EP0227985A2 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
EP0227985A2
EP0227985A2 EP86117065A EP86117065A EP0227985A2 EP 0227985 A2 EP0227985 A2 EP 0227985A2 EP 86117065 A EP86117065 A EP 86117065A EP 86117065 A EP86117065 A EP 86117065A EP 0227985 A2 EP0227985 A2 EP 0227985A2
Authority
EP
European Patent Office
Prior art keywords
electrodes
polymer film
ultrasonic sensor
sensor according
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86117065A
Other languages
German (de)
French (fr)
Other versions
EP0227985A3 (en
EP0227985B1 (en
Inventor
Bernd Dr. Granz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0227985A2 publication Critical patent/EP0227985A2/en
Publication of EP0227985A3 publication Critical patent/EP0227985A3/en
Application granted granted Critical
Publication of EP0227985B1 publication Critical patent/EP0227985B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF

Definitions

  • the invention relates to an ultrasound sensor with a polymer film attached to a support body at least in its edge region, which is piezoelectrically activated at least in a partial region, which is electrically coupled to electrodes.
  • So-called miniature or membrane hydrophones are used to determine the properties of an ultrasound field prevailing in a sound-carrying medium, for example water.
  • the three-dimensional distribution of the sound pressure amplitude of the ultrasound field is determined by measuring the sound pressure prevailing at different locations in a measuring trough with such a hydrophone.
  • a miniature hydrophone in which a piezoactive film made of polyvinylidene fluoride PVDF with electrodes on both of its flat sides and with a thickness of 25 ⁇ m is stretched onto the end face of a stainless steel tube in an electrically insulated manner.
  • the diameter of the film is about 1 mm.
  • a platinum wire is attached to the inside of the film and is connected to the inner conductor of a coaxial cable. This platinum wire is supported by a backing that fills the interior of the stainless steel tube.
  • the outside of the film is electrical with the stainless steel tube contacted and connected to the shield of the coaxial cable.
  • a major advantage of such hydrophones is that the acoustic impedance of their piezoelectric elements is better matched to the acoustic impedance of water than would be the case if a piezoceramic material were used. Compared to piezoceramic sensors, this results in both an increased frequency bandwidth and a reduced disruptive influence on the ultrasound field at the measurement location.
  • the invention is therefore based on the object of specifying an ultrasonic sensor whose piezoelectric element consists of a polymer and which can also be used when measuring high-energy ultrasonic shock waves.
  • the surface charge vibrations in the piezoelectrically active area of the polymer film caused by an ultrasonic wave are electrically coupled via the medium surrounding the polymer film to the electrodes arranged outside the surface area of the polymer film assigned to the piezoelectrically active area of the polymer film .
  • the piezoelectrically active central area of the polymer film can thus be arranged in the focus area of a focused ultrasound shock wave, since there is no mechanically unstable electrically conductive layer in the sensitive area of the polymer film.
  • the invention is based in part on the knowledge that by using a piezoelectric polymer with a piezoceramic material relatively low dielectric constant, a purely capacitive coupling without high signal losses is possible. Accordingly, the electrodes can be attached spatially separated from the piezoelectrically active region of the polymer film both on the film itself and outside of the film, for example on the support body.
  • the electrodes are advantageously designed in such a way that their mutual capacitance is as small as possible compared to the coupling capacitances, in order to reduce the signal losses occurring due to parasitic capacitances.
  • One of the electrodes is connected to the electrical ground of the system.
  • the coupling capacities to the electrodes are as large as possible. Since, as a rule, the environment of the ultrasound sensor is approximately at ground potential during the measurement, the coupling capacitance of the piezoelectrically active region in particular can be increased by suitable design measures without additional signal-reducing parasitic capacitances occurring.
  • a flat, also membrane-like additional ground electrode can be arranged in the ultrasonic sensor opposite the piezoelectrically active region of the membrane parallel to its surface. As a result, the piezoelectrically active region is particularly effectively capacitively coupled to ground.
  • cover plates are arranged on the free end faces of the support body opposite the two flat sides of the membrane.
  • a tight chamber is created between the cover plate and the membrane, containing a sound-carrying liquid is filled.
  • the polarization of the polymer film takes place in an advantageous manner in that it is clamped between movably arranged electrodes located opposite one another and connected to a high voltage.
  • the geometrical shape of the end face of these electrodes thus determines the geometrical shape of the piezoelectrically active region of the polymer film.
  • electrodes for polarization the end faces of which are provided with an electrically conductive, elastic stamp.
  • an ultrasound sensor 2 contains a polymer film 4, for example in the form of a circular disk, which is clamped tightly between two, for example, annular support bodies 6 and forms a membrane 40.
  • the polymer film consists of a semicrystalline polymer, for example polyvinyl fluoride PVF or a copolymer of vinyl fluoride with tetrafluoroethylene or trifluoroethylene, in particular biaxially stretched polyvinylidene fluoride PVDF.
  • the polymer film 4 is polarized in a central region 42 and is piezoelectrically active.
  • the piezoelectrically active area 42 is surrounded by a piezoelectrically inactive area 44.
  • the diameter d of the central region 42 is very much smaller than the diameter D of the membrane 40 of the polymer film 4.
  • the diameter d of the polarized central region Area 42 smaller than 2 mm, in particular smaller than 1 mm.
  • the diameter D of the membrane 40 is advantageously greater than 30 mm, in particular greater than 50 mm choose to reduce the influence of the support body 6 on the sound field to be measured in the central area 42.
  • the thickness of the polymer film 4 is between 10 ⁇ m and 100 ⁇ m, in particular between 25 ⁇ m and 50 ⁇ m.
  • the polymer film 4 is provided on the surface of its piezoelectrically inactive region 44 on its two flat sides with one electrode 8 each.
  • the electrodes 8 are thus arranged in such a way that they are spatially separated from the piezoelectrically active region 42 and do not touch it.
  • the electrodes 8 are preferably located in an outer edge region of the polymer film 4, the width of which is less than 1/4, in particular less than 1/10, of the diameter of the film.
  • the electrodes 8 have an annular shape, for example, and are arranged, for example, concentrically around the central axis 22 in the region of the membrane 40.
  • the electrodes 8 are provided with electrical connection conductors 82, which lead, for example, in radial grooves 62 of the support body 6 to the cylindrical outer edge of the ultrasonic sensor 2.
  • the connecting conductors 82 can be connected, for example, with a coaxial cable, which forwards the electrical signals to further processing electronics, for example a charge-sensitive amplifier.
  • one of the two connection conductors 82 is connected to the electrical ground.
  • the properties of the ultrasound field of an ultrasound transmitter used for medical purposes are generally measured in a basin filled with a sound-carrying liquid, for example water.
  • the ultrasonic sensor 2 is thus surrounded by water 10 during the measurement.
  • the pressure acting on the polymer film 4 through the ultrasonic field Forces generate 42 high-frequency surface charge vibrations in the piezoelectrically active central region.
  • the signal-receiving electrodes 8 are arranged on the outer edge of the membrane area of the polymer film 4, very high sound pressure amplitudes can be measured reproducibly in the central area 40 without the risk of mechanical destruction and the electrodes 8 flaking off the polymer film 4.
  • the electrodes 8 can also extend into the area of the polymer film 4 which is clamped between the support bodies 6.
  • the grooves 64 in which the connecting conductors 82 run no longer have to extend to the inner edge of the support body 6.
  • the two flat sides of the polymer film 4 are each provided with an approximately semi-ring-shaped electrode 86 or 87.
  • the two electrodes 86 and 87 are arranged such that they do not overlap.
  • the parasitic capacitance which occurs between the electrodes 86 and 87 and which causes a reduction in the electrical useful signal is thereby reduced. This is particularly advantageous if the ultrasound sensor is also to be used for measuring ultrasound fields that are used in medical diagnostics.
  • one of the two support bodies 6 is provided with a ground electrode 12 on its flat side facing away from the polymer film 4.
  • This ground electrode 12 is connected to the electrical ground together with that electrode 8 which is located in the region between the ground electrode 12 and the polymer film 4.
  • the ground electrode 12 consists of a stainless steel foil, the thickness of which is less than 100 ⁇ m, in particular between 10 ⁇ m and 20 ⁇ m.
  • the ground electrode 12 is a thin metal grid, the thickness of which is also less than 100 ⁇ m. This reduces the disruptive influence of the ground electrode 12 on the ultrasonic field.
  • the electrode 8 located between the ground electrode 12 and the polymer film 4 can also be omitted, since the ground electrode 12 takes over the function of this electrode 8.
  • the support bodies 6 are each provided with a cover plate 122 or 124 on their flat sides facing away from the polymer film 4. Between the membrane area 40 of the polymer film 4 and the cover plates 122 and 124, a sealed chamber 100 is thus created.
  • these cover plates 122 and 124 consist of a plastic, for example polystyrene PS or polymethacrylic acid methyl ester PMMA, which is the sound-carrying material located outside the chamber 100 Liquid largely adapted acoustically and its influence on the sound field to be measured is low.
  • the cover plates 122 and 124 consist of polymethylpentene, PMP, whose acoustic impedance is almost equal to the acoustic impedance of water.
  • the cover plates 122 and 124 can also consist of a polymer film, the thickness of which is preferably less than 100 ⁇ m.
  • the chambers 100 are sealed off from the outside space and are separated from one another by the polymer film 4.
  • the grooves 62 in which the connecting conductors 82 run for example partially potted with an adhesive 84, or an embodiment according to FIG. 2 is provided in which the grooves do not lead to the inner edge of the support body 6.
  • the chambers 100 are filled with a sound-carrying liquid.
  • Water can be provided as the liquid, for example, in which the signal coupling from the piezoelectrically active central region 42 to the contact electrodes 8 takes place essentially capacitively.
  • the chambers 100 are filled with an electrolyte, for example an aqueous saline solution, the electrical conductivity of which is selected such that the ohmic resistance between the electrodes 8 and the surface of the piezoactive region 42 is less than 1 k ⁇ , in particular less than 100 ⁇ is.
  • the alternating charge signal generated in the piezoelectrically active region 42 is coupled to the electrodes 8 in a first approximation via the series resistance formed by the liquid.
  • At least the surface of the electrodes 8 advantageously consists of a noble metal material, for example gold Au or platinum Pt.
  • one of the cover plates 122 and 124 can also consist of an electrically conductive material, for example a stainless steel foil or an electrically conductive plastic, and can be connected to the electrical ground. As a result, the coupling capacitance of the piezoelectrically active region 42 is increased to ground and the electrical output signal is increased accordingly.
  • one of the cover plates 122 and 124 consists of a metallic material, the ultrasound sensor 2 is to be used in a measurement in an advantageous manner in the sound field of an ultrasound transmitter such that this cover plate is on the side of the ultrasound sensor facing away from the ultrasound transmitter 2 is located.
  • a circular disk-shaped polymer film 4 is attached to a rotationally symmetrical support body 6, which is provided, for example, on its inner wall with an annular recess which extends as far as the end faces of the support bodies 6 facing away from the polymer film 4.
  • a likewise annular electrode 88 is inserted into this recess and fixed with a holding flange 66 fastened to the support body 6.
  • the electrodes 88 are, for example, metallic rings whose wall thickness can be less than 1 mm.
  • the electrodes 88 consist, for example, of stainless steel or brass, which is provided with a platinum protective layer, for example, to protect it from the corrosive properties of the surrounding medium. From the electrodes 88 lead 82 lead through grooves 68 of the support body 6 to its cylindrical outer edge.
  • the polymer film 4 is therefore no longer coated with electrodes.
  • the ultrasonic sensor 24 can also be significantly reduced in its linear dimensions, since in this embodiment the electrodes 88 can also be in the immediate vicinity of the focus of an ultrasonic shock wave, without the risk of the electrodes being destroyed 88 exists.
  • Such miniaturization of the ultrasound sensor 24 has the advantage that the coupling capacitances of the piezoelectrically active area 42 to the electrodes 88 are increased by reducing the mutual distance and thus the sensitivity of the ultrasound sensor 24 is increased.
  • the ultrasonic sensor 24 can also be provided with a ground electrode according to FIG. 4 or with cover plates according to FIG.
  • a polymer film 4 is located between two movably arranged electrodes 14 of a high-voltage source 16 lying opposite one another.
  • the electrodes 14 lying opposite one another are applied to the polymer film 4 in a surface area of the polymer film 4 that is assigned to the piezoelectrically activated partial area 42.
  • the defined partial area 42 of the polymer film 4 is then polarized and piezoelectrically activated by applying the high voltage 16.
  • the further process steps required to activate the polymer film 4 are described, for example, in the publication "J.Acoust.Soc. Am.” Vol. 69, No. 3, March 1981 on page 854.
  • the electrodes 14 can also be provided on their end faces with an electrically conductive elastic stamp 18, which consists, for example, of a conductive polymer or of conductive rubber.
  • the polymer film 4 can then be firmly clamped between these elastic stamps 18 without the risk of mechanical destruction of the polymer film 4.
  • the punches 18 touch the polymer film 4 over their entire end face. This measure can thus increase the homogeneity in the piezoelectric properties of the polarized region 42 of the polymer film 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Die Erfindung bezieht sich auf einen Ultraschall-Sensor (2), bei dem eine in ihrem Randbereich abgestützte Polymerfolie (4) wenigstens in einem Teilbereich (42) piezoelektrisch aktiviert ist. Der Teilbereich (42) ist elektrisch mit Elektroden (8) gekoppelt. Erfindungsge­mäß sind die Elektroden (8), mit denen das in diesem Teilbereich (42) durch ein Ultraschallfeld erzeugte elektrische Signal aufgenommen wird, vom piezoelek­trisch aktiven Bereich (42) räumlich getrennt ange­ordnet. Durch diese Maßnahme kann der Ultraschall-­Sensor (24) auch zur Messung von Ultraschall-Stoßwellen mit hoher Druckamplitude verwendet werden, da eine auf den Flachseiten der Polymerfolie (4) im piezoelektrisch aktiven Bereich (42) angeordnete, im Feld einer Ultra­schall-Stoßwelle mechanisch instabile, elektrisch leitfähige Schicht zur Aufnahme des elektrischen Signals nicht mehr erforderlich ist.

