an inlet tube (4) of the steam coming from the evaporator (10) , at its upper part a suction tube (2) extending into the container (1) by a section of tube in "U" whose second branch (5) stops a short distance from the upper part of the container and provided in the bottom bend with a calibrated passage (6) used for the withdrawal of a small quantity of liquid, and a liquid level indicator (3) fixed on the body of the container, at a height located between the two tubes making it possible to ascertain the level of the liquid which is contained in the container and in which the incoming steam must bubble. 3. - Système de réglage suivant l'une des revendi­cations 1 ou 2, caractérisé en ce que le tube capillaire de détente (16) et la capacité du récipient (1) poumon/­séparateur de liquide sont dimensionnés de telle manière que quelles que soient les conditions de fonctionnemnt (pressions) le fluide frigorigène à la sortie de l'évapo­rateur (10) se trouve toujours à l'état de vapeur saturée.3. - Adjustment system according to one of claims 1 or 2, characterized in that the capillary expansion tube (16) and the capacity of the container (1) lung / liquid separator are dimensioned so that whatever the operating conditions (pressures) the refrigerant at the outlet of the evaporator (10) is always in the state of saturated vapor. 4. - Système de réglage suivant la revendication 3, caractérisé en ce que la capacité du récipient poumon/séparateur de liquide (1) est établie en relation avec les variations de volume du fluide réfrigérant par suite de la variation des conditions de fonctionnement, en tenant compte de ce que cette variation de volume doit être inférieure à la capacité dudit récipient (1) et de ce que la surface libre du réfrigérant liquide se trou­vant dans le récipient (1) doit toujours être comprise entre la section de sortie du tube en "U" du réfrigérant, pour empêcher des retours de liquide au compresseur (12), et le dispositif de retour de l'huile (6) ou la section d'entrée (4) du fluide venant de l'évaporateur (10), afin que le dispositif de retour de l'huile baigne toujours dans le liquide et qu'il y ait toujours un battant de liquide au-dessus de la section d'entrée (4).4. - adjustment system according to claim 3, characterized in that the capacity of the lung container / liquid separator (1) is established in relation with the variations in volume of the refrigerant as a result of the variation in the operating conditions, taking into account that this variation in volume must be less than the capacity of said container (1) and that the free surface of the liquid refrigerant in the container (1) must always be between the outlet section of the U-shaped tube of the refrigerant, to prevent liquid from returning to the compressor (12), and the oil return device (6) or the inlet section (4) of the fluid coming from the evaporator (10), so that the oil return device is always immersed in the liquid and that there is always a flap of liquid above the entry section (4). 5. - Système de réglage suivant l'une quelconque des revendications précédentes, caractérisé en ce que le retour d'huile au compresseur est assuré par soutirage d'une petite quantité de liquide contenant de l'huile en solution du petit récipient poumon/séparateur de liquide (1) via le passage calibré (6) qui y est prévu.5. - Adjustment system according to any one of the preceding claims, characterized in that the return of oil to the compressor is ensured by drawing off a small quantity of liquid containing oil in solution from the small lung / separator container liquid (1) via the calibrated passage (6) provided therein. 6. - Système de réglage suivant la revendication 5, caractérisé en ce que le soutirage d'une petite quan­tité de liquide du récipient poumon/séparateur (1) s'ef­fectue en exploitant l'effet Venturi dans un tube en "U".6. - Adjustment system according to claim 5, characterized in that the withdrawal of a small amount of liquid from the lung / separator container (1) is carried out by exploiting the Venturi effect in a "U" tube. 7. - Système de réglage suivant la revendication 4, caractérisé par une soupape régulatrice de capacité (23) montée entre le compresseur (12) et la sortie de l'évaporateur (10) vers le récipient poumon/séparateur (1).7. - Adjustment system according to claim 4, characterized by a capacity regulating valve (23) mounted between the compressor (12) and the outlet of the evaporator (10) to the lung / separator container (1).
EP87104174A 1986-04-10 1987-03-21 Control system for installations having a refrigerating circuit with capillary tube expansion Withdrawn EP0240811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU86391A LU86391A1 (en) 1986-04-10 1986-04-10 ADJUSTMENT SYSTEM FOR REFRIGERATION CIRCUIT INSTALLATIONS COMPRISING A CAPILLARY RELAXATION
LU86391 1986-04-10

Publications (1)

Publication Number Publication Date
EP0240811A1 true EP0240811A1 (en) 1987-10-14

Family

ID=19730681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87104174A Withdrawn EP0240811A1 (en) 1986-04-10 1987-03-21 Control system for installations having a refrigerating circuit with capillary tube expansion

Country Status (3)

Country Link
EP (1) EP0240811A1 (en)
IT (1) IT1203467B (en)
LU (1) LU86391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053272B3 (en) * 2004-10-26 2006-04-27 Visteon Global Technologies, Inc. Intellectual Property Department, Van Buren Township Assembly for refrigerant circuits

