EP0236675B1 - Process for producing modified pitch and its use - Google Patents
Process for producing modified pitch and its use Download PDFInfo
- Publication number
- EP0236675B1 EP0236675B1 EP87100273A EP87100273A EP0236675B1 EP 0236675 B1 EP0236675 B1 EP 0236675B1 EP 87100273 A EP87100273 A EP 87100273A EP 87100273 A EP87100273 A EP 87100273A EP 0236675 B1 EP0236675 B1 EP 0236675B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pitch
- alkylated
- weight
- reactive
- pitches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 230000008569 process Effects 0.000 title claims abstract description 10
- 239000011295 pitch Substances 0.000 claims abstract description 83
- 230000029936 alkylation Effects 0.000 claims abstract description 15
- 238000005804 alkylation reaction Methods 0.000 claims abstract description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 125000001424 substituent group Chemical group 0.000 claims abstract description 5
- 239000007791 liquid phase Substances 0.000 claims abstract description 3
- -1 alkyl compound Chemical class 0.000 claims abstract 2
- 238000007669 thermal treatment Methods 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 238000009835 boiling Methods 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 7
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000000571 coke Substances 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 238000005470 impregnation Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 238000006068 polycondensation reaction Methods 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 125000003700 epoxy group Chemical group 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 2
- 239000010692 aromatic oil Substances 0.000 claims 2
- 230000004907 flux Effects 0.000 claims 2
- 125000000217 alkyl group Chemical group 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000004939 coking Methods 0.000 description 15
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000002168 alkylating agent Substances 0.000 description 7
- 229940100198 alkylating agent Drugs 0.000 description 7
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 4
- 239000011294 coal tar pitch Substances 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 229940073608 benzyl chloride Drugs 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 230000020335 dealkylation Effects 0.000 description 3
- 238000006900 dealkylation reaction Methods 0.000 description 3
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 3
- 239000011302 mesophase pitch Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XMWGTKZEDLCVIG-UHFFFAOYSA-N 1-(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1 XMWGTKZEDLCVIG-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 2
- 230000002152 alkylating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011331 needle coke Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- YAYNEUUHHLGGAH-UHFFFAOYSA-N 1-chlorododecane Chemical compound CCCCCCCCCCCCCl YAYNEUUHHLGGAH-UHFFFAOYSA-N 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000005574 benzylation reaction Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000011312 pitch solution Substances 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C3/00—Working-up pitch, asphalt, bitumen
- C10C3/02—Working-up pitch, asphalt, bitumen by chemical means reaction
- C10C3/026—Working-up pitch, asphalt, bitumen by chemical means reaction with organic compounds
Definitions
- the invention relates to a method for producing pitches with changed properties and the use of these pitches.
- pitches and pitch-like residues from coal refining and mineral oil processing is extremely diverse.
- the use in the construction sector as a binding agent, corrosion protection agent and insulating agent the use in the production of carbon or carbon molded bodies should be mentioned in particular.
- the properties of the available pitches do not always correspond to the wishes of the processors, there has been no lack of attempts to modify the pitches in order to improve the desired properties.
- the coking properties of pitches can be modified by removing unwanted components such as ash formers and fractions insoluble in quinoline.
- the modification by thermal treatment and hydrogenation is also described in the literature. The hydrogenation is the most complex process.
- JP-PS 7641,129 describes the quality improvement of petroleum and coal tar pitch by alkylating the potassium-containing pitch / solvent mixture with ethyl iodide and subsequent catalytic hydrogenation.
- Quinoline-insoluble fractions (30% by weight of Ql) can be brought to a solution of 86% by weight by this treatment.
- Needle coke can be produced from the QI-free pitch in a yield of 96% by weight.
- the improved coking properties are attributable to the separation of the 01 and the hydrogenation, since alkylation with ethyl iodide in the presence of potassium alone does not improve the coking behavior, as stated above.
- pitches by alkylation which are particularly suitable for the production of carbon, carbon moldings and their precursors and are not dealkylated before the polycondensation.
- the object is achieved by alkylating a pitch with 5 to 50% by weight, based on the pitch of a reactive C 1 -C 4 -alkyl compound which contains at least one aromatic substituent and at least one multiple bond and / or one reactive substituent in liquid Phase, optionally under pressure, with the addition of solvents and / or gaseous catalysts.
- hydroxyl groups, epoxy groups and thiol groups can be used as reactive substituents of the alkylating agent.
- a catalyst has to be added or part of the hydroxy compounds have to be replaced by corresponding halogen compounds.
- the catalyst must not remain in the alkylated pitch, since it accelerates the dealkylation during further processing by thermal treatment.
- a solid catalyst such as AlCl 3 is unsuitable for this. Therefore only gaseous catalysts such as HCI are used.
- Solvents are not required, but can be used especially at low alkylation temperatures or when using high-melting pitches.
- the alkylating agent is preferably mixed in above the softening point (EP) of the pitch, in particular 60 K above the EP. At temperatures above the boiling point of the alkylating agent, the alkylation takes place under a pressure which corresponds to its vapor pressure at the alkylation temperature.
- the alkylation can be carried out, for example, in a stirrer retort with a reflux condenser to prevent the evaporation of the alkylating agent.
- the reaction time is dependent on the temperature and the alkylating agent used, 5-50% by weight, preferably 10-30% by weight, based on the pitch.
- the alkylated pitch according to the invention usually shows a reduced viscosity and a lower content of toluene-insoluble (TI) and quinoline-insoluble (Ql) compared to the starting pitch.
- TI toluene-insoluble
- Ql quinoline-insoluble
- the coking residue Conradson
- a single-phase mesophase pitch is formed during thermal treatment as with hydrogenated pitches. This means that in the pitch according to the invention there is no dealkylation on thermal treatment, as is described in all known publications on alkylated pitches.