Figure imgaf001
The invention relates to an ultrasonic sensor (2), in which a polymer film (4) supported in its edge region is piezoelectrically activated in at least one partial region (42). The sub-area (42) is electrically coupled to electrodes (8). According to the invention, the electrodes (8) with which the electrical signal generated in this partial area (42) by an ultrasound field is recorded are arranged spatially separated from the piezoelectrically active area (42). As a result of this measure, the ultrasound sensor (24) can also be used for measuring ultrasound shock waves with a high pressure amplitude, since a one arranged on the flat sides of the polymer film (4) in the piezoelectrically active region (42) is mechanical in the field of an ultrasound shock wave unstable, electrically conductive layer for receiving the electrical signal is no longer required.
Figure imgaf001

Description

Die Erfindung bezieht sich auf einen Ultraschall-Sensor mit einer wenigstens in ihrem Randbereich an einem Stütz­körper befestigten Polymerfolie, die wenigstens in einem Teilbereich piezoelektrisch aktiviert ist, der mit Elektroden elektrisch gekoppelt ist.The invention relates to an ultrasound sensor with a polymer film attached to a support body at least in its edge region, which is piezoelectrically activated at least in a partial region, which is electrically coupled to electrodes.

Bei der Bestimmung der Eigenschaften eines in einem schalltragenden Medium, beispielsweise Wasser, herrschenden Ultraschallfeldes werden sogenannte Miniatur- oder Membran-Hydrophone verwendet. Die dreidimensionale Verteilung der Schalldruckamplitude des Ultraschallfeldes wird dadurch ermittelt, daß der an jeweils verschiedenen Orten in einer Meßwanne herrschende Schalldruck mit einem derartigen Hydrophon gemessen wird.So-called miniature or membrane hydrophones are used to determine the properties of an ultrasound field prevailing in a sound-carrying medium, for example water. The three-dimensional distribution of the sound pressure amplitude of the ultrasound field is determined by measuring the sound pressure prevailing at different locations in a measuring trough with such a hydrophone.

Aus "Ultrasonics, September 1981, Seiten 213 bis 216" ist ein Miniatur-Hydrophon bekannt, bei dem eine an ihren beiden Flachseiten mit Elektroden versehene piezoaktive Folie aus Polyvinylidenfluorid PVDF mit einer Dicke von 25 µm auf die Stirnfläche eines Edel­stahlrohres elektrisch isoliert aufgespannt ist. Der Durchmesser der Folie beträgt etwa 1 mm. Auf der Innen­seite der Folie ist ein Platindraht angebracht, der mit dem Innenleiter eines Koaxialkabels verbunden ist. Dieser Platindraht wird von einem, das Innere des Edel­stahlrohres ausfüllenden Backing gestützt. Die Außen­seite der Folie ist mit dem Edelstahlrohr elektrisch kontaktiert und mit der Abschirmung des Koaxialkabels verbunden.From "Ultrasonics, September 1981, pages 213 to 216", a miniature hydrophone is known in which a piezoactive film made of polyvinylidene fluoride PVDF with electrodes on both of its flat sides and with a thickness of 25 μm is stretched onto the end face of a stainless steel tube in an electrically insulated manner. The diameter of the film is about 1 mm. A platinum wire is attached to the inside of the film and is connected to the inner conductor of a coaxial cable. This platinum wire is supported by a backing that fills the interior of the stainless steel tube. The outside of the film is electrical with the stainless steel tube contacted and connected to the shield of the coaxial cable.

