EP0238787B1 - Process for producing a carbon fiber precursor - Google Patents

Process for producing a carbon fiber precursor Download PDF

Info

Publication number
EP0238787B1
EP0238787B1 EP87100271A EP87100271A EP0238787B1 EP 0238787 B1 EP0238787 B1 EP 0238787B1 EP 87100271 A EP87100271 A EP 87100271A EP 87100271 A EP87100271 A EP 87100271A EP 0238787 B1 EP0238787 B1 EP 0238787B1
Authority
EP
European Patent Office
Prior art keywords
pitch
carrier
process according
gas
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87100271A
Other languages
German (de)
French (fr)
Other versions
EP0238787A2 (en
EP0238787A3 (en
Inventor
Siegfried Prof. Dr. Peter
Herbert Dr. Beneke
Franz Oeste
Wolfgang Fexer
Wolfgang Jaumann
Manfred Meinbreckse
Joachim Kempfert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruetgers Germany GmbH
Original Assignee
Ruetgerswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruetgerswerke AG filed Critical Ruetgerswerke AG
Publication of EP0238787A2 publication Critical patent/EP0238787A2/en
Publication of EP0238787A3 publication Critical patent/EP0238787A3/en
Application granted granted Critical
Publication of EP0238787B1 publication Critical patent/EP0238787B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • C10C1/04Working-up tar by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/08Working-up pitch, asphalt, bitumen by selective extraction
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch

Definitions

  • the invention relates to a method for producing a carbon fiber intermediate product from coal tar pitch.
  • the spinning temperatures are about 60 to 130 ° C above the softening point of the pitch used.
  • the pitch already decomposes, the pitch at least partially passing into the semi-coke stage and considerable amounts of gas being generated. This disrupts the spinning process. There are frequent thread breaks that make continuous spinning impossible.
  • pitches with the lowest possible softening point are required. Such pitches have a low content of components insoluble in quinoline or pyridine. Their average molecular weight is relatively low with a broad molecular weight distribution. This makes the process step to make the pitch fiber infusible before carbonization becomes more difficult.
  • DE-OS 35 09 861 describes a process for producing suitable carbon fiber precursors from aromatic, mineral oil-derived residual oils.
  • the residue is subjected to a two-stage heat treatment under pressures from 0.13 to 65 mbar in a falling film evaporator.
  • the temperatures, in particular in the second treatment stage are so high at 450 to 500 ° C. that the partial formation of coke structures cannot be prevented.
  • the known methods are very complex and often can only be carried out under laboratory conditions.
  • the object of the invention is therefore to produce a pitch material for carbon fiber production which has excellent spinnability, which can be made infusible in a short time, and from which carbon fibers of high strength with high modulus of elasticity can be produced, the disadvantages and Problems in the manufacture of the pitch material do not occur.
  • a coal tar pitch is solved by extraction at elevated temperature and pressure in a supercritical gas in the presence of an entrainer, with the exception of the components insoluble in quinoline, by lowering the pressure and / or increasing the temperature, the quinoline-soluble fraction or / and the toluene-soluble fraction is separated, one of these fractions or a mixture of both fractions is thermally treated at 380 to 450 ° C.
  • the following compounds or their mixtures can be used as supercritical gas: an aliphatic hydrocarbon, preferably having 2 to 5 carbon atoms and a halogen-containing hydrocarbon having 1 to 4 carbon atoms.
  • Suitable entraining agents are mono- or polynuclear hydrocarbons, which are optionally substituted with alkyl groups, in particular with 1 to 2 carbon atoms or an amino group, and can be both aromatic and fully or partially hydrogenated, mono- or di-core heterocyclic compounds, alkyl esters of aromatic acids with 1 up to 6 carbon atoms in the alcohol component or a mixture thereof.
  • the extraction stages are carried out at temperatures between 80 and 300 ° C, preferably between 120 and 250 ° C, at pressures from 80 to 300 bar, preferably from 150 to 250 bar.
  • the temperatures for the thermal treatment are high enough on the one hand to ensure a sufficient reaction rate, but on the other hand so low that no bulk mesophase tends to solidify.
  • the subsequent extraction stage for the removal of a predominant part of the isotropic pitch material also takes place at such low temperatures at which the pitch mesophase does not change. Since the mesophases consist only of plastically easily deformable spherules, which only flow together due to the shear forces in the extruder, the difference between the melting temperature and the spinning temperature can be reduced to 10 to 50 K without the withdrawal speed having to be reduced.
  • the extractant loaded with pitch is transferred to two successive regeneration autoclaves and gradually expanded to a pressure of 50 bar.
  • the temperature during regeneration is 150 ° C.
  • the cooling that occurs during relaxation due to the Joule-Thomson effect is compensated for by the addition of heat.
  • the regenerated mixture of extractant and entrainer is recycled.
  • the following pitch fractions are obtained in the regeneration autoclave after an extraction time of 5 h:
  • Fraction 2 is thermally treated at 400 ° C. under nitrogen at atmospheric pressure for 1.5 hours with stirring. This creates 50 vol .-% mesophase spherules. After cooling to 150 ° C. at a pressure of 130 bar, the mesophase pitch is extracted with a mixture of 30% by weight of propane and 70% by weight of toluene. A pitch with a mesophase content of 80% by volume, a content of pyridine-insoluble (PI) of 32% by weight, a melting point of 342 ° C. and an average molecular weight of about 1000 remains as the residue.
  • PI pyridine-insoluble
  • This pitch is at 370 ° C spun using an extruder with a spinneret plate with a hole diameter of 0.3 mm at a take-off speed of 1000 m / min.
  • the pitch fiber is heated in air at a heating rate of 20 K / min from 250 to 350 ° C. The final temperature is held for 5 minutes to make the fiber infusible.
  • the fiber is then carbonized at 1500 ° C. in an inert gas stream for 15 minutes.
  • the carbon fiber with a diameter of 9 ⁇ m has a strength of 2.47 kN / mm 2 , an elastic modulus of 158 kN / mm 2 and an elongation at break of 1.2%.
  • Fraction 3 is thermally treated at 430 ° C. under nitrogen at atmospheric pressure for one hour with stirring. This creates 60 vol .-% mesophase spherules. After cooling to 190 ° C extracted the mesophase pitch at a pressure of 130 bar with the same mixture as in the first extraction stage. This leaves a pitch with a mesophase content of 87% by volume, a pyridine-insoluble content of 44% by weight, a melting point of 357 ° C. and an average molecular weight of about 1100. This pitch is as described in Example 1 , spun at 380 ° C, made infusible and carbonized. The carbon fiber with a diameter of 7 gm has a strength of 2.58 kN / mm 2 , an elastic modulus of 153 kN / mm 2 and an elongation at break of 1.0%.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Kohlenstoffaser-Vorprodukts aus Steinkohlenteerpech.The invention relates to a method for producing a carbon fiber intermediate product from coal tar pitch.