- 100 parts by weight of a coal tar pitch with an EP (K.-S.) of 90 ° C are alkylated at 180 ° C with 10 parts by weight of a mixture of 90% by weight of benzyl alcohol and 10% by weight of benzyl chloride.
- Benzyl chloride can be replaced by benzyl alcohol if dry HCl gas is passed through the liquid pitch during the reaction.
- the reaction mixture is heated to 250 ° C. and kept at this temperature until the end of the water separation.
- the analytical characteristics of the pitch change as follows through benzylation:
- Filtered normal pitch as described in Example 1, is thermally treated under the same conditions as there.
- the substance data are shown in Table 4. After 60 min. there is a phase separation into an isotropic pitch matrix (approx. 80% by weight) and an anisotropic bulk mesophase with a pour point that can no longer be determined after the separation. Two values are therefore given under the pitch sample 5, of which the first was measured on the pitch matrix and the second on the bulk mesophase.
- Example 1 A comparison with the properties of the alkylated pitch in Example 1 clearly shows that the alkylation of a pitch according to the invention accelerates the polycondensation (TI and Q1 rise faster). Lower-boiling pitch components are also incorporated (the amount of distillate is lower) and the coking residue is higher, which indicates a high thermal stability of the alkylated pitch. In addition, no segregation takes place during the thermal treatment of the alkylated pitch.
- the hydrogenation gives the pitch a better solubility than the alkylation and a lower viscosity.
- the polymerization is delayed (Ql) and the amount of polymerizable ingredients is reduced (amount of distillate).
- the mesophase pitch that forms in a much smaller amount also consists of a homogeneous phase as with alkylated pitch.
- the advantageous properties of the alkylated pitches according to the invention such as the high coking residue or the low amount of distillate, the higher reactivity and the ability to form homogeneous mesophase pitches, improve its possible uses as a precursor for the production of shaped carbon bodies, as shown in the examples below becomes.
- Alkylated pitch from Example 2 was mixed with petroleum coke of defined granulometry and fired to shaped bodies at temperatures up to 960 ° C.
- the properties of the moldings were compared with test anodes from the same softening point.
- the shaped articles made of benzylated pitch showed the same mechanical properties and the same burning properties with a 20% reduction in the burning time of the test bodies.
- the petropech alkylated with chloromethylnaphthalene from Example 3 was investigated by means of "in situ hot stage microscopy" in a stream of N 2 . At a heating rate of 3 ° C / min, large mesophase areas are formed at temperatures between 350 and 400 ° C, which coke anisotropically when the temperature increases further. It is known that pitches with such behavior are suitable as precursors for needle coke.
- the styrene alkylated pitch from Example 4 can be used as impregnation pitch.
- the effect of the alkylation is visible when compared to a conventionally produced impregnation pitch.
- 100 parts by weight of an alkylated pitch according to Example 1 are at 400 ° C under a pressure of 100 mbar for 60 min. thermally treated in an autoclave with stirring in an N 2 atmosphere. This creates a homogeneous mesophase pitch with an EP (K.-S.) of 270 ° C, a mesophase content of 72% by volume and a QI content of 27.3% by weight. Pitches of this type are outstandingly suitable as precursors for the production of carbon fibers, as is known from the literature.
- precursors for carbon fibers with an EP K.-S.
- an EP K.-S.
- QI content 15 to 50% by weight
- mesophase content of up to Produce 100 wt .-% in a simple manner.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Working-Up Tar And Pitch (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Pechen mit veränderten Eigenschaften und die Verwendung dieser Peche.The invention relates to a method for producing pitches with changed properties and the use of these pitches.
Die Verwendung von Pechen und pechartigen Rückständen aus der Kohleveredelung und der Mineralölaufarbeitung ist außerordentlich vielfältig. Neben dem Einsatz im Baubereich als Binde-, Korrosionsschutz- und Isoliermittel ist insbesondere die Verwendung bei der Herstellung von Kohlenstoff bzw. Kohlenstoff-Formkörpern zu nennen. Da die Eigenschaften der verfügbaren Peche nicht immer den Wünschen der Weiterverarbeiter entsprechen, hat es nicht an Versuchen gefehlt, die Peche zu modifizieren, um so die gewünschten Eigenschaften zu verbessern. Es ist bekannt, daß die Verkokungseigenschaften von Pechen durch Abtrennen ungewünschter Bestandteile wie etwa Aschebildnern und in Chinolin unlöslicher Fraktionen modifiziert werden können. Weiterhin ist in der Literatur die Modifizierung durch thermische Behandlung und Hydrierung beschrieben. Die Hydrierung ist dabei das aufwendigste Verfahren. Der Einfluß der Alkylierung von benzolunlöslichen (BI)/chinolinlöslichen (QS) (ß-Harzen) und chinolinunlöslichen Fraktionen von Steinkohlenteerpech (QI) ist ebenfalls untersucht worden (Fuel 1974, 53(4), 253-7). Die Alkylierung mit z. B. Alkylhalogeniden verbessert die Löslichkeit in Benzol, aber im Gegensatz zur Hydrierung wird keine Verbesserung der Graphitierbarkeit und der Koksstruktur erreicht. Ähnliche Untersuchungen an chinolinunlöslichen Fraktionen von Petroleumpechen wurden durchgeführt (Fuel 1975, 54(4), 265-8). Bei der Alkylierung mit Kalium und Ethyljodid können 60 % in eine benzollösliche Form umgewandelt werden. Die Verkokungseigenschaften werden nicht verbessert. Durch eine katalytische Hydrierung wird das alkylierte Pech wieder dealkyliert.The use of pitches and pitch-like residues from coal refining and mineral oil processing is extremely diverse. In addition to the use in the construction sector as a binding agent, corrosion protection agent and insulating agent, the use in the production of carbon or carbon molded bodies should be mentioned in particular. Since the properties of the available pitches do not always correspond to the wishes of the processors, there has been no lack of attempts to modify the pitches in order to improve the desired properties. It is known that the coking properties of pitches can be modified by removing unwanted components such as ash formers and fractions insoluble in quinoline. The modification by thermal treatment and hydrogenation is also described in the literature. The hydrogenation is the most complex process. The influence of the alkylation of benzene-insoluble (BI) / quinoline-soluble (QS) (β-resins) and quinoline-insoluble fractions of coal tar pitch (QI) has also been investigated (Fuel 1974, 53 (4), 253-7). The alkylation with z. B. Alkyl halides improves the solubility in benzene, but in contrast to the hydrogenation, no improvement in the graphitizability and the coke structure is achieved. Similar studies have been carried out on quinoline-insoluble fractions of petroleum particles (Fuel 1975, 54 (4), 265-8). When alkylated with potassium and ethyl iodide, 60% can be converted to a benzene-soluble form. The coking properties are not improved. The alkylated pitch is dealkylated again by catalytic hydrogenation.