In "Ultrasonics, Mai 1980, Seiten 123 bis 126" ist ein Membran-Hydrophon offenbart, bei dem eine Folie aus Polyvinylidenfluorid PVDF mit einer Dicke von 25 µm zwischen zwei als Stützkörper dienende Metallringe auf­gespannt ist. Dadurch wird eine Membran mit einem Inendurchmesser von etwa 100 mm gebildet. Die Ober­flächen der Membran sind in einem kleinen zentralen Be­reich mit einander gegenüberliegenden kreisscheiben­förmigen Elektroden versehen, deren Durchmesser bei­spielsweise 4 mm beträgt. Zwischen diesen Elektroden befindet sich der polarisierte, piezoelektrisch aktive Bereich der Membran. Von den kreisscheibenförmigen Elektroden führen als Metallfilme auf die Oberflächen der Membran aufgebrachte Anschlußleiter zum Rand der Membran und werden dort mit Hilfe eines Leitklebers mit einem Koaxialkabel kontaktiert."Ultrasonics, May 1980, pages 123 to 126" discloses a membrane hydrophone in which a film made of polyvinylidene fluoride PVDF with a thickness of 25 μm is stretched between two metal rings serving as support bodies. This forms a membrane with an inside diameter of approximately 100 mm. The surfaces of the membrane are provided in a small central area with opposing circular disk-shaped electrodes, the diameter of which is, for example, 4 mm. The polarized, piezoelectrically active region of the membrane is located between these electrodes. From the circular disk-shaped electrodes, connecting leads applied as metal films to the surfaces of the membrane lead to the edge of the membrane and are contacted there with the aid of a conductive adhesive with a coaxial cable.

Ein wesentlicher Vorteil derartiger Hydrophone besteht darin, daß die akustische Impedanz ihrer piezoelek­trischen Elemente der akustischen Impedanz von Wasser besser angepaßt ist, als es bei Verwendung eines piezokeramischen Materials der Fall wäre. Dies ergibt gegenüber piezokeramischen Sensoren sowohl eine erhöhte Frequenzbandbreite als auch eine verringerte störende Beeinflussung des Ultraschallfeldes am Meßort.A major advantage of such hydrophones is that the acoustic impedance of their piezoelectric elements is better matched to the acoustic impedance of water than would be the case if a piezoceramic material were used. Compared to piezoceramic sensors, this results in both an increased frequency bandwidth and a reduced disruptive influence on the ultrasound field at the measurement location.

Mit derartigen Hydrophonen lassen sich jedoch keine Ultraschall-Stoßwellen, deren Druckamplituden im Be­reich von etwa 10⁸ Pa liegen, messen. Derartige Stoß­wellen mit sehr steilen Pulsflanken, deren Anstiegs­zeiten 1 µs unterschreiten, führen bei den bekannten Hydrophonen zu einer durch Kavitationseffekte verur­ sachten mechanischen Zerstörung der im piezoelektrisch aktiven Bereich der PVDF-Folie aufgebrachten metallischen Elektroden. Solche Stoßwellen treten beispielsweise im Fokusbereich von Lithotriptern auf, bei denen eine fokussierte Ultraschall-Stoßwelle zur Zerstörung von Konkrementen, beispielsweise Nierensteinen in der Niere eines Patienten, verwendet wird. Sowohl bei der Entwicklung, als auch bei der routinemäßigen Überwachung derartiger Geräte ist es erforderlich, die Eigenschaften der Stoßwelle im Fokusbereich zu bestimmen.With such hydrophones, however, no ultrasonic shock waves whose pressure amplitudes are in the range of about 10⁸ Pa can be measured. Such shock waves with very steep pulse edges, the rise times of which fall below 1 µs, lead to cavitation effects in the known hydrophones gentle mechanical destruction of the metallic electrodes applied in the piezoelectrically active area of the PVDF film. Such shock waves occur, for example, in the focus area of lithotripters, in which a focused ultrasonic shock wave is used to destroy concrements, for example kidney stones in a patient's kidney. Both in the development and in the routine monitoring of such devices, it is necessary to determine the properties of the shock wave in the focus area.

Der Erfindung liegt somit die Aufgabe zugrunde, einen Ultraschallsensor anzugeben, dessen piezoelektrisches Element aus einem Polymer besteht und der auch bei Messung von energiereichen Ultraschall-Stoßwellen verwendet werden kann.The invention is therefore based on the object of specifying an ultrasonic sensor whose piezoelectric element consists of a polymer and which can also be used when measuring high-energy ultrasonic shock waves.

Diese Aufgabe wird erfindungsgemäß gelöst mit dem kennzeichnenden Merkmal des Anspruchs 1. Die im piezo­elektrisch aktiven Bereich der Polymerfolie durch eine Ultraschallwelle verursachten Oberflächenladungs­schwingungen werden über das die Polymerfolie umgebende Medium zu den außerhalb des dem piezoelektrisch aktiven Bereich der Polymerfolie zugeordneten Oberflächenberei­ches der Polymerfolie angeordneten Elektroden elek­trisch gekoppelt. Der piezoelektrisch aktive zentrale Bereich der Polymerfolie kann somit im Fokusbereich einer fokussierten Ultraschall-Stoßwelle angeordnet sein, da im sensitiven Bereich der Polymerfolie keine mechanisch instabile elektrisch leitfähige Schicht vorhanden ist.This object is achieved according to the invention with the characterizing feature of claim 1. The surface charge vibrations in the piezoelectrically active area of the polymer film caused by an ultrasonic wave are electrically coupled via the medium surrounding the polymer film to the electrodes arranged outside the surface area of the polymer film assigned to the piezoelectrically active area of the polymer film . The piezoelectrically active central area of the polymer film can thus be arranged in the focus area of a focused ultrasound shock wave, since there is no mechanically unstable electrically conductive layer in the sensitive area of the polymer film.

Die Erfindung beruht teilweise auf der Erkenntnis, daß durch die Verwendung eines piezoelektrischen Polymers mit einer gegenüber piezokeramischen Werkstoffen relativ geringen Dielektrizitätskonstante eine rein kapazitive Kopplung ohne hohe Signalverluste möglich wird. Die Elektroden können dementsprechend vom piezoelektrisch aktiven Bereich der Polymerfolie räumlich getrennt sowohl auf der Folie selbst als auch außerhalb der Folie beispielsweise am Stützkörper befestigt sein. Die Elektroden sind dabei in vor­teilhafter Weise so gestaltet, daß ihre gegenseitige Kapazität möglichst klein gegenüber den Koppelkapa­zitäten ist, um die durch parasitäre Kapazitäten auftretenden Signalverluste zu verringern. Eine der Elektroden ist mit der elektrischen Masse des Systems verbunden. Da eine hohe Koppelkapazität mit einem hohen elektrischen Nutzsignal einhergeht, ist es vorteilhaft, wenn die Koppelkapazitäten zu den Elektroden möglichst groß sind. Da in der Regel während der Messung die Umgebung des Ultraschall-Sensors annähernd auf Massepotential liegt, kann insbesondere die Koppel­kapazität des piezoelektrisch aktiven Bereiches nach Masse durch geeignete konstruktive Maßnahmen erhöht werden, ohne daß zusätzliche signalreduzierende para­sitäre Kapazitäten entstehen. Insbesondere kann gegen­über dem piezoelektrisch aktiven Bereich der Membran parallel zu deren Oberfläche eine flache ebenfalls mem­branartige zusätzliche Masseelektrode im Ultraschall­sensor angeordnet sein. Dadurch wird der piezoelektrisch aktive Bereich besonders wirksam kapazitiv gegen Masse gekoppelt.The invention is based in part on the knowledge that by using a piezoelectric polymer with a piezoceramic material relatively low dielectric constant, a purely capacitive coupling without high signal losses is possible. Accordingly, the electrodes can be attached spatially separated from the piezoelectrically active region of the polymer film both on the film itself and outside of the film, for example on the support body. The electrodes are advantageously designed in such a way that their mutual capacitance is as small as possible compared to the coupling capacitances, in order to reduce the signal losses occurring due to parasitic capacitances. One of the electrodes is connected to the electrical ground of the system. Since a high coupling capacity is accompanied by a high electrical useful signal, it is advantageous if the coupling capacities to the electrodes are as large as possible. Since, as a rule, the environment of the ultrasound sensor is approximately at ground potential during the measurement, the coupling capacitance of the piezoelectrically active region in particular can be increased by suitable design measures without additional signal-reducing parasitic capacitances occurring. In particular, a flat, also membrane-like additional ground electrode can be arranged in the ultrasonic sensor opposite the piezoelectrically active region of the membrane parallel to its surface. As a result, the piezoelectrically active region is particularly effectively capacitively coupled to ground.