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746406A (en) * 1927-07-01 1930-02-11 Irving L Keith Refrigerating system
US1840954A (en) * 1929-01-04 1932-01-12 Baker Ice Machine Co Inc Refrigerant controlling apparatus
US2512758A (en) * 1946-10-03 1950-06-27 Winkler Morgenthaler Inc Combined refrigerant purifier and control apparatus
FR1067327A (en) * 1952-12-01 1954-06-15 Liquid receiver with level indicator tube
DE931048C (en) * 1953-01-03 1955-08-01 Paul Neunert Control device for compression refrigeration machine with several evaporators connected in series
US2770105A (en) * 1954-03-25 1956-11-13 Roland J Colton Automatic refrigerant slug disintegrator
US3651657A (en) * 1970-01-26 1972-03-28 Edward W Bottum Air conditioning system with suction accumulator
DE3105796A1 (en) * 1980-02-18 1981-12-17 Industriventilation Produkte AB, 35004 Vaxjö "HEAT PUMP"
EP0071062A1 (en) * 1981-07-23 1983-02-09 Giuseppe Tuberoso Multiple function thermodynamic fluid reservoir
BE900218A (en) * 1984-07-25 1985-01-25 Evzone Holding Portable Air conditioner using compression cooling - has cooling fluid speed reducer to prevent compressor liquid shocks
EP0143013A2 (en) * 1983-09-16 1985-05-29 Pactole S.A. method and device for overheating a refrigerant
US4573327A (en) * 1984-09-21 1986-03-04 Robert Cochran Fluid flow control system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746406A (en) * 1927-07-01 1930-02-11 Irving L Keith Refrigerating system
US1840954A (en) * 1929-01-04 1932-01-12 Baker Ice Machine Co Inc Refrigerant controlling apparatus
US2512758A (en) * 1946-10-03 1950-06-27 Winkler Morgenthaler Inc Combined refrigerant purifier and control apparatus
FR1067327A (en) * 1952-12-01 1954-06-15 Liquid receiver with level indicator tube
DE931048C (en) * 1953-01-03 1955-08-01 Paul Neunert Control device for compression refrigeration machine with several evaporators connected in series
US2770105A (en) * 1954-03-25 1956-11-13 Roland J Colton Automatic refrigerant slug disintegrator
US3651657A (en) * 1970-01-26 1972-03-28 Edward W Bottum Air conditioning system with suction accumulator
DE3105796A1 (en) * 1980-02-18 1981-12-17 Industriventilation Produkte AB, 35004 Vaxjö "HEAT PUMP"
EP0071062A1 (en) * 1981-07-23 1983-02-09 Giuseppe Tuberoso Multiple function thermodynamic fluid reservoir
EP0143013A2 (en) * 1983-09-16 1985-05-29 Pactole S.A. method and device for overheating a refrigerant
BE900218A (en) * 1984-07-25 1985-01-25 Evzone Holding Portable Air conditioner using compression cooling - has cooling fluid speed reducer to prevent compressor liquid shocks
US4573327A (en) * 1984-09-21 1986-03-04 Robert Cochran Fluid flow control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053272B3 (en) * 2004-10-26 2006-04-27 Visteon Global Technologies, Inc. Intellectual Property Department, Van Buren Township Assembly for refrigerant circuits
US7275391B2 (en) 2004-10-26 2007-10-02 Visteon Global Technologies, Inc. Assembly for refrigerant circuits

Also Published As

Publication number Publication date
IT8720055A0 (en) 1987-04-09
LU86391A1 (en) 1987-12-07
IT1203467B (en) 1989-02-15

Similar Documents

Publication Publication Date Title
US6263694B1 (en) Compressor protection device for refrigeration systems
FR2598788A1 (en) Refrigeration device
FR2541437A1 (en) CENTRIFUGAL ECONOMIZER FOR REFRIGERATION
US4386499A (en) Automatic start-up system for a closed rankine cycle power plant
EP1400788A1 (en) Liquid level and bubble detection sensor
FR2651034A1 (en) METHOD AND DEVICE FOR PREVENTING COMPRESSOR FAILURE DUE TO LUBRICANT LOSS
FR2552826A1 (en) DEVICE FOR COOLING OIL IN A COMPRESSION UNIT AND, IN PARTICULAR, SCREW COMPRESSION
FR2481788A1 (en) REFRIGERANT CONDENSATION SYSTEM
EP0240811A1 (en) Control system for installations having a refrigerating circuit with capillary tube expansion
FR2624957A1 (en) REFRIGERATION APPARATUS
FR2966569A1 (en) REFRIGERATION SYSTEM
EP0471598B1 (en) Process and system for storage and conservation of bulk milk in a vessel
EP1970649A1 (en) Device for adjusting the subcooling of the coolant downstream from the condenser of a refrigeration system and system including this device
EP0489628B1 (en) Evaporative cooling method for an internal combustion engine and device for carrying out this method
FR2937411A1 (en) HEAT PUMP.
FR2578325A1 (en) LINE OF SAMPLING AND CONDITIONING OF GAS FOR ANALYSIS.
FR2537707A1 (en) Refrigeration circuit regulating system
JPH06500168A (en) Differential float means and sensor means having same
FR2937410A1 (en) Heat pump for transporting e.g. refrigerant, in e.g. building, has compressor protection kit collecting excess energy to protect movement setting unit, with temperature of fluid at suction compatible with characteristics of compressor
FR1465047A (en) Cooling device
FR2544459A1 (en) PROCESS FOR LUBRICATING THE BEARINGS OF A COMPRESSOR, AND REFRIGERATING COMPRESSOR USING THE SAME
BE1015817A3 (en) Safety device and control compressor machine cooling.
CN218764076U (en) Oil return device of screw unit
BE637239A (en)
FR2571127A3 (en) Reversible refrigerator machine with a variable quantity of useful refrigerating fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19871014

17Q First examination report despatched

Effective date: 19880726

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890621

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROSSI, CLAUDIO