Die Alkylierung von Asphalt mit Dodecylchlorid durch Friedel-Crafts-Reaktion ergibt ein lösliches aber schlecht graphitierbares Material (Nenryo Kyokai-Shi 1975, 54(12), 994 - 1001). In der JP-PS 7641,129 ist die Qualitätsverbesserung von Petroleum- und Kohleteerpech durch Alkylieren des Kalium enthaltenden Pech/Lösungsmittel-Gemisches mit Ethyljodid und anschließendem katalytischem Hydrieren beschrieben. Chinolinunlösliche Fraktionen (30 Gew.-% Ql) lassen sich durch diese Behandlung zu 86 Gew.-% in Lösung bringen. Aus dem QI-freien Pech kann Nadelkoks in einer Ausbeute von 96 Gew.- % erzeugt werden. Die verbesserten Verkokungseigenschaften sind der Abtrennung des 01 und der Hydrierung zuzurechnen, da die Alkylierung mit Ethyljodid in Gegenwart von Kalium allein keine Verbesserung des Verkokungsverhaltens bewirkt, wie oben ausgeführt.The alkylation of asphalt with dodecyl chloride by Friedel-Crafts reaction results in a soluble but poorly graphitizable material (Nenryo Kyokai-Shi 1975, 54 (12), 994-1001). JP-PS 7641,129 describes the quality improvement of petroleum and coal tar pitch by alkylating the potassium-containing pitch / solvent mixture with ethyl iodide and subsequent catalytic hydrogenation. Quinoline-insoluble fractions (30% by weight of Ql) can be brought to a solution of 86% by weight by this treatment. Needle coke can be produced from the QI-free pitch in a yield of 96% by weight. The improved coking properties are attributable to the separation of the 01 and the hydrogenation, since alkylation with ethyl iodide in the presence of potassium alone does not improve the coking behavior, as stated above.
Die Alkylierung durch eine Friedel-Crafts-Reaktion verbessert zwar die Löslichkeit selbst von in Chinolin unlöslichen Pechfraktionen, nicht aber das Verkokungsverhalten (Sekiyu Gakkai-Shi 1978, 21 (1), 16 - 21). Die Verkokungseigenschaften werden deutlich schlechter. Auch wenn das Ausgangspech zu anisotropem Koks verkokbar ist, wird aus dem alkylierten Pech ein nichtgraphitierbarer Koks erhalten.The alkylation by a Friedel-Crafts reaction improves the solubility of even pitch fractions insoluble in quinoline, but not the coking behavior (Sekiyu Gakkai-Shi 1978, 21 (1), 16-21). The coking properties become significantly worse. Even if the initial pitch can be coked to anisotropic coke, a non-graphitizable coke is obtained from the alkylated pitch.
Es besteht daher die Aufgabe, durch Alkylieren Peche herzustellen, die sich besonders gut zur Herstellung von Kohlenstoff, Kohlenstoff-Formkörpern und deren Precursoren eignen und nicht bereits vor der Polykondensation dealkyliert werden.There is therefore the task of producing pitches by alkylation which are particularly suitable for the production of carbon, carbon moldings and their precursors and are not dealkylated before the polycondensation.
Die Aufgabe wird gelöst durch Alkylieren eines Peches mit 5 bis 50 Gew.-%, bezogen auf das Pech einer reaktiven Ci- bis C4-Alkylverbindung, die mindestens einen aromatischen Substituenten und wenigstens eine Mehrfachbindung oder/und einen reaktiven Substituenten enthält, in flüssiger Phase, gegebenenfalls unter Druck, unter Zusatz von Lösungsmitteln oder/und gasförmigen Katalysatoren.The object is achieved by alkylating a pitch with 5 to 50% by weight, based on the pitch of a reactive C 1 -C 4 -alkyl compound which contains at least one aromatic substituent and at least one multiple bond and / or one reactive substituent in liquid Phase, optionally under pressure, with the addition of solvents and / or gaseous catalysts.
Als Pech können alle mineralöl- oder kohlestämmigen hochsiedenden aromatischen Rückstände mit einem Erweichungspunkt (Kraemer-Sarnow) zwischen 40 und 150 °C verwendet werden wie beispielsweise Krackrückstände, Aromatenextrakte, Steinkohlenpeche, Kohleöle und ähnliches. Bevorzugt werden dabei feststofffreie Peche.As a bad luck, all mineral oil or coal-derived high-boiling aromatic residues with a softening point (Kraemer-Sarnow) between 40 and 150 ° C can be used, such as cracking residues, aromatic extracts, hard coal pitches, coal oils and the like. Solids-free pitches are preferred.