In einer bevorzugten Ausführungsform sind gegenüber den beiden Flachseiten der Membran auf den freien Stirn­seiten des Stützkörpers Deckplatten angeordnet. Zwi­schen Deckplatte und Membran entsteht somit eine dichte Kammer, die mit einer schalltragenden Flüssig­ keit gefüllt ist. Dies hat den Vorteil, daß die im Inneren der Kammer befindliche Flüssigkeit nicht im Austausch mit der das Hydrophon umgebenden Flüssigkeit steht. Durch diese Maßnahme wird sowohl die Reproduzierbarkeit der Messungen erhöht als auch die Möglichkeit geschaffen, das zur akustischen Kopplung verwendete Medium in diesen Kammern des Membran-­Hydrophons unabhängig vom akustischen Trägermedium in der Meßwanne zu wählen. In einer besonders vorteil­haften Ausführungsform ist die in den beiden Hohlräumen befindliche Flüssigkeit ein Elektrolyt.In a preferred embodiment, cover plates are arranged on the free end faces of the support body opposite the two flat sides of the membrane. A tight chamber is created between the cover plate and the membrane, containing a sound-carrying liquid is filled. This has the advantage that the liquid inside the chamber is not in exchange with the liquid surrounding the hydrophone. This measure not only increases the reproducibility of the measurements but also creates the possibility of selecting the medium used for acoustic coupling in these chambers of the membrane hydrophone independently of the acoustic carrier medium in the measuring trough. In a particularly advantageous embodiment, the liquid in the two cavities is an electrolyte.

Die Polarisation der Polymerfolie erfolgt in vorteil­hafter Weise dadurch, daß diese zwischen beweglich an­geordneten, mit einer Hochspannung verbundenen ein­ander gegenüberliegenden Elektroden eingeklemmt wird. Die geometrische Gestalt der Stirnfläche dieser Elek­troden bestimmt somit die geometrische Form des piezo­elektrisch aktiven Bereichs der Polymerfolie.The polarization of the polymer film takes place in an advantageous manner in that it is clamped between movably arranged electrodes located opposite one another and connected to a high voltage. The geometrical shape of the end face of these electrodes thus determines the geometrical shape of the piezoelectrically active region of the polymer film.

Insbesondere ist es von Vorteil, Elektroden zur Polarisation zu verwenden, deren Stirnflächen mit einem elektrisch leitfähigen, elastischen Stempel versehen sind.In particular, it is advantageous to use electrodes for polarization, the end faces of which are provided with an electrically conductive, elastic stamp.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung verwiesen, in deren

  • Figur 1 ein Ultraschall-Sensor gemäß der Erfindung schematisch im Schnitt dargestellt ist. In
  • Figur 2 ist eine vorteilhafte Ausgestaltung des Rand­bereichs des Ultraschall-Sensors ebenfalls im Schnitt dargestellt und
  • Figur 3 zeigt eine besonders vorteilhafte Anordnung der Elektroden auf den Flachseiten der Polymerfolie in einer Draufsicht und
  • Figur 4 zeigt einen Ultraschall-Sensor mit einer be­sonders vorteilhaft gestalteten Masselektrode im Schnitt. In
  • Figur 5 ist eine bevorzugte Ausführungsform eines geschlossenen Ultraschall-Sensors im Schnitt dargestellt.
  • Figur 6 zeigt eine besonders bevorzugte Ausführungsform eines erfindungsgemäßen Ultraschall-Sensors, bei der die Elektroden außerhalb der Polymer­folie angeordnet sind und in
  • Figur 7 ist ein vorteilhaftes Verfahren zur Polarisa­tion der Polymerfolie veranschaulicht.
To further explain the invention reference is made to the drawing, in which
  • Figure 1 is an ultrasonic sensor according to the invention is shown schematically in section. In
  • Figure 2 is an advantageous embodiment of the edge region of the ultrasonic sensor is also shown in section and
  • FIG. 3 shows a particularly advantageous arrangement of the electrodes on the flat sides of the polymer film in a top view and
  • FIG. 4 shows an ultrasound sensor with a particularly advantageously designed ground electrode in section. In
  • FIG. 5 shows a preferred embodiment of a closed ultrasound sensor in section.
  • FIG. 6 shows a particularly preferred embodiment of an ultrasonic sensor according to the invention, in which the electrodes are arranged outside the polymer film and in
  • FIG. 7 illustrates an advantageous method for polarizing the polymer film.

Gemäß Figur 1 enthält ein Ultraschall-Sensor 2 eine beispielsweise kreisscheibenförmige Polymerfolie 4, die zwischen zwei beispielsweise ringförmige Stützkörper 6 straff eingespannt ist und eine Membran 40 bildet. Die Polymerfolie besteht aus einem semikristallinen Poly­mer, beispielsweise Polyvinylfluorid PVF oder einem Copolymer von Vinylfluorid mit Tetrafluorethylen oder Trifluorethylen, insbesondere biaxial gereckten Polyvinylidenfluorid PVDF. Die Polymerfolie 4 ist in einem zentralen Bereich 42 polarisiert und piezoelek­trisch aktiv. Der piezoelektrisch aktive Bereich 42 ist von einem piezoelektrisch inaktiven Bereich 44 umgeben. Der Durchmesser d des beispielsweise kreisscheiben­förmigen, rotationssymmetrisch um eine senkrecht zu den Flachseiten der Polymerfolie 4 verlaufende Mittelachse 22 angeordneten zentralen Bereiches 42 ist sehr viel kleiner als der Durchmesser D der Membran 40 der Poly­merfolie 4. In einer bevorzugten Ausführungsform ist der Durchmesser d des polarisierten zentralen Bereiches 42 kleiner als 2 mm, insbesondere kleiner als 1 mm. Der Durchmesser D der Membran 40 ist in vorteilhafter Weise größer als 30 mm, insbesondere größer als 50 mm zu wählen, um den Einfluß der Stützkörper 6 auf das im zentralen Bereich 42 zu messende Schallfeld zu verrin­gern. Die Dicke der Polymerfolie 4 beträgt zwischen 10 µm und 100 µm, insbesondere zwischen 25 µm und 50 µm. Die Polymerfolie 4 ist an der Oberfläche ihres piezo­elektrisch inaktiven Bereich 44 auf ihren beiden Flach­seiten mit jeweils einer Elektrode 8 versehen. Die Elektroden 8 sind somit derart angeordnet, daß sie vom piezoelektrisch aktiven Bereich 42 räumlich getrennt sind und ihn nicht berühren. Die Elektroden 8 befinden sich vorzugsweise in einem äußeren Randbereich der Polymerfolie 4, dessen Breite kleiner als 1/4, ins­besondere kleiner als 1/10 des Durchmessers der Folie ist. Die Elektroden 8 haben eine beispielsweise ring­förmige Gestalt und sind im Bereich der Membran 40 beispielsweise konzentrisch um die Mittelachse 22 angeordnet. Die Elektroden 8 sind mit elektrischen Anschlußleitern 82 versehen, die beispielsweise in radialen Nuten 62 der Stützkörper 6 zum zylindrischen Außenrand des Ultraschall-Sensors 2 führen. Dort können die Anschlußleiter 82 beispielsweise mit einem Koaxial­kabel verbunden werden, das die elektrischen Signale an eine weiterverarbeitende Elektronik, beispielsweise einen ladungsempfindlichen Verstärker, weiterleitet. Insbesondere ist einer der beiden Anschlußleiter 82 mit der elektrischen Masse verbunden.According to FIG. 1, an ultrasound sensor 2 contains a polymer film 4, for example in the form of a circular disk, which is clamped tightly between two, for example, annular support bodies 6 and forms a membrane 40. The polymer film consists of a semicrystalline polymer, for example polyvinyl fluoride PVF or a copolymer of vinyl fluoride with tetrafluoroethylene or trifluoroethylene, in particular biaxially stretched polyvinylidene fluoride PVDF. The polymer film 4 is polarized in a central region 42 and is piezoelectrically active. The piezoelectrically active area 42 is surrounded by a piezoelectrically inactive area 44. The diameter d of the central region 42, for example in the form of a circular disk, arranged rotationally symmetrically about a central axis 22 running perpendicular to the flat sides of the polymer film 4, is very much smaller than the diameter D of the membrane 40 of the polymer film 4. In a preferred embodiment, the diameter d of the polarized central region Area 42 smaller than 2 mm, in particular smaller than 1 mm. The diameter D of the membrane 40 is advantageously greater than 30 mm, in particular greater than 50 mm choose to reduce the influence of the support body 6 on the sound field to be measured in the central area 42. The thickness of the polymer film 4 is between 10 μm and 100 μm, in particular between 25 μm and 50 μm. The polymer film 4 is provided on the surface of its piezoelectrically inactive region 44 on its two flat sides with one electrode 8 each. The electrodes 8 are thus arranged in such a way that they are spatially separated from the piezoelectrically active region 42 and do not touch it. The electrodes 8 are preferably located in an outer edge region of the polymer film 4, the width of which is less than 1/4, in particular less than 1/10, of the diameter of the film. The electrodes 8 have an annular shape, for example, and are arranged, for example, concentrically around the central axis 22 in the region of the membrane 40. The electrodes 8 are provided with electrical connection conductors 82, which lead, for example, in radial grooves 62 of the support body 6 to the cylindrical outer edge of the ultrasonic sensor 2. There, the connecting conductors 82 can be connected, for example, with a coaxial cable, which forwards the electrical signals to further processing electronics, for example a charge-sensitive amplifier. In particular, one of the two connection conductors 82 is connected to the electrical ground.