Nach dem Stand der Technik werden die meisten Kohlenstoffasem durch Carbonisieren und Graphitieren von Fasern aus Polyacrylnitril hergestellt. Diese Kohlenstoffasem haben eine hohe Festigkeit und einen hohen Elastizitätsmodul. Ein Nachteil ist jedoch, daß das Ausgangsprodukt teuer ist und die Carbonisierungsausbeute gering ist. Es hat daher nicht an Versuchen gefehlt, andere Einsatzprodukte mit hohem Verkokungsrückstand auf ihre Verwendbarkeit für die Herstellung von Kohlenstoffasem zu untersuchen. Es wurden vor allem kohle- und mineralölstämmige Peche vorgeschlagen, die für die Herstellung hochanisotroper Kokse bekannt sind.According to the prior art, most carbon fibers are produced by carbonizing and graphitizing fibers made of polyacrylonitrile. These carbon fibers have a high strength and a high modulus of elasticity. A disadvantage, however, is that the starting product is expensive and the carbonization yield is low. There has been no shortage of attempts to examine other feedstocks with a high coking residue for their usability for the production of carbon fibers. In particular, pitches derived from coal and mineral oil, which are known for producing highly anisotropic coke, have been proposed.

Die Spinntemperaturen liegen etwa 60 bis 130 °C über dem Erweichungspunkt des verwendeten Pechs. Bei hohen Spinntemperaturen tritt bereits eine Zersetzung des Pechs auf, wobei das Pech zumindest teilweise in die Halbkoksstufe übergeht und erhebliche Gasmengen entstehen. Dies stört den Spinnprozeß. Es entstehen häufige Fadenbrüche, die ein kontinuierliches Verspinnen unmöglich machen. Um dies zu vermeiden sind Peche mit möglichst niedrigem Erweichungspunkt erforderlich. Solche Peche haben einen geringen Gehalt an in Chinolin oder Pyridin unlöslichen Bestandteilen. Ihr mittleres Molekulargewicht ist verhältnismäßig gering bei einer breiten Molekulargewichtsverteilung. Dadurch wird der Verfahrensschritt, um die Pechfaser vor der Carbonisierung unschmelzbar zu machen, schwieriger.
In der DE-OS 35 09 861 wird ein Verfahren zur Herstellung geeigneter Kohlenstoffaser-Vorprodukte aus aromatischen, mineralölstämmigen Rückstandsölen beschrieben. Nach dem Abdestillieren der Leichtöle wird der Rückstand einer zweistufigen Wärmebehandlung unter Drücken von 0,13 bis 65 mbar in einem Fallfilmverdampfer unterworfen. Die Temperaturen, insbesondere bei der zweiten Behandlungsstufe, liegen mit 450 bis 500 °C so hoch, daß die partielle Ausbildung von Koksstrukturen nicht verhindert werden kann. Dies gilt insbesondere bei der Verwendung von Dünnschichtverdampfern mit rotierenden Einbauten, die von den Pechen benetzt werden, so daß die Verweilzeiten eines Teiles des Einsatzpechs unkontrollierbar werden. Wegen der unterschiedlichen Reaktivität der Peche und der Notwendigkeit, die nicht in anisotropes Pech umgewandelten Pechbestandteile aus dem Kohlenstoffaser-Vorprodukt entfernen zu müssen, sind die bekannten Verfahren sehr aufwendig und oft nur unter Laborbedingungen durchführbar.
The spinning temperatures are about 60 to 130 ° C above the softening point of the pitch used. At high spinning temperatures, the pitch already decomposes, the pitch at least partially passing into the semi-coke stage and considerable amounts of gas being generated. This disrupts the spinning process. There are frequent thread breaks that make continuous spinning impossible. To avoid this, pitches with the lowest possible softening point are required. Such pitches have a low content of components insoluble in quinoline or pyridine. Their average molecular weight is relatively low with a broad molecular weight distribution. This makes the process step to make the pitch fiber infusible before carbonization becomes more difficult.