Als reaktive Substituenten des Alkylierungsmittels kommen neben Halogenen Hydroxylgruppen, Epoxigruppen und Thiolgruppen in Frage. Bei der Verwendung von hydroxylsubstituierten Alkylierungsmitteln muß im Gegensatz zu halogensubstituierten ein Katalysator zugesetzt oder ein Teil der Hydroxyverbindungen durch entsprechende Halogenverbindungen ersetzt werden. Der Katalysator darf jedoch nicht im alkylierten Pech verbleiben, da er die Dealkylierung bei der Weiterverarbeitung durch thermische Behandlung beschleunigt. Ein fester Katalysator wie beispielsweise AlCl3 ist hierfür ungeeignet. Daher werden nur gasförmige Katalysatoren wie HCI verwendet.In addition to halogens, hydroxyl groups, epoxy groups and thiol groups can be used as reactive substituents of the alkylating agent. When using hydroxyl-substituted alkylating agents, in contrast to halogen-substituted ones, a catalyst has to be added or part of the hydroxy compounds have to be replaced by corresponding halogen compounds. However, the catalyst must not remain in the alkylated pitch, since it accelerates the dealkylation during further processing by thermal treatment. A solid catalyst such as AlCl 3 is unsuitable for this. Therefore only gaseous catalysts such as HCI are used.
Lösungsmittel sind nicht erforderlich, können aber verwendet werden insbesondere bei niedrigen Alkylierungstemperaturen oder wenn hochschmelzende Peche eingesetzt werden.Solvents are not required, but can be used especially at low alkylation temperatures or when using high-melting pitches.
Das Alkylierungsmittel wird vorzugsweise oberhalb des Erweichungspunktes (EP) des Peches, insbesondere 60 K oberhalb des EP's, diesem zugemischt. Bei Temperaturen oberhalb des Siedepunktes des Alkylierungsmittels findet die Alkylierung unter einem Druck statt, die seinem Dampfdruck bei der Alkylierungstemperatur entspricht. Die Alkylierung kann beispielsweise in einer Rührwerksretorte mit Rückflußkühler durchgeführt werden, um das Abdampfen des Alkylierungsmittels zu verhindern.The alkylating agent is preferably mixed in above the softening point (EP) of the pitch, in particular 60 K above the EP. At temperatures above the boiling point of the alkylating agent, the alkylation takes place under a pressure which corresponds to its vapor pressure at the alkylation temperature. The alkylation can be carried out, for example, in a stirrer retort with a reflux condenser to prevent the evaporation of the alkylating agent.
Die Reaktionszeit ist von der Temperatur und dem eingesetzten Alkylierungsmittel, 5 - 50 Gew.-% vorzugsweise 10 - 30 Gew.-% bezogen auf das Pech, abhängig. Das erfindungsgemäß alkylierte Pech zeigt wie die bekannten alkylierten Peche meist eine verminderte Viskosität und einen geringeren Gehalt an Toluolunlöslichem (TI) und Chinolinunlöslichem (Ql) verglichen mit dem Ausgangspech. Im Gegensatz zu den bekannten alkylierten Pechen erhöht sich jedoch der Verkokungsrückstand (Conradson), und es wird bei thermischer Behandlung wie bei hydrierten Pechen ein einphasiges Mesophasenpech gebildet. Das bedeutet, daß bei dem erfindungsgemäßen Pech keine Dealkylierung bei thermischer Behandlung stattfindet, wie sie in allen bekannten Veröffentlichungen über alkylierte Peche beschrieben wird.The reaction time is dependent on the temperature and the alkylating agent used, 5-50% by weight, preferably 10-30% by weight, based on the pitch. Like the known alkylated pitches, the alkylated pitch according to the invention usually shows a reduced viscosity and a lower content of toluene-insoluble (TI) and quinoline-insoluble (Ql) compared to the starting pitch. In contrast to the known alkylated pitches, however, the coking residue (Conradson) increases, and a single-phase mesophase pitch is formed during thermal treatment as with hydrogenated pitches. This means that in the pitch according to the invention there is no dealkylation on thermal treatment, as is described in all known publications on alkylated pitches.
Die Erfindung und die Eigenschaften der nach dem Verfahren hergestellten Peche wird in den nachfolgenden Beispielen näher erläutert. Sie sind Ausführungsbeispiele zur Erläuterung der praktischen Durchführung und sollen nicht den Umfang der Erfindung einschränken.The invention and the properties of the pitches produced by the process are explained in more detail in the examples below. They are exemplary embodiments to explain the practical implementation and are not intended to limit the scope of the invention.
100 Gew.-Teile filtriertes Steinkohlenteernormalpech mit einem Erweichungspunkt (EP) nach Kraemer-Sarnow (K.-S.) von 72 °C, einem Verkokungsrückstand (Conradson) von 44,6 Gew.-%, 23,2 Gew.-% TI, 0,3 Gew.-% Ql und folgender Elementaranalyse:
- C92,6 %
- H4,7 %
- N1,3%
- SO,6%
werden in einem Rührkessel mit Rückflußkühler geschmolzen und auf 160 °C erhitzt. Danach werden unter Rühren 30 Gew.-Teile Benzylchlorid zudosiert, das Gemisch auf 250 °C erwärmt und diese Temperatur 5 h lang gehalten. Die Eigenschaften des so erhaltenen alkylierten Peches (1) sind in der Tabelle 1 enthalten.100 parts by weight of filtered coal tar pitch with a softening point (EP) according to Kraemer-Sarnow (K.-S.) of 72 ° C, a coking residue (Conradson) of 44.6% by weight, 23.2% by weight TI, 0.3% by weight of Ql and the following elementary analysis:
- C92.6%
- H4.7%
- N1.3%
- SO, 6%
are melted in a stirred vessel with reflux condenser and heated to 160 ° C. 30 parts by weight of benzyl chloride are then metered in with stirring, the mixture is heated to 250 ° C. and this temperature is maintained for 5 hours. The properties of the alkylated pitch (1) thus obtained are shown in Table 1.