Die Eigenschaften des Ultraschallfeldes eines für medizinische Zwecke verwendeten Ultraschallsenders wer­den in der Regel in einem mit einer schalltragenden Flüssigkeit, beispielsweise Wasser, gefüllten Becken gemessen. Der Ultraschall-Sensor 2 ist somit während der Messung von Wasser 10 umgeben.Die durch das Ultra­schallfeld auf die Polymerfolie 4 einwirkenden Druck­ kräfte erzeugen im piezoelektrisch aktiven zentralen Bereich 42 hochfrequente Oberflächenladungsschwin­gungen. Der piezoelektrisch aktive Bereich 42 ist von den Elektroden 8 bei Verwendung reinen Wassers hoch­ohmig getrennt. Wegen der hohen relativen Dielek­trizitätszahl εr = 81 von Wasser koppeln jedoch diese Ladungsschwingungen kapazitiv über das als Di­elektrikum wirkende Wasser auf die Elektroden 8 über. Da die signalaufnehmenden Elektroden 8 am äußeren Rand des Membranbereiches der Polymerfolie 4 angeordnet sind, können im zentralen Bereich 40 sehr hohe Schall­druckamplituden reproduzierbar gemessen werden, ohne daß die Gefahr einer mechanischen Zerstörung und eines Abplatzens der Elektroden 8 von der Polymerfolie 4 auftritt.The properties of the ultrasound field of an ultrasound transmitter used for medical purposes are generally measured in a basin filled with a sound-carrying liquid, for example water. The ultrasonic sensor 2 is thus surrounded by water 10 during the measurement. The pressure acting on the polymer film 4 through the ultrasonic field Forces generate 42 high-frequency surface charge vibrations in the piezoelectrically active central region. The piezoelectrically active area 42 is separated from the electrodes 8 with high resistance when using pure water. Because of the high relative permittivity ε r = 81 of water, however, these charge vibrations couple capacitively to the electrodes 8 via the water acting as a dielectric. Since the signal-receiving electrodes 8 are arranged on the outer edge of the membrane area of the polymer film 4, very high sound pressure amplitudes can be measured reproducibly in the central area 40 without the risk of mechanical destruction and the electrodes 8 flaking off the polymer film 4.

Entsprechend Figur 2 können sich die Elektroden 8 auch in den Bereich der Polymerfolie 4 erstrecken, der zwischen den Stützkörpern 6 eingeklemmt ist. Die Nuten 64, in denen die Anschlußleiter 82 verlaufen, müssen sich somit nicht mehr bis zum Innenrand der Stützkörper 6 erstrecken.According to FIG. 2, the electrodes 8 can also extend into the area of the polymer film 4 which is clamped between the support bodies 6. The grooves 64 in which the connecting conductors 82 run no longer have to extend to the inner edge of the support body 6.

In der vorteilhaften Ausführungsform gemäß Figur 3 sind die beiden Flachseiten der Polymerfolie 4 jeweils mit einer annähernd halbringförmigen Elektrode 86 bzw. 87 versehen. Die beiden Elektroden 86 und 87 sind derart angeordnet, daß sie sich nicht überlappen. Die zwischen den Elektroden 86 und 87 auftretende parasitäre Kapazität, die eine Verminderung des elektrischen Nutzsignals verursacht, wird dadurch verringert. Dies ist insbesondere dann von Vorteil, wenn der Ultra­schall-Sensor auch zum Messen von Ultraschallfeldern eingesetzt werden soll, die in der medizinischen Diagnostik verwendet werden.In the advantageous embodiment according to FIG. 3, the two flat sides of the polymer film 4 are each provided with an approximately semi-ring-shaped electrode 86 or 87. The two electrodes 86 and 87 are arranged such that they do not overlap. The parasitic capacitance which occurs between the electrodes 86 and 87 and which causes a reduction in the electrical useful signal is thereby reduced. This is particularly advantageous if the ultrasound sensor is also to be used for measuring ultrasound fields that are used in medical diagnostics.

Gemäß Figur 4 ist einer der beiden Stützkörper 6 an seiner, der Polymerfolie 4 abgewandten Flachseite mit einer Masseelektrode 12 versehen. Diese Masseelektrode 12 ist gemeinsam mit derjenigen Elektrode 8, die sich im Gebiet zwischen der Masselektrode 12 und der Polymerfolie 4 befindet, mit der elektrischen Masse verbunden. Dadurch wird die Koppelkapazität des piezo­elektrisch aktiven Bereiches 42 nach Masse und somit das an den Eingängen eines Verstärkers 26 anliegende elektrische Signal vergrößert. Die Masselektrode 12 besteht in einer vorteilhaften Ausführungsform aus einer Edelstahlfolie, deren Dicke weniger als 100 µm, insbesondere zwischen 10 µm und 20 µm beträgt. In einer besonders vorteilhaften Ausführungsform ist die Masseelektrode 12 ein dünnes Metallgitter, dessen Dicke ebenfalls kleiner als 100 µm ist. Dadurch wird der störende Einfluß der Masseelektrode 12 auf das Ultra­schallfeld verringert. Die zwischen Masseelektrode 12 und Polymerfolie 4 befindliche Elektrode 8 kann in einer besonders bevorzugten, vereinfachten Aus­führungsform auch entfallen, da die Masseelektrode 12 die Funktion dieser Elektrode 8 übernimmt.According to FIG. 4, one of the two support bodies 6 is provided with a ground electrode 12 on its flat side facing away from the polymer film 4. This ground electrode 12 is connected to the electrical ground together with that electrode 8 which is located in the region between the ground electrode 12 and the polymer film 4. This increases the coupling capacitance of the piezoelectrically active region 42 to ground and thus the electrical signal present at the inputs of an amplifier 26. In an advantageous embodiment, the ground electrode 12 consists of a stainless steel foil, the thickness of which is less than 100 μm, in particular between 10 μm and 20 μm. In a particularly advantageous embodiment, the ground electrode 12 is a thin metal grid, the thickness of which is also less than 100 μm. This reduces the disruptive influence of the ground electrode 12 on the ultrasonic field. In a particularly preferred, simplified embodiment, the electrode 8 located between the ground electrode 12 and the polymer film 4 can also be omitted, since the ground electrode 12 takes over the function of this electrode 8.