DE-OS 35 09 861 describes a process for producing suitable carbon fiber precursors from aromatic, mineral oil-derived residual oils. After the light oils have been distilled off, the residue is subjected to a two-stage heat treatment under pressures from 0.13 to 65 mbar in a falling film evaporator. The temperatures, in particular in the second treatment stage, are so high at 450 to 500 ° C. that the partial formation of coke structures cannot be prevented. This applies in particular to the use of thin-film evaporators with rotating internals which are wetted by the pitch, so that the dwell times of part of the pitch are uncontrollable. Because of the different reactivities of the pitches and the need not to have to remove the pitch constituents not converted into anisotropic pitch from the carbon fiber precursor, the known methods are very complex and often can only be carried out under laboratory conditions.

Aufgabe der Erfindung ist es daher, ein Pechmaterial für die Kohlenstoffaser-Herstellung zu erzeugen, das eine ausgezeichnete Verspinnbarkeit besitzt, das in kurzer Zeit unschmelzbar gemacht werden kann, und aus dem Kohlenstoffasern hoher Festigkeit bei hohem Elastizitätsmodul hergestellt werden können, wobei die geschilderten Nachteile und Probleme bei der Herstellung des Pechmaterials nicht auftreten.The object of the invention is therefore to produce a pitch material for carbon fiber production which has excellent spinnability, which can be made infusible in a short time, and from which carbon fibers of high strength with high modulus of elasticity can be produced, the disadvantages and Problems in the manufacture of the pitch material do not occur.

Die Aufgabe wird dadurch gelöst, daß ein Steinkohlenteerpech durch Extraktion bei erhöhter Temperatur und erhöhtem Druck in einem überkritischen Gas in Gegenwart eines Schleppmittels mit Ausnahme der in Chinolin unlöslichen Bestandteile gelöst wird, durch Absenken des Druckes oder/und Temperaturerhöhung die in Chinolin lösliche Fraktion oder/und die in Toluol lösliche Fraktion abgeschieden werden, eine dieser Fraktionen oder ein Gemisch aus beiden Fraktionen bei 380 bis 450 °C unter Inertgas oder einem nicht-oxidierenden Gas unter Atmosphärendruck thermisch behandelt wird, bis daß 40 bis 65 Vol.-% in Mesophasen umgewandelt sind, und daß das isotrope Pech durch Extrahieren des Mesophasen enthaltenden Pechs mit einem überkritischen Gas unter Verwendung eines Schleppmittels abgetrennt wird, um ein anisotropes Pech mit einem Mesophasengehalt von mindestens 75 Vol: %, einem Gehalt an Pyridinunlöslichem von 20 bis 50 Gew.-%, einem mittleren Molekulargewicht zwischen 900 und 1200 und einem Schmelzpunkt von 330 bis 360°C zu erhalten.The object is achieved in that a coal tar pitch is solved by extraction at elevated temperature and pressure in a supercritical gas in the presence of an entrainer, with the exception of the components insoluble in quinoline, by lowering the pressure and / or increasing the temperature, the quinoline-soluble fraction or / and the toluene-soluble fraction is separated, one of these fractions or a mixture of both fractions is thermally treated at 380 to 450 ° C. under inert gas or a non-oxidizing gas under atmospheric pressure until 40 to 65 vol.% is converted into mesophases and that the isotropic pitch is separated by extracting the mesophase-containing pitch with a supercritical gas using an entrainer to obtain an anisotropic pitch having a mesophase content of at least 75% by volume, a pyridine-insoluble content of 20 to 50% by weight. , an average molecular weight between 900 and 1200 and a Sc to get a melting point of 330 to 360 ° C.

Als überkritisches Gas können folgende Verbindungen oder ihre Gemische verwendet werden: ein aliphatischer Kohlenwasserstoff, vorzugsweise mit 2 bis 5 Kohlenstoffatomen und ein halogenhaltiger Kohlenwasserstoff mit 1 bis 4 Kohlenstoffatomen.The following compounds or their mixtures can be used as supercritical gas: an aliphatic hydrocarbon, preferably having 2 to 5 carbon atoms and a halogen-containing hydrocarbon having 1 to 4 carbon atoms.