Zur Charakterisierung des Verhaltens dieses Peches bei thermischer Behandlung wird eine Probe unter Schutzgas und langsamen Rühren bei einem Druck von 130 mbar bis auf 400 °C erwärmt und diese Temperatur gehalten. Bei Erreichen dieser Temperatur und dann alle 30 min wird eine Probe gezogen, um EP bzw. Fließpunkt (Fp) nach der Schmelzpunktbestimmung von Dr. Tottoli, TI, QI und Verkokungsrückstand zu bestimmen. Außerdem wird der Destillatanfall auf den Einsatz bezogen gemessen. Die Ergebnisse sind in der Tabelle 1 aufgeführt, wobei die bei Erreichen von 400 °C gezogene Probe mit (2) gekennzeichnet und alle folgenden fortlaufend numeriert sind.
100 Gew.-Teile eines Steinkohlenteerpechs mit einem EP (K.-S.) von 90 °C werden bei 180 °C mit 10 Gew.-Teilen einer Mischung aus 90 Gew.-% Benzylalkohol und 10 Gew.-% Benzylchlorid alkyliert. Benzylchlorid kann durch Benzylalkohol ersetzt werden, wenn bei der Umsetzung trockenes HCI-Gas durch das flüssige Pech geleitet wird. Das Reaktionsgemisch wird auf 250 °C erwärmt und bei dieser Temperatur bis Ende der Wasserabscheidung gehalten. Die analytischen Kenndaten des Pechs ändern sich durch Benzylierung wie folgt:
Zu 100 Gew.-Teilen eines Petropechs werden bei 200 °C 30 Gew.-Teile Chlormethylnaphthalin langsam zugetropft. Die Temperatur wird innerhalb von 3 h auf 250 °C erhöht und weitere 3 h bei 250 °C gehalten. In Tabelle 3 sind die analytischen Kenndaten des Einsatzmaterials und des erfindungsgemäß alkylierten Pechs gegenübergestellt.
100 Gew.-Teile carbostämmigen Pechs mit einem EP (K.-S.) von 41 °C, einem Verkokungsrückstand nach Conradson von 31,2 Gew.-%, 13,2 Gew.-% TI und 3,5 Gew.-% 01 werden auf 140 °C erwärmt. Unter Rühren werden 20 Gew.-Teile Styrol zudosiert. Nach Zugabe wird die Temperatur langsam bis auf 250 °C erhöht. 3 h nach Erreichen der Endtemperatur werden leichtflüchtige Nebenprodukte abdestilliert und der Erweichungspunkt des Pechs durch thermische Behandlung auf 70 °C erhöht. Das mit Styrol umgesetzte Pech besitzt folgende Eigenschaften: EP (K.-S.) 71 °C; TI 25,2 Gew.-%;QI 3,0 Gew.-%; Verkokungsrückstand (Conradson) 46,6 Gew.-%.100 parts by weight of carbo-derived pitch with an EP (K.-S.) of 41 ° C, a coking residue according to Conradson of 31.2% by weight, 13.2% by weight of TI and 3.5% by weight. % 01 are heated to 140 ° C. 20 parts by weight of styrene are metered in with stirring. After the addition, the temperature is slowly increased to 250 ° C. 3 h after reaching the final temperature, volatile by-products are distilled off and the softening point of the pitch is raised to 70 ° C. by thermal treatment. The pitch reacted with styrene has the following properties: EP (K.-S.) 71 ° C; TI 25.2% by weight; QI 3.0% by weight; Coking residue (Conradson) 46.6% by weight.
Filtriertes Normalpech, wie im Beispiel 1 beschrieben, wird unter den gleichen Bedingungen wie dort thermisch behandelt. Die Stoffdaten sind in der Tabelle 4 wiedergegeben. Nach 60 min. kommt es zu einer Phasentrennung in eine isotrope Pechmatrix (ca. 80 Gew.-%) und eine anisotrope Bulkmesophase mit einem nach der Abtrennung nicht mehr bestimmbaren Fließpunkt. Unter der Pechprobe 5 sind daher jeweils zwei Werte angegeben, von denen der erste an der Pechmatrix gemessen wurde und der zweite an der Bulkmesophase.
Der Vergleich mit den Eigenschaften des alkylierten Peches in Beispiel 1 zeigt deutlich, daß durch die erfindungsgemäße Alkylierung eines Peches die Polykondensation beschleunigt wird (TI und Ql steigen schneller an). Dabei werden auch niedriger siedende Pechkomponenten eingebunden (die Destillatmenge ist geringer) und der Verkokungsrückstand liegt höher, was auf eine hohe thermische Stabilität des alkylierten Peches hindeutet. Außerdem findet bei der thermischen Behandlung des alkylierten Peches keine Entmischung statt.A comparison with the properties of the alkylated pitch in Example 1 clearly shows that the alkylation of a pitch according to the invention accelerates the polycondensation (TI and Q1 rise faster). Lower-boiling pitch components are also incorporated (the amount of distillate is lower) and the coking residue is higher, which indicates a high thermal stability of the alkylated pitch. In addition, no segregation takes place during the thermal treatment of the alkylated pitch.