Entsprechend der Ausführungsform gemäß Figur 5 sind die Stützkörper 6 an ihren der Polymerfolie 4 abgewandten Flachseiten jeweils mit einer Deckplatte 122 bzw. 124 versehen. Zwischen dem Membranbereich 40 der Polymer­folie 4 und den Deckplatten 122 und 124 entsteht somit jeweils eine dichte Kammer 100. In einer vorteilhaften Ausführungsform bestehen diese Deckplatten 122 und 124 aus einem Kunststoff, beispielsweise Polystyrol PS oder Polymethacrylsäuremethylester PMMA, welcher der außer­halb der Kammer 100 befindlichen schalltragenden Flüssig­keit weitgehend akustisch angepaßt und dessen Einfluß auf das zu messende Schallfeld gering ist. In einer besonders vorteilhaften Ausführungsform bestehen die Deckplatten 122 und 124 aus Polymethylpenten, PMP, dessen akustische Impedanz nahezu gleich der akustischen Impedanz von Wasser ist. Insbesondere können die Deckplatten 122 und 124 auch aus einer Polymerfolie bestehen, deren Dicke vorzugsweise kleiner als 100 µm ist. Die Kammern 100 sind gegenüber dem Außenraum dicht verschlossen und sind durch die Polymerfolie 4 voneinander getrennt. Dazu sind die Nuten 62 in denen die Anschlußleiter 82 verlaufen, beispielsweise mit einem Klebstoff 84 teilweise vergossen oder es ist eine Ausführungsform gemäß Figur 2 vorgesehen, bei der die Nuten nicht bis zum Innenrand der Stützkörper 6 führen. Die Kammern 100 sind mit einer schalltragenden Flüssigkeit gefüllt. Als Flüssigkeit kann beispielsweise Wasser vorgesehen sein, bei dem die Signalkopplung vom piezoelektrisch aktiven zentralen Bereich 42 zu den Kontaktelektroden 8 im wesentlichen kapazitiv erfolgt. In einer besonderen Ausführungsform sind die Kammern 100 mit einem Elektrolyten, z.B. einer wässrigen Kochsalzlösung, gefüllt, dessen elektrische Leitfähigkeit so gewählt ist, daß der ohmsche Widerstand zwischen den Elektroden 8 und der Oberfläche des piezoaktiven Bereichs 42 kleiner als 1 kΩ insbesondere kleiner als 100 Ω ist. In dieser Ausführungsform erfolgt die Kopplung des im piezoelektrisch aktiven Bereich 42 erzeugten Wechsel­ladungssignals auf die Elektroden 8 in erster Näherung über den durch die Flüssigkeit gebildeten Serienwider­stand. Wenigstens die Oberfläche der Elektroden 8 besteht in vorteilhafter Weise aus einem edel­metallischen Werkstoff, beispielsweise Gold Au oder Platin Pt.According to the embodiment according to FIG. 5, the support bodies 6 are each provided with a cover plate 122 or 124 on their flat sides facing away from the polymer film 4. Between the membrane area 40 of the polymer film 4 and the cover plates 122 and 124, a sealed chamber 100 is thus created. In an advantageous embodiment, these cover plates 122 and 124 consist of a plastic, for example polystyrene PS or polymethacrylic acid methyl ester PMMA, which is the sound-carrying material located outside the chamber 100 Liquid largely adapted acoustically and its influence on the sound field to be measured is low. In a particularly advantageous embodiment, the cover plates 122 and 124 consist of polymethylpentene, PMP, whose acoustic impedance is almost equal to the acoustic impedance of water. In particular, the cover plates 122 and 124 can also consist of a polymer film, the thickness of which is preferably less than 100 μm. The chambers 100 are sealed off from the outside space and are separated from one another by the polymer film 4. For this purpose, the grooves 62 in which the connecting conductors 82 run, for example partially potted with an adhesive 84, or an embodiment according to FIG. 2 is provided in which the grooves do not lead to the inner edge of the support body 6. The chambers 100 are filled with a sound-carrying liquid. Water can be provided as the liquid, for example, in which the signal coupling from the piezoelectrically active central region 42 to the contact electrodes 8 takes place essentially capacitively. In a particular embodiment, the chambers 100 are filled with an electrolyte, for example an aqueous saline solution, the electrical conductivity of which is selected such that the ohmic resistance between the electrodes 8 and the surface of the piezoactive region 42 is less than 1 kΩ, in particular less than 100 Ω is. In this embodiment, the alternating charge signal generated in the piezoelectrically active region 42 is coupled to the electrodes 8 in a first approximation via the series resistance formed by the liquid. At least the surface of the electrodes 8 advantageously consists of a noble metal material, for example gold Au or platinum Pt.

Eine der Deckplatten 122 und 124 kann in einer besonderen Ausführungsform auch aus einem elektrisch leitfähigen Werkstoff, beispielsweise einer Edelstahl­folie oder einem elektrisch leitfähigen Kunststoff bestehen und mit der elektrischen Masse verbunden sein. Dadurch wird die Koppelkapazität des piezoelek­trisch aktiven Bereichs 42 nach Masse vergrößert und das elektrische Ausgangssignal entsprechend erhöht. Besteht eine der Deckplatte 122 und 124 aus einem metallischen Werkstoff, so ist der Ultraschall-Sensor 2 bei einer Messung in vorteilhafter Weise so im Schall­feld eines Ultraschall-Senders einzusetzen, daß sich diese Deckplatte auf der dem Ultraschall-Sender ab­gewandten Seite des Ultraschall-Sensors 2 befindet.In a special embodiment, one of the cover plates 122 and 124 can also consist of an electrically conductive material, for example a stainless steel foil or an electrically conductive plastic, and can be connected to the electrical ground. As a result, the coupling capacitance of the piezoelectrically active region 42 is increased to ground and the electrical output signal is increased accordingly. If one of the cover plates 122 and 124 consists of a metallic material, the ultrasound sensor 2 is to be used in a measurement in an advantageous manner in the sound field of an ultrasound transmitter such that this cover plate is on the side of the ultrasound sensor facing away from the ultrasound transmitter 2 is located.

Bei einem besonders vorteilhaften Ultraschall-Sensor 24 gemäß Figur 6 ist eine kreisscheibenförmige Polymer­folie 4 an einem rotationssymmetrischen Stützkörper 6 befestigt, der beispielsweise an seiner Innenwand mit einer ringförmigen Ausnehmung versehen ist, die sich bis zu den der Polymerfolie 4 abgewandten Stirnseiten der Stützkörper 6 erstreckt. In diese Ausnehmung ist jeweils eine ebenfalls ringförmige Elektrode 88 ein­geschoben und mit einem am Stützkörper 6 befestigten Halteflansch 66 fixiert. Die Elektroden 88 sind bei­spielsweise metallische Ringe deren Wandstärke weniger als 1 mm, betragen kann. Die Elektroden 88 bestehen beispielsweise aus Edelstahl oder aus Messing, das zum Schutz vor den korrosiven Eigenschaften des umgebenden Mediums beispielsweise mit einer Platin­schutzschicht versehen ist. Von den Elektroden 88 führen Anschlußleiter 82 über Nuten 68 des Stützkörpers 6 zu seinem zylindrischen Außenrand.In a particularly advantageous ultrasonic sensor 24 according to FIG. 6, a circular disk-shaped polymer film 4 is attached to a rotationally symmetrical support body 6, which is provided, for example, on its inner wall with an annular recess which extends as far as the end faces of the support bodies 6 facing away from the polymer film 4. A likewise annular electrode 88 is inserted into this recess and fixed with a holding flange 66 fastened to the support body 6. The electrodes 88 are, for example, metallic rings whose wall thickness can be less than 1 mm. The electrodes 88 consist, for example, of stainless steel or brass, which is provided with a platinum protective layer, for example, to protect it from the corrosive properties of the surrounding medium. From the electrodes 88 lead 82 lead through grooves 68 of the support body 6 to its cylindrical outer edge.

In dieser besonders bevorzugten Ausführungsform ist die Polymerfolie 4 somit nicht mehr mit Elektroden be­schichtet. Dies hat den Vorteil, daß der Ultraschall-­Sensor 24 auch in seinen linearen Dimensionen erheblich verkleinert werden kann, da sich in dieser Ausführungs­form die Elektroden 88 auch in unmittelbarer Nähe des Fokus einer Ultraschall-Stoßwelle befinden können, ohne daß die Gefahr einer Zerstörung der Elektroden 88 be­steht. Eine derartige Miniaturisierung des Ultraschall-­Sensors 24 hat den Vorteil, daß die Koppelkapazitäten des piezoelektrisch aktiven Bereiches 42 zu den Elek­troden 88 durch eine Verringerung des gegenseitigen Abstandes vergrößert werden und somit die Empfind­lichkeit des Ultraschall-Sensors 24 erhöht wird.In this particularly preferred embodiment, the polymer film 4 is therefore no longer coated with electrodes. This has the advantage that the ultrasonic sensor 24 can also be significantly reduced in its linear dimensions, since in this embodiment the electrodes 88 can also be in the immediate vicinity of the focus of an ultrasonic shock wave, without the risk of the electrodes being destroyed 88 exists. Such miniaturization of the ultrasound sensor 24 has the advantage that the coupling capacitances of the piezoelectrically active area 42 to the electrodes 88 are increased by reducing the mutual distance and thus the sensitivity of the ultrasound sensor 24 is increased.

Auch in der Ausführungsform nach Figur 6 kann der Ultraschall-Sensor 24 mit einer Masseelektrode ent­sprechend Figur 4 oder mit Deckplatten entsprechend Figur 5 versehen sein.In the embodiment according to FIG. 6, the ultrasonic sensor 24 can also be provided with a ground electrode according to FIG. 4 or with cover plates according to FIG.

Gemäß Figur 7 befindet sich eine Polymerfolie 4 zwi­schen zwei einander gegenüberliegenden beweglich ange­ordneten Elektroden 14 einer Hochspannungsquelle 16. Die einander gegenüberliegenden Elektroden 14 sind in einem, dem piezoelektrisch zu aktivierenden Teil­bereich 42 zugeordneten Oberflächenbereich der Poly­merfolie 4 an die Polymerfolie 4 angelegt. Entsprechend der geometrischen Gestalt der Stirnflächen der Elek­troden 14 wird dann durch Anlegen der Hochspannung 16 der definierte Teilbereich 42 der Polymerfolie 4 polarisiert und piezoelektrisch aktiviert. Zur Polarisation eines definierten Teilbereiches 42 der Polymerfolie 4 ist es somit nicht erforderlich, dessen Oberfläche vorher mit geometrisch entsprechend gestalteten metallischen Elektroden zu beschichten. Die zur Aktivierung der Polymerfolie 4 erforderlichen weiteren Verfahrensschritte sind beispielsweise der Druckschrift "J.Acoust.Soc. Am." Vol. 69, No. 3, März 1981 auf Seite 854 zu entnehmen.According to FIG. 7, a polymer film 4 is located between two movably arranged electrodes 14 of a high-voltage source 16 lying opposite one another. The electrodes 14 lying opposite one another are applied to the polymer film 4 in a surface area of the polymer film 4 that is assigned to the piezoelectrically activated partial area 42. Corresponding to the geometric shape of the end faces of the electrodes 14, the defined partial area 42 of the polymer film 4 is then polarized and piezoelectrically activated by applying the high voltage 16. For the polarization of a defined partial area 42 of the polymer film 4, it is therefore not necessary to geometrically correspond to its surface beforehand to coat designed metallic electrodes. The further process steps required to activate the polymer film 4 are described, for example, in the publication "J.Acoust.Soc. Am." Vol. 69, No. 3, March 1981 on page 854.