Geeignete Schleppmittel sind ein- oder mehrkemige Kohlenwasserstoffe, die gegebenenfalls mit Alkylgruppen, insbesondere mit 1 bis 2 Kohlenstoffatomen oder einer Aminogruppe, substituiert sind und sowohl aromatisch als auch ganz oder teilweise hydriert sein können, ein- oder zweikemige heterocyclische Verbindungen, Alkylester aromatischer Säuren mit 1 bis 6 Kohlenstoffatomen in der Alkoholkomponente oder deren Gemisch.Suitable entraining agents are mono- or polynuclear hydrocarbons, which are optionally substituted with alkyl groups, in particular with 1 to 2 carbon atoms or an amino group, and can be both aromatic and fully or partially hydrogenated, mono- or di-core heterocyclic compounds, alkyl esters of aromatic acids with 1 up to 6 carbon atoms in the alcohol component or a mixture thereof.

Die Extraktionsstufen werden bei Temperaturen zwischen 80 und 300°C, vorzugsweise zwischen 120 und 250°C, bei Drücken von 80 bis 300 bar, vorzugsweise von 150 bis 250 bar, durchgeführt.The extraction stages are carried out at temperatures between 80 and 300 ° C, preferably between 120 and 250 ° C, at pressures from 80 to 300 bar, preferably from 150 to 250 bar.

Die Temperaturen für die thermische Behandlung sind einerseits hoch genug, um eine ausreichende Reaktionsgeschwindigkeit zu gewährleisten, andererseits aber so niedrig, daß sich keine zur Verfestigung neigende Bulkmesophase bildet. Die nachfolgende Extraktionsstufe zur Abtrennung eines überwiegenden Teils des isotropen Pechmaterials findet ebenfalls bei so niedrigen Temperaturen statt, bei denen sich die Pechmesophase nicht verändert. Da die Mesophasen nur aus plastisch leicht verformbaren Sphärulen bestehen, die erst durch die Scherkräfte im Extruder zusammenfließen, kann die Differenz zwischen Schmelztemperatur und Spinntemperatur auf 10 bis 50 K gesenkt werden, ohne daß dabei die Abzugsgeschwindigkeit vermindert werden muß.The temperatures for the thermal treatment are high enough on the one hand to ensure a sufficient reaction rate, but on the other hand so low that no bulk mesophase tends to solidify. The subsequent extraction stage for the removal of a predominant part of the isotropic pitch material also takes place at such low temperatures at which the pitch mesophase does not change. Since the mesophases consist only of plastically easily deformable spherules, which only flow together due to the shear forces in the extruder, the difference between the melting temperature and the spinning temperature can be reduced to 10 to 50 K without the withdrawal speed having to be reduced.

Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert, ohne darauf beschränkt zu sein.The invention is explained in more detail with reference to the following examples, without being restricted thereto.

Beispiel 1example 1

100 Gew.-Teile Normalpech mit einem Gehalt an Aschebildnern von 0,23 Gew.-%, einem Gehalt an Chinolinunlöslichem (Ql) von 5,8 Gew.-%, einem Gehalt an Toluolunlöslichem (TI) von 22,8 Gew.-% und einem Erweichungspunkt (EP) von 70 °C nach Kraemer-Samow (K.-S.) werden in einen Rührautoklaven gegeben, der auf 150 °C aufgeheizt ist. Sodann wird bei einem Druck von 180 bar ein Gemisch aus 30 Gew.-% Propan und 70 Gew.-% Toluol als Extraktions- bzw. Schleppmittel unter Rühren durch den Autoklaven geleitet. Das unter diesen Bedingungen überkritische Extraktionsmittel löst bis zu einer Konzentration von 13 Gew.-% Pech auf und transportiert es aus dem Autoklaven heraus. Das mit Pech beladenen Extraktionsmittel wird in zwei aufeinander folgende Regenerierautoklaven übergeführt und stufenweise bis auf einen Druck von 50 bar entspannt. Die Temperatur bei der Regenerierung beträgt 150 °C. Die bei der Entspannung wegen des Joule-Thomson-Effektes eintretende Abkühlung wird durch Wärmezufuhr ausgeglichen. Das regenerierte Gemisch aus Extraktions- und Schleppmittel wird im Kreislauf geführt. In dem Regenerierautoklaven werden nach einer Extraktionszeit von 5 h folgende Pechfraktionen gewonnen:

Figure imgb0001
100 parts by weight of normal pitch with an ash former content of 0.23% by weight, a quinoline-insoluble content (Ql) of 5.8% by weight and a toluene-insoluble content (TI) of 22.8% by weight. % and a softening point (EP) of 70 ° C according to Kraemer-Samow (K.-S.) are placed in a stirred autoclave which is heated to 150 ° C. A mixture of 30% by weight propane and 70% by weight toluene as extraction or entraining agent is then passed through the autoclave at a pressure of 180 bar with stirring. The extractant, which is supercritical under these conditions, dissolves up to a concentration of 13% by weight of pitch and transports it out of the autoclave. The extractant loaded with pitch is transferred to two successive regeneration autoclaves and gradually expanded to a pressure of 50 bar. The temperature during regeneration is 150 ° C. The cooling that occurs during relaxation due to the Joule-Thomson effect is compensated for by the addition of heat. The regenerated mixture of extractant and entrainer is recycled. The following pitch fractions are obtained in the regeneration autoclave after an extraction time of 5 h:
Figure imgb0001

Die Fraktion 2 wird bei 400 °C unter Stickstoff bei Normaldruck 1,5 Stunden lang unter Rühren thermisch behandelt. Dabei entstehen 50 Vol.-% Mesophasensphärulen. Das Mesophasenpech wird nach Abkühlen auf 150 °C bei einem Druck von 130 bar mit einem Gemisch aus 30 Gew.-% Propan und 70 Gew.- % Toluol extrahiert. Dabei verbleibt als Rückstand ein Pech mit einem Mesophasengehalt von 80 Vol.-%, einem Gehalt von Pyridinunlöslichem (PI) von 32 Gew.-%, einem Schmelzpunkt von 342 °C und einem mittleren Molekulargewicht von etwa 1000. Dieses Pech wird bei 370 °C über einen Extruder mit einer Spinndüsenplatte mit einem Lochdurchmesser von 0,3 mm mit einer Abzugsgeschwindigkeit von 1000 m/min versponnen. Die Pechfaser wird in Luft mit einer Aufheizrate von 20 K/min von 250 auf 350 °C erhitzt. Die Endtemperatur wird 5 min gehalten, um die Faser unschmelzbar zu machen. Anschließend wird die Faser bei 1500 °C im Inertgasstrom 15 min carbonisiert. Die Kohlenstoffaser mit einem Durchmesser von 9 µm hat eine Festigkeit von 2,47 kN/mm2, einen Elastizitätsmodul von 158 kN/mm2 und eine Bruchdehnung von 1,2 %.Fraction 2 is thermally treated at 400 ° C. under nitrogen at atmospheric pressure for 1.5 hours with stirring. This creates 50 vol .-% mesophase spherules. After cooling to 150 ° C. at a pressure of 130 bar, the mesophase pitch is extracted with a mixture of 30% by weight of propane and 70% by weight of toluene. A pitch with a mesophase content of 80% by volume, a content of pyridine-insoluble (PI) of 32% by weight, a melting point of 342 ° C. and an average molecular weight of about 1000 remains as the residue. This pitch is at 370 ° C spun using an extruder with a spinneret plate with a hole diameter of 0.3 mm at a take-off speed of 1000 m / min. The pitch fiber is heated in air at a heating rate of 20 K / min from 250 to 350 ° C. The final temperature is held for 5 minutes to make the fiber infusible. The fiber is then carbonized at 1500 ° C. in an inert gas stream for 15 minutes. The carbon fiber with a diameter of 9 µm has a strength of 2.47 kN / mm 2 , an elastic modulus of 158 kN / mm 2 and an elongation at break of 1.2%.

Beispie) 2Bei p e) 2

100 Gew.-Teile Normalpech (EP (K.-S.) = 72 °C, Aschebildner = 0,23 Gew.-%, 01 = 5,8 Gew.-%, TI = 22,7 Gew.-%) werden in einen Rührautoklaven gegeben. Der Autoklav wird auf eine Temperatur von 190 °C aufgeheizt. Bei einem Druck von 200 bar wurde ein Gemisch aus 50 Gew.-% Waschbenzol und 50 Gew.-% Flüssiggas (LPG) als Extraktions- bzw. Schleppmittel unter Rühren durch den Autoklaven geleitet. Während der Extraktionszeit von etwa 70 min beträgt die mittlere Beladung des Extraktionsmittels etwa 15 Gew.-%. Das mit Pech beladene Extraktionsmittel wird in zwei aufeinander folgende Regenerierautoklaven überführt und stufenweise auf einen Druck von 50 bar entspannt. Die Temperatur im Regenerierautoklaven wird auf 190 °C gehalten. Das regenerierte Gemisch aus Waschbenzol und LPG wird in den Rührautoklaven zurückgeführt. Es werden folgende Pechfraktionen erhalten:

Figure imgb0002
100 parts by weight of normal pitch (EP (K.-S.) = 72 ° C, ash generator = 0.23% by weight, 01 = 5.8% by weight, TI = 22.7% by weight) are placed in a stirred autoclave. The autoclave is heated to a temperature of 190 ° C. At a pressure of 200 bar, a mixture of 50% by weight of washing benzene and 50% by weight of liquid gas (LPG) as the extraction or entrainer was passed through the autoclave with stirring. During the extraction time of about 70 minutes, the average loading of the extractant is about 15% by weight. The extraction agent loaded with pitch is transferred to two successive regeneration autoclaves and gradually expanded to a pressure of 50 bar. The temperature in the regeneration autoclave is kept at 190 ° C. The regenerated mixture of washing benzene and LPG is returned to the stirred autoclave. The following pitch fractions are obtained:
Figure imgb0002