In einem Rührwerksautoklaven werden 100 Gew.-Teile Normalpech entsprechend Beispiel 1 mit 300 Gew.-Teilen 1.2.3.4.-Tetrahydrochinolin unter Rühren bei 25 bar auf 430 °C erhitzt und diese Temperatur 15 min. gehalten. Nach Abdestillieren des Lösungsmittels wird ein hydriertes Pech (1) mit den in der Tabelle 5 aufgeführten Eigenschaften erhalten. Eine Probe dieses Peches wird wie im Beispiel 1 thermisch behandelt. Die Analysenergebnisse sind entsprechend der Tabelle 1 des Beispiels 1 der Tabelle 5 zu entnehmen.
Durch die Hydrierung erhält das Pech eine bessere Löslichkeit als durch die Alkylierung und eine niedrigere Viskosität. Die Polymerisation wird allerdings verzögert (Ql) und die Menge an polymerisierbaren Inhaltsstoffen verringert (Destillatmenge). Das sich in wesentlich geringerer Menge bildende Mesophasenpech besteht ebenfalls aus einer homogenen Phase wie beim alkylierten Pech.The hydrogenation gives the pitch a better solubility than the alkylation and a lower viscosity. However, the polymerization is delayed (Ql) and the amount of polymerizable ingredients is reduced (amount of distillate). The mesophase pitch that forms in a much smaller amount also consists of a homogeneous phase as with alkylated pitch.
100 Gew.-Teile Benzolextrakt eines Normalpechs entsprechend Beispiel 1 werden mit 3 Gew.-Teilen AI-C13 versetzt.100 parts by weight of benzene extract of a normal pitch according to Example 1 are mixed with 3 parts by weight of AI-C1 3 .
Danach werden 31,3 Gew.-Teile in Benzol gelöstes n-Butylchlorid bei 50 °C unter Rühren zugetropft und die Temperatur auf 80 °C erhöht. Nach 2 h Reaktionszeit wird das Reaktionsprodukt neutral gewaschen und das Lösungsmittel bei 200 °C und 5 mbar abdestilliert. Das als Rückstand anfallende butylierte Pech ist durch die in Tabelle 6 angegebenen Werte charakterisiert. Der Butylgehalt errechnet sich aus dem C/H-Verhältnis zu 7 Gew.-%. Der Verkokungsrückstand ist drastisch zurückgegangen. Dies ist nicht allein auf die bei der thermischen Behandlung beobachtete Dealkylierung zurückzuführen. Das Pech selbst ist thermisch instabil geworden. Die thermische Crackung konkurriert mit Polymerisationsreaktionen. Mesophasen können sich nicht ausbilden. Die Ursachen hierfür können sowohl an der leichten Abspaltbarkeit der Butylgruppen liegen als auch daran, daß es nahezu unmöglich ist, den Katalysator vollständig aus der Pechlösung zu entfernen.
Die vorteilhaften Eigenschaften der erfindungsgemäß alkylierten Peche, wie beispielsweise der hohe Verkokungsrückstand bzw. der geringe Destillatanfall, die höhere Reaktivität und die Fähigkeit, homogene Mesophasenpeche zu bilden, verbessern seine Einsatzmöglichkeiten als Precursor für die Herstellung von Kohlenstoff-Formkörpern, wie in den nachfolgenden Beispielen gezeigt wird.The advantageous properties of the alkylated pitches according to the invention, such as the high coking residue or the low amount of distillate, the higher reactivity and the ability to form homogeneous mesophase pitches, improve its possible uses as a precursor for the production of shaped carbon bodies, as shown in the examples below becomes.
Alkyliertes Pech aus Beispiel 2 wurde mit Petrolkoks definierter Granulometrie gemischt und bei Temperaturen bis 960 °C zu Formkörpern gebrannt. Die Eigenschaften der Formkörper wurden mit Testanoden aus Pechen gleichen Erweichungspunktes verglichen. Die Formkörper aus benzyliertem Pech zeigten gleiche mechanische Eigenschaften und gleiche Abbrandeigenschaften bei einer um 20 % reduzierten Brenndauer der Testkörper.Alkylated pitch from Example 2 was mixed with petroleum coke of defined granulometry and fired to shaped bodies at temperatures up to 960 ° C. The properties of the moldings were compared with test anodes from the same softening point. The shaped articles made of benzylated pitch showed the same mechanical properties and the same burning properties with a 20% reduction in the burning time of the test bodies.
Das mit Chlormethylnaphthalin alkylierte Petropech aus Beispiel 3 wurde mittels "in situ-Heiztischmikroskopie" im N2-Strom untersucht. Bei einer Aufheizgeschwindigkeit von 3 °C/min entstehen bei Temperaturen zwischen 350 und 400 °C großflächige Mesophasenbereiche, die bei weiterer Temperaturerhöhung anisotrop verkoken. Es ist bekannt, daß Peche mit derartigen Verhalten als Precursor für Nadelkokse geeignet sind.The petropech alkylated with chloromethylnaphthalene from Example 3 was investigated by means of "in situ hot stage microscopy" in a stream of N 2 . At a heating rate of 3 ° C / min, large mesophase areas are formed at temperatures between 350 and 400 ° C, which coke anisotropically when the temperature increases further. It is known that pitches with such behavior are suitable as precursors for needle coke.
Das mit Styrol alkylierte Pech aus Beispiel 4 kann als Imprägnierpech verwendet werden. Der Effekt der Alkylierung wird bei Vergleich mit einem konventionell hergestellten Imprägnierpech sichtbar.The styrene alkylated pitch from Example 4 can be used as impregnation pitch. The effect of the alkylation is visible when compared to a conventionally produced impregnation pitch.