Die Elektroden 14 können in einer vorteilhaften Ausge­staltung an ihren Stirnflächen auch mit einem elek­trisch leitfähigen elastischen Stempel 18, der bei­spielsweise aus einem leitfähigen Polymer oder aus Leitgummi besteht, versehen sein. Die Polymerfolie 4 kann dann fest zwischen diese elastischen Stempel 18 eingeklemmt werden, ohne daß die Gefahr einer mecha­nischen Zerstörung der Polymerfolie 4 besteht. Außer­dem ist selbst dann, wenn die Stirnflächen der Elek­troden 14 zueinander nicht exakt parallel verlaufen, gewährleistet, daß die Stempel 18 auf ihrer gesamten Stirnfläche die Polymerfolie 4 berühren. Durch diese Maßnahme kann somit die Homogenität in den piezo­elektrischen Eigenchaften des polarisierten Bereiches 42 der Polymerfolie 4 erhöht werden.In an advantageous embodiment, the electrodes 14 can also be provided on their end faces with an electrically conductive elastic stamp 18, which consists, for example, of a conductive polymer or of conductive rubber. The polymer film 4 can then be firmly clamped between these elastic stamps 18 without the risk of mechanical destruction of the polymer film 4. In addition, even if the end faces of the electrodes 14 do not run exactly parallel to one another, it is ensured that the punches 18 touch the polymer film 4 over their entire end face. This measure can thus increase the homogeneity in the piezoelectric properties of the polarized region 42 of the polymer film 4.

Claims (13)

1. Ultraschall-Sensor mit einer wenigstens in ihrem Randbereich an einem Stützkörper befestigten Poly­merfolie, die wenigstens in einem Teilbereich piezoelektrisch aktiviert ist, der mit Elektroden elektrisch gekoppelt ist, dadurch ge­kennzeichnet, daß die Elektroden (8) räumlich getrennt vom piezoelektrisch aktiven Bereich (42) angeordnet sind.1. Ultrasonic sensor with a polymer film attached at least in its edge region to a support body, which is piezoelectrically activated in at least one partial region that is electrically coupled to electrodes, characterized in that the electrodes (8) are spatially separated from the piezoelectrically active region (42 ) are arranged. 2. Ultraschall-Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Oberfläche des piezoelektrisch aktiven Bereiches (42) kleiner als die Gesamtfläche des eine Membran (40) bildenden Teils der Polymerfolie (4) ist.2. Ultrasonic sensor according to claim 1, characterized in that the surface of the piezoelectrically active region (42) is smaller than the total area of the part of the polymer film (4) forming a membrane (40). 3. Ultraschall-Sensor nach Anspruch 2, dadurch gekennzeichnet, daß die Elektroden (8) auf den Flachseiten der Polymerfolie (4) wenigstens teilweise im Oberflächenbereich der Membran (40) angeordnet sind.3. Ultrasonic sensor according to claim 2, characterized in that the electrodes (8) on the flat sides of the polymer film (4) are at least partially arranged in the surface area of the membrane (40). 4. Ultraschall-Sensor nach Anspruch 3, dadurch gekennzeichnet, daß eine kreisscheiben­förmige Membran (40) vorgesehen ist, die in ihrem äußeren Randbereich mit kreisringförmigen Elektroden (8) versehen ist, die konzentrisch um einen zentralen kreisscheibenförmigen piezoelektrisch aktiven Bereich (42) angeordnet sind.4. Ultrasonic sensor according to claim 3, characterized in that a circular disk-shaped membrane (40) is provided which is provided in its outer edge region with annular electrodes (8) which are arranged concentrically around a central circular disk-shaped piezoelectrically active region (42) . 5. Ultraschall-Sensor nach Anspruch 3 oder 4, da­durch gekennzeichnet, daß sich die auf den einander gegenüberliegenden Flachseiten der Polymerfolie (4) angeordneten Elektroden (86, 87) nicht überlappen.5. Ultrasonic sensor according to claim 3 or 4, characterized in that the electrodes (86, 87) arranged on the opposite flat sides of the polymer film (4) do not overlap. 6. Ultraschall-Sensor nach Anspruch 1 oder 2, da­durch gekennzeichnet, daß Elektroden (88) vorgesehen sind, die von der Polymer­folie (4) räumlich getrennt angeordnet sind.6. Ultrasonic sensor according to claim 1 or 2, characterized in that electrodes (88) are provided which are arranged spatially separated from the polymer film (4). 7. Ultraschall-Sensor nach Anspruch 6, dadurch gekennzeichnet, daß bei einer kreis­scheibenförmigen Polymerfolie (4) ringförmige Elek­troden (88) vorgesehen sind, die am Stützkörper (6) angeordnet sind.7. Ultrasonic sensor according to claim 6, characterized in that in a circular disk-shaped polymer film (4) annular electrodes (88) are provided which are arranged on the support body (6). 8. Ultraschall-Sensor nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß gegenüber einer der beiden Flachseiten der Membran (40) auf der der Membran (40) abgewandten Stirnseite des Stützkörpers (6) eine kreisscheibenförmige Masseelek­trode (12) angeordnet ist.8. Ultrasonic sensor according to one of claims 4 to 7, characterized in that a circular disk-shaped ground electrode (12) is arranged opposite one of the two flat sides of the membrane (40) on the end face of the support body (6) facing away from the membrane (40). 9. Ultraschall-Sensor nach Anspruch 8, dadurch gekennzeichnet, daß die Masseelektrode (12) ein Metallgitter ist.9. Ultrasonic sensor according to claim 8, characterized in that the ground electrode (12) is a metal grid. 10. Ultraschall-Sensor nach Anspruch 1 oder 8, da­durch gekennzeichnet, daß gegenüber den beiden Flachseiten der Membran (40) auf den freien Stirnseiten des Stützkörpers (6) jeweils eine Deckplatte (122, 124) angeordnet ist und daß zwi­schen Deckplatte (122, 124) und Membran (40) jeweils eine dichte Kammer (100) gebildet wird, die mit einer schalltragenden Flüssigkeit gefüllt ist.10. Ultrasonic sensor according to claim 1 or 8, characterized in that opposite the two flat sides of the membrane (40) on the free end faces of the support body (6) each have a cover plate (122, 124) and that between the cover plate (122, 124) and membrane (40) each form a sealed chamber (100) which is filled with a sound-carrying liquid. 11. Ultraschall-Sensor nach Anspruch 9, dadurch gekennzeichnet, daß die schalltragende Flüssigkeit ein Elektrolyt ist.11. Ultrasonic sensor according to claim 9, characterized in that the sound-carrying liquid is an electrolyte. 12. Verfahren zum Herstellen einer wenigstens in einem Teilbereich (42) mittels eines elektrischen Feldes piezoelektrisch aktivierten Polymerfolie (4), da­durch gekennzeichnet, daß zur Polarisation dieses Bereiches (42) beweglich ange­ordnete, mit einer Hochspannungsquelle (16) verbundene Elektroden (14) vorgesehen sind, deren sich gegenüber­liegende Stirnflächen in einem, dem Bereich (42) zu­geordneten Oberflächenbereich an die Polymerfolie (4) angelegt werden.12. A method for producing at least in a partial area (42) by means of an electric field piezoelectrically activated polymer film (4), characterized in that for the polarization of this area (42) movably arranged, with a high voltage source (16) connected electrodes (14) are provided whose opposite end faces are applied to the polymer film (4) in a surface area assigned to the area (42). 13. Verfahren nach Anspruch 12, dadurch ge­kennzeichnet, daß die einander gegenüber­liegenden Stirnflächen der Elektroden (14) jeweils mit einem elektrisch leitfähigen elastischen Stempel (18) versehen werden.13. The method according to claim 12, characterized in that the opposite end faces of the electrodes (14) are each provided with an electrically conductive elastic stamp (18).
EP86117065A 1985-12-20 1986-12-08 Ultrasonic sensor Expired - Lifetime EP0227985B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3545382 1985-12-20
DE3545382 1985-12-20