Die Fraktion 3 wird bei 430 °C unter Stickstoff bei Normaldruck eine Stunde lang unter Rühren thermisch behandelt. Dabei entstehen 60 Vol.-% Mesophasensphärulen. Nach Abkühlen auf 190 °C wird das Mesophasenpech bei einem Druck von 130 bar mit dem gleichen Gemisch wie in der ersten Extraktionsstufe extrahiert. Dabei verbleibt als Rückstand ein Pech mit einem Mesophasengehalt von 87 Vol.- % mit einem Gehalt an Pyridinunlöslichem von 44 Gew.-%, einem Schmelzpunkt von 357 °C und einem mittleren Molekulargewicht von etwa 1100. Dieses Pech wird, wie im Beispiel 1 beschrieben, bei 380 °C versponnen, unschmelzbar gemacht und carbonisiert. Die Kohlenstoffaser mit einem Durchmesser von 7 gm hat eine Festigkeit von 2,58 kN/mm2, einen Elastizitätsmodul von 153 kN/mm2 und eine Bruchdehnung von 1,0 %.Fraction 3 is thermally treated at 430 ° C. under nitrogen at atmospheric pressure for one hour with stirring. This creates 60 vol .-% mesophase spherules. After cooling to 190 ° C extracted the mesophase pitch at a pressure of 130 bar with the same mixture as in the first extraction stage. This leaves a pitch with a mesophase content of 87% by volume, a pyridine-insoluble content of 44% by weight, a melting point of 357 ° C. and an average molecular weight of about 1100. This pitch is as described in Example 1 , spun at 380 ° C, made infusible and carbonized. The carbon fiber with a diameter of 7 gm has a strength of 2.58 kN / mm 2 , an elastic modulus of 153 kN / mm 2 and an elongation at break of 1.0%.

Claims (7)

1. A process for producing a carbon-fibre precursor from coal tar pitch, characterized in that a coal tar pitch is dissolved by extraction at raised temperature and raised pressure in a supercritical gas in the presence of a carrier with the exception of the quinoline-insoluble components, the fraction soluble in quinoline or/and the fraction soluble in toluene being precipitated by reducing the pressure or/and increasing the temperature, one of these fractions or a mixture of both fractions is treated thermally at 380 to 450°C under inert gas or a non-oxidizing gas at atmospheric pressure, until 40 to 65% by volume is converted into mesophases, and the isotropic pitch is separated by extracting the pitch containing mesophases with a supercritical gas using a carrier in order to obtain an anisotropic pitch with a meso- phase content of at least 75% by volume, a content of pyridine-insolubles of 20 to 50% by weight, an average molecular weight of 900 to 1200 and a melting point of 330 to 360°C.
2. A process according to Claim 1, characterized in that the supercritical gas used is in the form of one of the following compounds or a mixture thereof above its critical temperature and its critical pressure: an aliphatic hydrocarbon, preferably with 2 to 5 carbon atoms, an olefinic hydrocarbon, preferably with 2 to 5 carbon atoms, a halogen-containing hydrocarbon, in particular with 1 to 4 carbon atoms.
3. A process according to Claim 1, characterized in that a liquid petroleum gas (LPG) is used as the supercritical gas.
4. A process according to Claims 1 to 3, characterized in that uni- or multinuclear hydrocarbons, which where appropriate are substituted with alkyl groups, in particular with 1 to 2 hydrocarbon atoms, or an amino group, and may be both aromatic and entirely or partially hydrogenated, or uni- or binuclear heterocyclic compounds, in particular nitrogen-containing heterocyclic compounds, in which one nucleus or both nuclei are heterocyclic, alkylesters of aromatic acids with preferably 1 to 6 carbon atoms in the alcohol component or mixtures thereof, may be used as the carrier.
5. A process according to Claims 1 to 3, characterized in that washing benzene is used as the carrier.
6. A process according to any one of Claims 1 to 5, characterized in that the pitch is treated at temperatures in the range of 80°C to 300°C, preferably 120 to 250°C, with a mixture of a supercritical gas and a subcrictical carrier.
7. A process according to any one of Claims 1 to 6, characterized in that the pitch is treated at pressures in the range of 80 to 300 bar, preferably 150 to 250 bar, with a mixture of a supercritical gas and a subcritical carrier.
EP87100271A 1986-03-27 1987-01-12 Process for producing a carbon fiber precursor Expired EP0238787B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863610375 DE3610375A1 (en) 1986-03-27 1986-03-27 METHOD FOR PRODUCING A CARBON FIBER PRE-PRODUCT AND CARBON FIBERS MADE THEREOF
DE3610375 1986-03-27