Die höhere Reaktivität des alkylierten Pechs bei thermischer Behandlung erklärt höhere Verkokungsrückstände. Die geänderte chemische Struktur bewirkt gleichzeitig eine für die Anwendung wichtige Viskositätssenkung.The higher reactivity of the alkylated pitch during thermal treatment explains higher coking residues. The changed chemical structure also brings about an important reduction in viscosity for the application.
100 Gew.-Teile eines alkylierten Peches nach Beispiel 1 werden bei 400 °C unter einem Druck von 100 mbar 60 min. in einem Autoklaven unter Rühren in N2-Atmosphäre thermisch behandelt. Dabei entsteht ein homogenes Mesophasenpech mit einem EP (K.-S.) von 270 °C, einem Mesophasengehalt von 72 Vol.-% und einem QI-Gehalt von 27,3 Gew.-%. Peche dieser Art sind hervorragend als Precursor für die Herstellung von Kohlenstoff-Fasern geeignet, wie aus der Literatur bekannt ist.100 parts by weight of an alkylated pitch according to Example 1 are at 400 ° C under a pressure of 100 mbar for 60 min. thermally treated in an autoclave with stirring in an N 2 atmosphere. This creates a homogeneous mesophase pitch with an EP (K.-S.) of 270 ° C, a mesophase content of 72% by volume and a QI content of 27.3% by weight. Pitches of this type are outstandingly suitable as precursors for the production of carbon fibers, as is known from the literature.
Durch Variation der Parameter der thermischen Behandlung und des Alkylierungsmittels lassen sich Precursor für Kohlenstoff-Fasern mit einem EP (K.-S.) zwischen 200 und 350 °C, einem QI-Gehalt von 15 bis 50 Gew.-% und einem Mesophasengehalt bis 100 Gew.-% in einfacher Weise herstellen.By varying the parameters of the thermal treatment and the alkylating agent, precursors for carbon fibers with an EP (K.-S.) between 200 and 350 ° C., a QI content of 15 to 50% by weight and a mesophase content of up to Produce 100 wt .-% in a simple manner.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19863608130 DE3608130A1 (en) | 1986-03-12 | 1986-03-12 | METHOD FOR PRODUCING MODIFIED PECHE AND THE USE THEREOF |
DE3608130 | 1986-03-12 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0236675A2 EP0236675A2 (en) | 1987-09-16 |
EP0236675A3 EP0236675A3 (en) | 1987-12-16 |
EP0236675B1 true EP0236675B1 (en) | 1990-03-21 |
Family
ID=6296099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87100273A Expired - Lifetime EP0236675B1 (en) | 1986-03-12 | 1987-01-12 | Process for producing modified pitch and its use |
Country Status (6)
Country | Link |
---|---|
US (1) | US4943365A (en) |
EP (1) | EP0236675B1 (en) |
JP (1) | JPS62220582A (en) |
CS (1) | CS262682B2 (en) |
DE (2) | DE3608130A1 (en) |
PL (1) | PL152346B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140346085A1 (en) * | 2013-05-24 | 2014-11-27 | Gs Caltex Corporation | Method of preparing pitch for carbon fiber |
CN104178194A (en) * | 2013-05-27 | 2014-12-03 | Gs加德士 | Preparation method for carbon fiber asphalt |
US9162955B2 (en) * | 2013-11-19 | 2015-10-20 | Uop Llc | Process for pyrolysis of a coal feed |
TWI657127B (en) * | 2017-01-20 | 2019-04-21 | 台灣中油股份有限公司 | Densifying agent |
CN108485694B (en) * | 2018-04-11 | 2021-01-19 | 北京化工大学 | Method for preparing high-quality mesophase pitch by co-carbonization method |
RU2687899C2 (en) * | 2018-11-01 | 2019-05-16 | Чингиз Николаевич Барнаков | Method of producing pitch from waste fractionation of still residue of styrene |
CN114959949B (en) * | 2022-04-27 | 2023-06-13 | 北京化工大学 | Condensed ring aromatic hydrocarbon carbon fiber and preparation method thereof |
CN115466626B (en) * | 2022-09-21 | 2024-01-12 | 武汉科技大学 | Preparation method of high-quality isotropic asphalt |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE549777A (en) * | ||||
CA891474A (en) * | 1972-01-25 | W. Walsh John | Improved petroleum pitch binder | |
DE410419C (en) * | 1923-03-01 | 1925-03-06 | Hoechst Ag | Process for the production of non-resinous products from primeval tar |
US2247375A (en) * | 1937-12-16 | 1941-07-01 | Atlantic Refining Co | Treatment of bituminous materials |
US2545963A (en) * | 1948-12-02 | 1951-03-20 | Standard Oil Dev Co | Process for producing asphalt compositions |
GB899598A (en) * | 1959-12-10 | 1962-06-27 | Chemical Engineering Wiltons L | Improvements in and relating to binding materials for carbon articles |
US3769249A (en) * | 1973-03-01 | 1973-10-30 | Brien Corp O | Thermosetting plastics and method therefor |
JPS5140889B2 (en) * | 1973-10-25 | 1976-11-06 | ||
JPS5235367B2 (en) * | 1974-01-29 | 1977-09-08 | ||
FR2308893A1 (en) * | 1975-04-23 | 1976-11-19 | Creusot Loire | TUBULAR HEAT EXCHANGER WITH END CAPS, WORKING HOT AND UNDER PRESSURE |
US4021356A (en) * | 1975-09-10 | 1977-05-03 | Texaco Inc. | Alkoxylated asphalts as co-surfactants in surfactant oil recovery processes usable in formations containing water having high concentrations of polyvalent ions such as calcium and magnesium |
US4317809A (en) * | 1979-10-22 | 1982-03-02 | Union Carbide Corporation | Carbon fiber production using high pressure treatment of a precursor material |
JPS5790093A (en) * | 1980-11-27 | 1982-06-04 | Cosmo Co Ltd | Treatment of petroleum heavy oil |