Publications (3)

Publication Number Publication Date
EP0227985A2 true EP0227985A2 (en) 1987-07-08
EP0227985A3 EP0227985A3 (en) 1987-10-21
EP0227985B1 EP0227985B1 (en) 1991-03-06

Family

ID=6289135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117065A Expired - Lifetime EP0227985B1 (en) 1985-12-20 1986-12-08 Ultrasonic sensor

Country Status (4)

Country Link
US (1) US4734611A (en)
EP (1) EP0227985B1 (en)
JP (1) JP2591737B2 (en)
DE (1) DE3677921D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332916A1 (en) * 1988-03-10 1989-09-20 Siemens Aktiengesellschaft Ultrasonic sensor
EP0381796A1 (en) * 1989-02-10 1990-08-16 Siemens Aktiengesellschaft Ultrasonic sensor
EP0418663A1 (en) * 1989-09-22 1991-03-27 Richard Wolf GmbH Piezoelectric membrane hydrophone
EP0472085A1 (en) * 1990-08-24 1992-02-26 Siemens Aktiengesellschaft Ultrasound transducer

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813402A (en) * 1986-02-19 1989-03-21 Siemens Aktiengesellschaft Coupling member for a shock wave therapy device
EP0255636B1 (en) * 1986-07-30 1990-04-25 Siemens Aktiengesellschaft Acoustic shock wave sensor
DE8622104U1 (en) * 1986-08-18 1987-12-17 Siemens AG, 1000 Berlin und 8000 München Device for crushing concretions
EP0256438A1 (en) * 1986-08-18 1988-02-24 Siemens Aktiengesellschaft Sensor for recording shock wave impulses
US4924131A (en) * 1987-10-14 1990-05-08 Fujikura Ltd. Piezo-electric acceleration sensor
US4835435A (en) * 1988-01-19 1989-05-30 Hewlett-Packard Company Simple, sensitive, frequency-tuned drop detector
US5072426A (en) * 1991-02-08 1991-12-10 Sonic Technologies Self-monitoring shock wave hydrophone
US5381386A (en) * 1993-05-19 1995-01-10 Hewlett-Packard Company Membrane hydrophone
US5406951A (en) * 1993-10-15 1995-04-18 Ten Hoff; Harm Intra-luminal ultrasonic instrument
US5479377A (en) * 1994-12-19 1995-12-26 Lum; Paul Membrane-supported electronics for a hydrophone
US6012779A (en) 1997-02-04 2000-01-11 Lunar Corporation Thin film acoustic array
US20050245824A1 (en) * 2004-04-20 2005-11-03 Acoustic Marketing Research, A Colorado Corporation, D/B/A Sonora Medical Systems, Inc. High-intensity focused-ultrasound hydrophone
DE102005044677A1 (en) * 2005-09-19 2007-03-29 Abb Patent Gmbh Electromagnetic flowmeter with a ground washer
DE102006004874A1 (en) * 2006-02-03 2007-08-09 Robert Bosch Gmbh Sensor device for vehicles
US7755257B2 (en) * 2007-09-03 2010-07-13 Micallef Joseph A Piezoelectric ultracapacitor
US7859171B2 (en) * 2006-10-10 2010-12-28 Micallef Joseph A Piezoelectric ultracapacitor
CN102460938B (en) * 2009-05-11 2015-04-01 日本电气株式会社 Piezoelectric actuator and audio components
JP6263902B2 (en) * 2013-08-21 2018-01-24 株式会社村田製作所 Ultrasonic generator
US9389139B2 (en) * 2014-07-15 2016-07-12 The United States Of America As Represented By The Secretary Of The Army Method for studying the evolution of damage in cylinders subjected to internal radial explosion

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL86434C (en) * 1951-04-27
JPS4936154B1 (en) * 1969-09-09 1974-09-27
US3912830A (en) * 1971-10-13 1975-10-14 Kureha Chemical Ind Co Ltd Method of producing a piezoelectric or pyroelectric element
JPS5147878A (en) * 1974-10-22 1976-04-23 Tadashi Abe FUTONITSUKE TAMISHINME
US4048526A (en) * 1975-08-08 1977-09-13 Minnesota Mining And Manufacturing Company Kinetic sensor employing polymeric piezoelectric material
US4079437A (en) * 1976-04-30 1978-03-14 Minnesota Mining And Manufacturing Machine and method for poling films of pyroelectric and piezoelectric material
AT375466B (en) * 1977-07-27 1984-08-10 List Hans MEASURING VALUE WITH A PIEZOELECTRIC MEASURING ELEMENT
JPS572196A (en) * 1980-06-04 1982-01-07 Pioneer Electronic Corp Pickup cartridge of movable coil type
US4433400A (en) * 1980-11-24 1984-02-21 The United States Of America As Represented By The Department Of Health And Human Services Acoustically transparent hydrophone probe
JPS58102581A (en) * 1981-12-14 1983-06-18 Japan Synthetic Rubber Co Ltd Manufacture of improved macromolecular piezoelectric material
US4653036A (en) * 1984-10-23 1987-03-24 The United States Of America As Represented By The Department Of Health And Human Services Transducer hydrophone with filled reservoir

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE ACOUSTICS SOCIETY OF AMERICA; Band 69, Nr. 3, M{rz 1981, Seiten 853-859; New York, (US) A.S. DeREGGI et al.: "Piezoelectricpolymer probe for ultrasonic applications." *
ULTRASONICS, Mai 1980, Seiten 123-126; IPC Business Press, Guilford, (GB) K.C. SCHOTTON et al.: "A pvdf membrane hydrophone for operation in the range 0.5 MHz to 15 MHz." *
ULTRASONICS, September 1981, Seiten 213-216, IPC Business Press, Guilford; (GB) P.A. LEWIN: "Miniature piezoelectricpolymer ultrasonic hydrophone probes." *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332916A1 (en) * 1988-03-10 1989-09-20 Siemens Aktiengesellschaft Ultrasonic sensor
EP0381796A1 (en) * 1989-02-10 1990-08-16 Siemens Aktiengesellschaft Ultrasonic sensor
US5056069A (en) * 1989-02-10 1991-10-08 Siemens Aktiengesellschaft Ultrasonic sensor
EP0418663A1 (en) * 1989-09-22 1991-03-27 Richard Wolf GmbH Piezoelectric membrane hydrophone
EP0472085A1 (en) * 1990-08-24 1992-02-26 Siemens Aktiengesellschaft Ultrasound transducer

Also Published As

Publication number Publication date
EP0227985A3 (en) 1987-10-21
US4734611A (en) 1988-03-29
EP0227985B1 (en) 1991-03-06
DE3677921D1 (en) 1991-04-11
JPS62154900A (en) 1987-07-09
JP2591737B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
EP0227985B1 (en) Ultrasonic sensor
DE69401099T2 (en) Micro grooves for the design of broadband clinical ultrasound transducers
DeReggi et al. Piezoelectric polymer probe for ultrasonic applications
US4433400A (en) Acoustically transparent hydrophone probe
US6215231B1 (en) Hollow sphere transducers
EP0332916A1 (en) Ultrasonic sensor
US4704774A (en) Ultrasonic transducer and method of manufacturing same
EP3534418A1 (en) Piezoelectric sensing device and application
EP3538289B1 (en) Ultrasound transducer
EP0267475B1 (en) Ultrasonic sensor
EP0381796B1 (en) Ultrasonic sensor
CN107923788B (en) Membrane underwater sound receiver for high-frequency ultrasound and manufacturing method thereof
DE29509574U1 (en) Sound transducer
EP0472085B1 (en) Ultrasound transducer
US12115555B2 (en) Gas matrix piezoelectric ultrasound array transducer
EP0086531B1 (en) Apparatus for ultrasonic investigation
Chan et al. Piezoelectric copolymer hydrophones for ultrasonic field characterization
DE3920885A1 (en) Ultrasonic shock wave sensor - with non-piezoelectric polymeric dielectric, for lithotriptor
CN217726112U (en) Annular ultrasonic transducer
EP0418663A1 (en) Piezoelectric membrane hydrophone
DE19707933C2 (en) ultrasound transducer
EP2926383B1 (en) Transducer having at least one electrode of a first type, one electrode of a second type and at least one ferroelectret
DE3808017A1 (en) Piezoceramic ultrasonic transducer and method for manufacturing it
DE3545353A1 (en) Method and device for measuring the acoustic power of a focused ultrasonic field
DD296609A5 (en) CONVERTER FOR TRANSCUTANEOUS AND INTRAOPERATIVE BLOOD TEST MEASUREMENT ACCORDING TO THE ULTRASONIC DOPPLER METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19871125

17Q First examination report despatched

Effective date: 19900125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3677921

Country of ref document: DE

Date of ref document: 19910411

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941208

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001222

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010219

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051208