Publications (3)

Publication Number Publication Date
EP0238787A2 EP0238787A2 (en) 1987-09-30
EP0238787A3 EP0238787A3 (en) 1987-12-16
EP0238787B1 true EP0238787B1 (en) 1989-07-19

Family

ID=6297406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87100271A Expired EP0238787B1 (en) 1986-03-27 1987-01-12 Process for producing a carbon fiber precursor

Country Status (5)

Country Link
US (1) US4756818A (en)
EP (1) EP0238787B1 (en)
JP (1) JPS62243830A (en)
DE (2) DE3610375A1 (en)
PL (1) PL151114B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741482A1 (en) * 1987-12-08 1989-08-10 Ruetgerswerke Ag PROCESS FOR THE PRODUCTION OF CARBON FIBER
US5032250A (en) * 1988-12-22 1991-07-16 Conoco Inc. Process for isolating mesophase pitch
AU651847B2 (en) * 1990-09-13 1994-08-04 Commonwealth Scientific And Industrial Research Organisation Process for refining pitch
WO1992005231A1 (en) * 1990-09-13 1992-04-02 Commonwealth Scientific And Industrial Research Organisation Process for refining pitch
CA2055092C (en) * 1990-12-14 2002-01-15 Conoco Inc. Organometallic containing mesophase pitches for spinning into pitch carbon fibers
JP5262119B2 (en) * 2008-01-10 2013-08-14 ソニー株式会社 Negative electrode and battery
RU2480509C1 (en) * 2012-03-16 2013-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Method to produce anisotropic fibre-forming oil pitch by extraction of aromatic and heterocyclic compounds
JP6437355B2 (en) * 2015-03-17 2018-12-12 株式会社神戸製鋼所 Carbon fiber manufacturing method
JP6392701B2 (en) * 2015-05-12 2018-09-19 株式会社神戸製鋼所 Raw material pitch for carbon fiber production
US11434429B2 (en) * 2019-03-18 2022-09-06 Terrapower, Llc Mesophase pitch for carbon fiber production using supercritical carbon dioxide
CN113549466B (en) * 2021-08-05 2022-09-20 广州市浩立生物科技有限公司 Preparation method of high-quality mesophase pitch
CN116606669A (en) * 2023-05-31 2023-08-18 石河子大学 Solvent for deasphalting cycloalkyl vacuum residuum and solvent deasphalting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3242629A1 (en) * 1981-11-18 1983-05-26 Nippon Oil Co., Ltd., Tokyo INITIAL SPEECH FOR CARBON FIBERS
DE3509861A1 (en) * 1984-03-26 1985-10-03 Idemitsu Kosan Co. Ltd., Tokio/Tokyo PECHMATERIAL FOR A CARBON-MOLDED MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32120A (en) * 1861-04-23 Floor-clamp
US2572583A (en) * 1948-12-21 1951-10-23 Phillips Petroleum Co Improved liquid-liquid contacting process using di(beta-cyanoethyl)-amine
US3087887A (en) * 1959-12-21 1963-04-30 Exxon Research Engineering Co Method for manufacturing of specification paving and industrial asphalts
US3202605A (en) * 1962-06-06 1965-08-24 Badger Co Propane deaspihalting process
DE1493190C3 (en) * 1963-04-16 1980-10-16 Studiengesellschaft Kohle Mbh, 4330 Muelheim Process for the separation of mixtures of substances
GB1482690A (en) * 1974-12-19 1977-08-10 Coal Ind Hydrogenation of coal
US4101416A (en) * 1976-06-25 1978-07-18 Occidental Petroleum Corporation Process for hydrogenation of hydrocarbon tars
JPS6041111B2 (en) * 1976-11-26 1985-09-13 新日鐵化学株式会社 Method for preparing raw materials for coke production
US4208267A (en) * 1977-07-08 1980-06-17 Exxon Research & Engineering Co. Forming optically anisotropic pitches
DE2810332C2 (en) * 1978-03-10 1982-08-05 Rütgerswerke AG, 6000 Frankfurt Process for the separation of quinoline-insoluble constituents from coal tar pitch
US4184942A (en) * 1978-05-05 1980-01-22 Exxon Research & Engineering Co. Neomesophase formation
US4219404A (en) * 1979-06-14 1980-08-26 Exxon Research & Engineering Co. Vacuum or steam stripping aromatic oils from petroleum pitch
DE3017876A1 (en) * 1980-05-09 1982-05-19 Peter, Siegfried, Prof.Dr., 8520 Erlangen METHOD FOR SEPARATING SOLIDS FROM OILS
US4354928A (en) * 1980-06-09 1982-10-19 Mobil Oil Corporation Supercritical selective extraction of hydrocarbons from asphaltic petroleum oils
US4402824A (en) * 1981-03-25 1983-09-06 Sumitomo Metal Industries, Limited Process for refining coal-based heavy oils
USRE32120E (en) 1981-04-01 1986-04-22 Phillips Petroleum Company Hydrotreating supercritical solvent extracts in the presence of alkane extractants
US4390411A (en) * 1981-04-02 1983-06-28 Phillips Petroleum Company Recovery of hydrocarbon values from low organic carbon content carbonaceous materials via hydrogenation and supercritical extraction
US4517072A (en) * 1981-05-18 1985-05-14 Domtar Inc. Process for modifying coal tar materials
US4497789A (en) * 1981-12-14 1985-02-05 Ashland Oil, Inc. Process for the manufacture of carbon fibers
US4482453A (en) * 1982-08-17 1984-11-13 Phillips Petroleum Company Supercritical extraction process
JPS5941387A (en) * 1982-08-30 1984-03-07 Osaka Gas Co Ltd Manufacture of quinoline-insoluble free-pitch
US4503026A (en) * 1983-03-14 1985-03-05 E. I. Du Pont De Nemours And Company Spinnable precursors from petroleum pitch, fibers spun therefrom and method of preparation thereof
US4502943A (en) * 1983-03-28 1985-03-05 E. I. Du Pont De Nemours And Company Post-treatment of spinnable precursors from petroleum pitch
DE3335316A1 (en) * 1983-09-29 1985-04-11 Rütgerswerke AG, 6000 Frankfurt METHOD FOR SEPARATING RESINY MATERIALS FROM CARBONATE HEAVY OILS AND USE OF THE FRACTION RECOVERED
US4604184A (en) * 1983-11-16 1986-08-05 Domtar Inc. Modified coal-tar pitch
JPS60200816A (en) * 1984-03-26 1985-10-11 Kawasaki Steel Corp Production of carbonaceous material
US4578177A (en) * 1984-08-28 1986-03-25 Kawasaki Steel Corporation Method for producing a precursor pitch for carbon fiber
US4575412A (en) * 1984-08-28 1986-03-11 Kawasaki Steel Corporation Method for producing a precursor pitch for carbon fiber
JPH0670220B2 (en) * 1984-12-28 1994-09-07 日本石油株式会社 Carbon fiber pitch manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3242629A1 (en) * 1981-11-18 1983-05-26 Nippon Oil Co., Ltd., Tokyo INITIAL SPEECH FOR CARBON FIBERS
DE3509861A1 (en) * 1984-03-26 1985-10-03 Idemitsu Kosan Co. Ltd., Tokio/Tokyo PECHMATERIAL FOR A CARBON-MOLDED MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
DE3610375A1 (en) 1987-10-01
DE3760336D1 (en) 1989-08-24
EP0238787A2 (en) 1987-09-30
EP0238787A3 (en) 1987-12-16
JPS62243830A (en) 1987-10-24
PL264837A1 (en) 1988-05-12
US4756818A (en) 1988-07-12
PL151114B1 (en) 1990-08-31