SU1022985A1 (en) * | 1980-12-05 | 1983-06-15 | Кузнецкий Филиал Восточного Научно-Исследовательского Углехимического Института | Coal-tap pitch stabilization method |
JPS57147586A (en) * | 1981-03-10 | 1982-09-11 | Nippon Carbon Co Ltd | Modification of pitch for carbon fiber |
SU992560A1 (en) * | 1981-04-17 | 1983-01-30 | Berdnikov Mikhail P | Process for producing modified tall pitch |
US4464248A (en) * | 1981-08-11 | 1984-08-07 | Exxon Research & Engineering Co. | Process for production of carbon artifact feedstocks |
US4465585A (en) * | 1982-03-30 | 1984-08-14 | Union Carbide Corporation | Cholesteric mesophase pitch |
US4431513A (en) * | 1982-03-30 | 1984-02-14 | Union Carbide Corporation | Methods for producing mesophase pitch and binder pitch |
US4457828A (en) * | 1982-03-30 | 1984-07-03 | Union Carbide Corporation | Mesophase pitch having ellipspidal molecules and method for making the pitch |
CA1187653A (en) * | 1983-02-25 | 1985-05-28 | Samuel Cukier | Oxidation-resistant pitches |
US4469585A (en) * | 1983-05-09 | 1984-09-04 | Samuel Cukier | Oxidation resistant pitches |
US4631181A (en) * | 1984-03-31 | 1986-12-23 | Nippon Steel Corporation | Process for producing mesophase pitch |
-
1986
- 1986-03-12 DE DE19863608130 patent/DE3608130A1/en not_active Withdrawn
-
1987
- 1987-01-12 EP EP87100273A patent/EP0236675B1/en not_active Expired - Lifetime
- 1987-01-12 DE DE8787100273T patent/DE3761984D1/en not_active Expired - Lifetime
- 1987-01-22 CS CS87473A patent/CS262682B2/en not_active IP Right Cessation
- 1987-03-09 US US07/023,646 patent/US4943365A/en not_active Expired - Lifetime
- 1987-03-11 PL PL1987264563A patent/PL152346B1/en unknown
- 1987-03-12 JP JP62055447A patent/JPS62220582A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JPS62220582A (en) | 1987-09-28 |
EP0236675A2 (en) | 1987-09-16 |
DE3761984D1 (en) | 1990-04-26 |
PL264563A1 (en) | 1988-05-12 |
PL152346B1 (en) | 1990-12-31 |
CS47387A2 (en) | 1988-08-16 |
DE3608130A1 (en) | 1987-09-17 |
CS262682B2 (en) | 1989-03-14 |
US4943365A (en) | 1990-07-24 |
EP0236675A3 (en) | 1987-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0510315B1 (en) | Coaltar pitch, preparation and use thereof | |
DE2457991B2 (en) | Process for the production of carbon fibers | |
DE2462369A1 (en) | METHOD FOR PRODUCING A PECH CONTAINING MESOPHASE | |
DE2752511C3 (en) | Process for the production of a raw material for the production of needle coke | |
EP0236675B1 (en) | Process for producing modified pitch and its use | |
DE69021221T2 (en) | Carbon binder and process for its manufacture. | |
DE1258532B (en) | Process for the production of a binder for carbon electrodes | |
DE3107563C2 (en) | ||
DE2935039C2 (en) | Process for the production of a highly aromatic, pitch-like carbon material | |
DE3037829A1 (en) | METHOD FOR PRODUCING MODIFIED PECHE AND LOW-SEEDING AROMATS AND OLEFINS AND USE OF THESE PECHE | |
DE3034359A1 (en) | Process for producing high-density,high-strength carbon and graphite material | |
DE2404925A1 (en) | METHOD OF MANUFACTURING SYNTHETIC BAKING COAL | |
DE2823811A1 (en) | METHOD FOR SOLVENT REFINING OF COAL | |
DE3045847C2 (en) | Process for the production of partially hydrogenated aromatics and their use | |
DE2453191A1 (en) | BINDING AGENT FOR ELECTRODES AND METHOD OF MANUFACTURING IT | |
DE2058751A1 (en) | Process for the production of an easily graphitizable electrode pitch | |
DE3347352A1 (en) | Process for producing needle coke | |
DE3033075C2 (en) | Process for the production of high quality carbon binders | |
DE2555812C2 (en) | Method of making pitch | |
DE3418663C2 (en) | ||
DE2121458B2 (en) | Process for the production of pitches suitable for electrode binding agents or impregnating agents | |
EP0138235B1 (en) | Process for preparing a thermal-stable pitch and oil from aromatic petrochemical residues and its use | |
DE2951116C2 (en) | Improvement of the coke quality of coals with insufficient coking properties | |
EP0233185B1 (en) | Method for producing anisotropic carbon fibres | |
EP0174035B1 (en) | Process for preparing needle coke with little irreversible volume expansion from coaltar pitch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL |
|
ITCL | It: translation for ep claims filed |
Representative=s name: BARZANO' E ZANARDO ROMA S.P.A. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
TCNL | Nl: translation of patent claims filed | ||
GBC | Gb: translation of claims filed (gb section 78(7)/1977) | ||
EL | Fr: translation of claims filed | ||
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19871116 |
|
17Q | First examination report despatched |
Effective date: 19881014 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3761984 Country of ref document: DE Date of ref document: 19900426 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ITTA | It: last paid annual fee | ||
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020116 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020118 Year of fee payment: 16 Ref country code: GB Payment date: 20020118 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020627 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030801 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050112 |