Similar Documents

Publication Publication Date Title
DE2917980C2 (en)
DE2829288C2 (en)
DE3012627C2 (en)
EP0238787B1 (en) Process for producing a carbon fiber precursor
DE2457991B2 (en) Process for the production of carbon fibers
DE3116606C2 (en)
DE2822425A1 (en) PROCESS FOR MANUFACTURING CARBON OR GRAPHITE FIBERS FROM PETROLEUM PECH
DE3546613C2 (en)
DE3242629C2 (en)
DE3509861C2 (en) Pitch material for a carbon-containing molded body and process for its manufacture
DE3305055C2 (en)
DE3603883A1 (en) METHOD FOR PRODUCING CARBON TEERPECH RAW MATERIALS WITH IMPROVED PROPERTIES AND THE USE THEREOF
US4589975A (en) Method of producing a precursor pitch for carbon fiber
DE3231682A1 (en) METHOD FOR PRODUCING CARBON FIBERS WITH HIGH STRENGTH AND HIGH MODULE
DE3012195A1 (en) METHOD FOR PRODUCING A PECH FROM A TAR
DE3314154C2 (en)
EP0233185B1 (en) Method for producing anisotropic carbon fibres
EP0313736B1 (en) Process of preparation of carbon fibres
DE3024423C2 (en) Use of pitch fractions that can be piqued for the production of anisotropic carbon
DE69531362T2 (en) SELF-STABILIZED PECH FOR THE PRODUCTION OF CARBON FIBERS
EP0348599B1 (en) Process for producing an anisotropic pitch for carbon fibres
DE3741482C2 (en)
DE3238508C2 (en) Process for the production of a highly reactive pitch fraction and its use
DE2144403B2 (en) Process for the production of fibers, threads or foils consisting essentially of carbon
DE2419659C3 (en) Process for the production of carbon or graphite fibers or threads

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

TCNL Nl: translation of patent claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19871028

17Q First examination report despatched

Effective date: 19881003

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3760336

Country of ref document: DE

Date of ref document: 19890824

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910110

Year of fee payment: 5

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910131

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910202

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050112